
The Top Ten List: Dynamic Fault Prediction

Ahmed E. Hassan and Richard C. Holt
Software Architecture Group (SWAG)

School of Computer Science
University of Waterloo

Waterloo, Canada
{aeehassa,holt }@plg.uwaterloo.ca

ABSTRACT
To remain competitive in the fast paced world of software
development, managers must optimize the usage of their lim-
ited resources to deliver quality products on time and within
budget. In this paper, we present an approach (The Top Ten
List) which highlights to managers the ten most susceptible
subsystems (directories) to have a fault. Managers can focus
testing resources to the subsystems suggested by the list. The
list is updated dynamically as the development of the system
progresses.

We present heuristics to create the Top Ten List and de-
velop techniques to measure the performance of these heuris-
tics. To validate our work, we apply our presented approach
to six large open source projects (three operating systems:
NetBSD, FreeBSD, OpenBSD; a window manager:KDE; an
office productivity suite:KOffice; and a database manage-
ment system:Postgres). Furthermore, we examine the ben-
efits of increasing the size of the Top Ten list and study its
performance.

1 INTRODUCTION
Managers of large software projects need to ensure that their
projects are delivered within budget with minimal schedule
slippage. They have to prevent the introduction of faults, en-
sure their quick discovery and immediate repair, and make
sure the software can evolve gracefully to handle new re-
quirements from customers. Unfortunately, these demands
are fulfilled with restricted personnel resources within lim-
ited time. Resource allocation becomes a non-trivial chal-
lenge which managers must face.

Managers would like to optimize the usage of their resources.
They would like to allocate resources to areas that are in need
of these resources and reassign them as soon as interest and
focus shifts. In this paper, we address the challenges sur-
rounding fault detection and repair in large software systems.
We would like to give managers aTop Ten Listof subsystems
that are most susceptible to faults. We need the list to be up-
dated dynamically to reflect future risks based on the current
status of the project. By limiting the number of subsystems
in the list, we hope to give managers an easy and clear way
to allocate their limited resources. By updating the list as the
software system evolves and the risks associated with com-
ponents change, we hope to give managers a dynamic tool

which can consistently give informed and up-to-date warn-
ings. Finally, we would like to build a tool that is not in-
trusive and requires as little details and setup as possible to
permit managers to get a high return on their investment.

Previous research in software faults has focused on two ar-
eas:

1. Count based techniques which focus on predicting the
number of faults in subsystems of a software system.
Managers can use these predictions to determine if the
software is ready for release or it has many lurking bugs.
They can use the predictions to guide their resource al-
locations as they wind up the project towards release.
These models are validated by dividing the data into
equal size periods and predicting the faults in one pe-
riod using data from all the previous period. For ex-
ample, the fault data from one release can be used to
predict faults in following releases. Examples of such
work are Graveset al.[6], Ohlsson and Alberg [11], and
Schneidewind [14].

2. Classification based techniques which focus on pre-
dicting which subsystems in a software system are
fault-prone. Fault-prone is defined by a manager, for
example a fault prone subsystem may be any subsystem
with more than two faults in a release. These predic-
tions can be used to assist managers in focusing their re-
sources allocation in a release, by allocating more test-
ing resources and attention to fault-prone subsystems.
Again these models are validated by testing if the data
from one release can be used to predict if a subsystem
is fault prone in following releases. An example of such
work is Munson and Khoshgoftaar [10].

These approaches focus on long term planning. They are de-
signed for long term prediction and are validated by build-
ing statistical prediction models which use data from one
software release to predict values in following releases. In
this paper we focus on short term dynamic prediction. We
present an approach to validate these short term predictions
and we show an analysis of this approach using several
heuristics for fault predictions. This focus on short term
planning would permit managers to monitor more closely



the development and testing processes instead of simply de-
pending on long term planning which tends not to react well
to varying competitive market pressures over the lifetime of
a software system.

We focus on predicting the subsystem that are most likely to
contain a fault in the near future, in contrast to count based
techniques which focus on predicting an absolute count of
faults in a system over time, or classification based tech-
niques which focus on predicting if a subsystem is fault
prone or not. For example, even though a subsystem may
not be fault prone and may only have a few number of pre-
dicted faults, it may be the case that a fault will be discovered
in it during the next few days or weeks. Or in another case,
even though a fault counting based technique may predict
that a subsystem has a large number of faults, they may be
dormant faults that are not likely to cause concerns in the
near future. If we were to draw an analogy to our work and
rain prediction, our prediction model focuses on predicting
the areas that are most likely to rain in the next few days.
The predicted rain areas may be areas that are known to be
dry areas (i.e. not fault prone) and may be areas which aren’t
known to have large precipitation values (i.e. low predicted
faults).

The predictions are presented to managers as a list of the Top
Ten most likely subsystems to have faults. That list is mod-
ified over time as new files are modified within a subsystem
or as new faults are discovered and fixed. To validate the
quality of our predictions, we borrow concepts from the vast
literature of caching – file system and web proxy caching. In
particular, we use the idea ofHit Rate traditionally used to
determine the quality of caching systems. A high Hit Rate
indicates that the Top Ten list is performing well and subsys-
tems with recently discovered faults had been already present
in the list. Moreover, we present new metrics –Average Pre-
diction Age– to measure the practical benefits of predictions
in the Top Ten list. A prediction that warns of a fault occur-
ring within a couple of hours is not as valuable as a prediction
that warns of a fault a couple of weeks before its occurrence.
A prediction that warns of a fault occurring within a cou-
ple of years and misses predicting more recent faults is not
valuable either.

Organization of Paper
The paper is organized as follows. Section 2 introduces the
motivation behind our work and explains the concepts ofHit
Rateand Average Prediction Age. We use both concepts
to evaluate and compare different fault prediction heuristics
presented in this paper. In Section 3, we present several
heuristics to build the Top Ten List based on various charac-
teristics. Then in Section 4, we present short introductions to
each of the six open source systems used in our case study.
In Section 4, we measure the performance of the proposed
heuristics by analyzing the development history of the stud-
ied software systems using theHit Rate and Average Pre-
diction Ageconcepts introduced earlier. Later in Section 6

we analyze the performance benefits of increasing the size
of the proposed Top Ten list. In Section 7, we discuss our
results and address shortcomings and challenges we uncov-
ered in our approach. Section 8 showcases related work in
the fault prediction literature. Finally, section 9 summarizes
our results and presents plans for future work.

2 MOTIVATION
To cope with a large number of tasks at hand, managers are
always in search of a silver bullet that would give them a list
of issues to focus their limited resources on. Hence, the idea
of the Top Ten list. The Top Ten list is a list of the top ten
subsystems which are most susceptible to have a fault appear
in them in the near future. Managers can use this list to focus
their limited resources and maximize their resource usage.

The inspiration of the idea of Top Ten list comes from the
idea of a resource cache. Previously, caching has been pro-
posed to solve many problems associated with limited re-
sources and latency associated with acquiring them. In the
file system domain, caching is used to store previously used
files in memory so future requests to these files would be ful-
filled from memory instead of accessing the hard drive which
is much slower than memory. The same ideas and concepts
have been applied to database and web systems.

Conceptually, a cache is used to store a limited number of re-
sources for cheap access. Heuristics employed by the cache
system determine which resources to store, usually based on
the probability that the resource will be accessed in the near
future. For example, in a file system cache it is expected
that a file that was accessed recently will be accessed again
within the next few minutes. By storing this file in the cache,
consecutive accesses will be much faster as they won’t re-
quire slow disk access. Unfortunately, a cache is usually a
limited resource. For example memory is much smaller than
a hard drive, or a web proxy server is much smaller than the
whole Internet. Thus cache replacement heuristics are used
to decide which resources should stay in the cache and which
ones should be evicted to store new cacheable resources.

We believe the same idea can be adopted for deciding which
subsystems are most susceptible to having a fault in the near
future. A manager of a project can only focus on a limited
number of resources. These limited resources can be thought
off as the cache system size. Cache heuristics can be devel-
oped to determine which subsystems are no longer suscepti-
ble to a fault and which are still susceptible to a fault. For
example, research has shown that previous faults in a sub-
system are good indicator of future faults [5]. One heuristic
would build the Top Ten list based on the number of previ-
ously discovered faults in a subsystem. Thus the Top Ten list
would contain the ten most faulty subsystems. Other heuris-
tics based on the number of developers that worked on the
subsystem, the recency of the latest fault or modification,
the size of the subsystem, the number of modifications, or
a metric which combines some of these ideas are a few of



the possible heuristics.

The rich literature of fault analysis and prediction can be
used to develop heuristics and many of previous fault predic-
tion findings can be validated using our presented approach.
Fenton and Neil organize defect prediction models based on
the source of the data used for the prediction into three main
areas [5]:

1. Models based on size and complexity metrics
2. Models based on testing metrics
3. Models based on process quality metrics.

In addition, work by Graveset al.[6] and Munson and
Khoshgoftaar [7] suggest using code change metrics such
as code churn [3] to build quality prediction models. Any
of these aforementioned model data can be used to build the
Top Ten list. In particular, models based on size and com-
plexity, or models based on the code change process are the
most promising ones to build the Top Ten list, as the value
of their metrics tends to change over the short term as source
code is modified to enhance the software system. In contrast
models based on process quality metrics such as CMM rat-
ings tend to be more stable and would be more useful for
long term predictions.

By basing the idea of Top Ten list on caching systems, we
can borrow many of the well developed concepts used to
study the performance of caching systems in our analysis. In
particular, the concept ofHit Rate (HR). Hit Rate is the most
popular measure of the performance of a caching system. It
is the number of times a referenced resource is in the cache.
For example a Hit Rate of 60% indicates that six out of every
ten requests to the cache found the resource being requested
in the cache. For the analysis of the Top Ten list this would
mean that six out of the ten subsystems that were in the Top
Ten list had faults in them as predicted by the heuristic used
to build the list. Thus, the higher the Hit Rate the better the
prediction power of the heuristic and the usefulness of the
Top Ten list, as managers aren’t wasting resources on sub-
systems that are not susceptible to faults while missing other
subsystems that are susceptible.

Unfortunately, using Hit Rate is not sufficient to measure the
practical efficiency of the Top Ten list algorithms. Hit Rate
only tells us if a subsystem that had a fault was in the Top
Ten list or not. We hope to give managers enough advance
warning time to react to the fault prediction. For example, if
we have a 90% Hit Rate yet the subsystems that have faults
are put in the Top Ten list just seconds or minutes before the
fault is discovered in them, then such predictions although
from a theoretical stand point are valid they are not practi-
cally useful. We would like to have a measure that is more
practical, as managers require enough time to react to the
proposed predictions. Hence, the time of adding a subsys-
tem to the Top Ten list is important to obtain a more accurate
measure of the performance of the Top Ten list. In contrast
for web or file systems, the time of entry of a resource in the

cache does not matter as long as the resource was found in
the cache when requested. To overcome this limitation of the
Hit Rate, we adopted two new metrics:

1. Adjusted Hit Rate (AHR): The adjusted Hit Rate is a
modified Hit Rate calculation which counts a hit only
if the subsystem had been in the cache/Top Ten list for
over 24 hours (other time limits are possible). For ex-
ample we do not count a hit if the subsystem has been
in the Top Ten list for just a couple of minutes. This
will prevent us from inflating the performance of the
heuristics used to build the list. In the rest of the paper
we use the term Hit Rate (HR) to refer to AHR, unless
otherwise noted.

2. Average Prediction Age (APA): The Average Prediction
Age calculates for each hit how long on average a sub-
system has been in the cache/Top Ten. Although HR
has been adjusted to account for predictions with a very
short warning, we measure the APA to get a better idea
of the age of predictions. For example, two heuristic
may have similar HR but one heuristic predicts on aver-
age faults a week ahead of time whereas the other pre-
dicts them a full month ahead of time. A longer APA
indicates a better performing heuristic for building the
Top Ten list.

Using the HR and APA metrics, we proceed to evaluate var-
ious heuristics proposed in the following section.

3 HEURISTICS FOR THE TOP TEN LIST
Many heuristics can be used to build the Top Ten list, in par-
ticular, previous findings and observations from published
literature in fault prediction can be used to create heuristics.
For the purposes of this paper, we chose to use the following
heuristics for their simplicity and intuitiveness. They are by
no means a full listing of all possible heuristics instead they
are some examples to validate our proposed Top Ten list ap-
proach:

Most Frequently Modified (MFM)
The Top Ten list contains the subsystems that were modified
the most since the start of the project. The intuition behind
this heuristic is that subsystems that are modified frequently
tend over time to become disorganized. Also, many of the
assumptions that were valid at one time have the tendency
to no longer be valid as more features and modifications are
performed on these subsystems. Eicket al. studied the con-
cept of code decay [3]. Graveset al. showed that the number
of modifications to a file is a good predictor of the fault po-
tential of the file [6]. In other words, the more a subsystem is
changed the higher the probability that it will contain faults.

This heuristic will tend to have a high APA as frequently
modified subsystems will remain in the Top list for a long
time. This may degrade the HR of this heuristic as it won’t
adapt to changes in the modification of files. For exam-
ple, if in one release of an operating system all the work



has concentrated on improving the memory manager and in
the following release all the work focused on improving the
file system, then the MFM heuristic msy still be affected by
the modification counts of the previous release and will give
out bad predictions. This limitation is a concern for any fre-
quency based approach and is commonly refereed to in the
literature of caching as thecache pollution problem[2]. To
overcome this problem, heuristics that update the list based
on a combination of the frequency and recency of a modifi-
cation could be used.

Most Recently Modified (MRM)
The Top Ten list contains the subsystems that were recently
modified. In contrast to the Top Ten list built using the MFM
heuristic, the MRM Top Ten list is changing at a much higher
rate as new files are modified continuously and are inserted
in the Top Ten list. The intuition behind this heuristic is
that subsystems that are modified recently are the ones most
likely to have a fault in them. Finding faults in subsystems
that were not modified for a long time is highly unlikely.
In [6], Graveset al. showed that more recent changes con-
tribute more to fault potential than older changes over time.

Most Frequently Fixed (MFF)
The Top Ten list contains the subsystems that have had the
most faults in them since the beginning of the project. The
intuition behind this heuristic is that subsystems that have
had faults in them in the past will always tend to have faults
in them in the future. Again this heuristic, like MFM suffers
from thecache pollution problem.

Most Recently Fixed (MRF)
The Top Ten list contains the subsystems that had faults in
them recently. The intuition behind this heuristic is that sub-
systems that had faults in them recently will tend to have
more faults showing up in the future till most of the faults
are found and fixed. In contrast, a Top Ten list built using the
MFF will be a lot more stable than a list built using the MRF,
as the subsystems in the list won’t be changed as often.

The aforementioned heuristics represent a small sample of
a variety of heuristics that can be used to build a Top Ten
list. Conceptually, each heuristic can depend on one or a
combination of the following characteristics of a software
system.

1. Recency: The recency of modifications or fault fixes ap-
plied to the source code, such as MRM and MRF.

2. Frequency: The frequency of modifications or fault
fixes applied to the source code, such as MFM and MFF.

3. Size: The size of subsystems or the size of modifica-
tions.

4. Code Metrics: The fault density, the cyclomatic com-
plexity [8], or simply the LOC.

5. Co-Modification: Subsystems modified together will
tend to have faults during similar times, for example.

We note that the problem of fault prediction has some char-

acteristics that are different from classical caching literature,
in particular:

• Whereas for file and web systems the number of pos-
sible resources to be cached is rather large, the number
of subsystems that are analyzed for inclusion in the Top
Ten list is limited, as managers have a limited number
of resources to allocate to investigate the suggestions of
the Top Ten list.

• Furthermore, CPU usage, algorithm complexity, and re-
sponsiveness of the caching heuristics are not a major
issue due to the small number of subsystems that need
to be analyzed. Also we expect the Top Ten list to
be generated on a daily or weekly basis (or whenever
needed) thus more complex and elaborate algorithms
could be used to build the list. This is not possible in
web and file system caching where the user expects an
immediate and quick response.

• Finally, as pointed out earlier, a simple HR metric is not
sufficient to measure the practical benefits of a heuristic,
as managers require enough advance warning time to
react to suggestions.

4 STUDIED SYSTEMS
To study the benefits of using the Top Ten list in the develop-
ment of large software systems, we evaluated our proposed
approach using six large open source software systems. In
this section we give an overview of each of these systems.
Table 1 summarizes the details for these software systems.
The oldest system is over ten years old and the youngest sys-
tem is five years old. For each system, we list the number of
subsystems it has and the number of faults that were discov-
ered in it according to our fault discovery process described
below. For example, the Postgres database systems is written
in C, contains 104 subsystems, and has had 1401 faults over
its lifetime.

In the following subsections, we give details of the studied
software systems. To measure the performance of the Top
Ten list, we used the development history of these six soft-
ware systems. The development history is stored in a source
control system, such as CVS [13, 15] or Perforce [12]. The
source control system stores all modifications that occur to
each subsystem in the software system as it evolves. Each
modification records the changed lines in the subsystem, the
reason for the change, and the exact date of the change. Us-
ing a lexical technique, similar to [9], we automatically clas-
sify modifications into three types based on the content of
the detailed message attached to a modification:

Fault Repairing modifications (FR): These are all modifi-
cations which contain terms such asbug, fix, or repair in
the detailed message attached to the modification. The
Top list attempts to predict ahead of time which subsys-
tems are most susceptible to have such a modification
applied to them in the near future.

General Maintenance modifications (GM): These



are modifications that are mainly bookkeeping ones and
do not reflect the implementation of a particular feature.
These modifications are removed from our analysis and
are never considered. For example, modifications to up-
date the copyright notice at the top of each source file
are ignored. Modifications that are re-indentation of the
source code after being processed by a code beautifier
pretty-printer are ignored as well.

Feature Introduction modifications (FI): These are mod-
ifications that are not FR or GM modifications.

The detailed description of the history of code development
provides a rich opportunity to replay the history of the devel-
opment of a software system and measure the benefits that
the developers would have got if approaches such as the Top
Ten list were accessible to them.

Application Application Start Subsys. Faults Prog.
Name Type Date Count Lang.
NetBSD OS 21 March 1993 393 2451 C

FreeBSD OS 12 June 1993 182 3264 C

OpenBSD OS 18 Oct 1995 401 1015 C

Postgres DBMS 9 July 1996 104 1401 C

KDE Windowing 13 April 1997 167 6665 C++
System

Koffice Productivity 18 April 1998 259 5223 C++
Suite

Table 1: Summary of the Studied Systems

Postgres DBMS
Postgres is a sophisticated open-source Object-Relational
DBMS supporting most of the SQL constructs. Its devel-
opment started in 1986 at the University of California at
Berkeley as a research prototype. Since then it has become
an open source software with a globally distributed develop-
ment team. It is being developed by a community of compa-
nies and people co-operating to drive its development. In our
case study we use data beginning with 1996 when Postgres
became an open source project.

KDE K Desktop Environment
Another system we examined in our case study is theKDE
(K Desktop Environment) system. TheKDE project is an
Open Source graphical desktop environment for Unix work-
stations. It seeks to fill the need for an easy to use desktop
for Unix workstations, similar to the desktop environments
found under Mac OS or Microsoft Windows. With several
hundred developers working on it, it is consists of over 2.6
million lines of code at present.

KOffice Office Productivity Suite
The KOffice productivity suite is an integrated office suite
for KDE, the K Desktop Environment. The full suite is de-
veloped by a community of software developers online under
an open source license. It features a full set of applications

which work together seamlessly to provide the best user ex-
perience possible. The list of applications are:KWorda word
processor,KSpreada spreadsheet application,KPresentera
presentation program,Kivio a visio-style flowcharting ap-
plication, Karbon14a vector drawing application,Krita a
raster-based image manipulation program like Adobe Pho-
toshop,Kugar a business reports generating tool,KChart a
chart drawing tool,KFormulaa powerful formula editor, and
Kexia small database similar to Microsoft Access.

FreeBSD Operating System
FreeBSDis an operation system (OS) for desktop and server
applications. It features a high performance networking and
file system which are able to sustain high loads. It is used
in many Internet and Intranet servers. It is based on the
4.4BSD code which in turn is based on the AT&T BSD
code. It is being developed under an open source licence
with many developers worldwide working on it. In con-
trast to Linux where Linus Torvalds gets to choose which
features to add or remove from the OS,FreeBSDdevelop-
ment model revolves around a group of hundreds of individ-
ual programmers called the “Committers”. The Committers
have the ability to make any change needed to the official
FreeBSDsource base at any time. The selection of Commit-
ters and resolution of disputes are handled by theFreeBSD
Core Team. The Core Team acts like a board of directors.
A similar model is followed by theOpenBSDandNetBSD
projects.

OpenBSD Operating System
OpenBSDis another BSD based operating system which is
developed through an open source licence. It focuses on se-
curity with the goal of creating the most secure operating
system available. The development focuses on code auditing
and on ensuring that each line in the code base in analyzed
for security holes.

NetBSD Operating System
NetBSDis derived from 4.4BSD and 386BSD code base. It
is being developed with a primary focus on creating an ex-
tremely portable and flexible OS. It runs on over 30 hardware
platforms and provides a lot of flexibility to enable research
and experimentation with many different types of hardware,
and protocols.

We believe that the variety of development processes used,
implementation programming languages, features, domain
of the studied software systems ensures the generality of our
results and their applicability to different software systems.
Nevertheless, our results may only generalize to open source
projects since we did not analyze commercial software sys-
tems. In the following sections we explain how we used the
development history of the studied software systems in our
analysis. Also, we present the performance of the heuristics
presented in Section 3 against each of the studied software
systems.
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Figure 1: Hit Rate For The 4 Proposed Heuristics



5 MEASURING THE PERFORMANCE OF THE
TOP TEN LIST

In this section, we measure the performance of the heuristics
proposed in Section 3, to build the Top Ten list. For each of
the software systems we analyzed the source control reposi-
tory automatically without any user intervention. We chose
to ignore the first year in the source control repository, due
to the special startup nature of code development during that
year as each project initializes its development process and
the corresponding effect on its source code repository. We
then used the following three years to measure the perfor-
mance. For each heuristic, we plot the Hit Rate (HR) versus
the fixed faults over the three year period. Furthermore, we
calculate the total Hit Rate and the Average Prediction Age
(APA) over the studied three years for each of the six open
source systems we studied.

Figure 1 shows the performance for the four proposed heuris-
tics. In the figure we show theHit Rateof the Top Ten list
using each heuristic for each fault that occurs. For exam-
ple for NetBSDonce there are1000 faults, the Hit Rate for
the heuristics are as follow: MFF (29%) MFM (30%) MRF
(20%) and MRM (15%). We note that we do not show the
Hit Rate for the first 100 faults, as we choose to use the first
100 faults to calibrate our Top Ten list with some historical
data to gain a more realistic and fair comparison of the dif-
ferent heuristics as the Top Ten list fills up slowly over time.

Examining the figure, we note that the two heuristics (MFM
and MFF) that are based on a count of modifications or faults
have the best performance. In contrast, the other two heuris-
tics (MRM and MRF) which are are based on the recency of
modifications and detection of faults in a subsystem do not
perform as well.

Furthermore, the performance of MFF at the beginning is al-
ways worse than the performance of MFM, this is due to the
fact that at the beginning there are not as many faults thus the
MFF heuristic performance is negatively affected. The need
of MFF for a large number faults to calibrate itself suggests
the need for a heuristic based on the modifications count at
the beginning of the development of the project. Later on we
may switch to a heuristic that is based on the fault counts if it
is performing better. In our analysis, we see that around400
- 500 faults, the MFF has enough faults to calibrate well.

Over time, the performance of the proposed heuristics either
decline or stay constant except for theKofficesystem where it
improves. The decline in the prediction quality may suggest
that the Top Ten list has been polluted by subsystems that
were very highly modified/fixed in the past but are no longer
being modified in the later years. An enhanced heuristic that
overcomes this problem may be very beneficial in improving
the performance of the list.

Table 2 summarizes the performance metrics over the three
years of data used in the study. In particular, we notice that

the unadjusted Hit Rate (HR) for the recency based heuris-
tics, such as MRM and MRF, drops significantly once the
Adjusted Hit Rate (AHR), which does not count hits with a
short warning time, is calculated. By examining the Average
Prediction Age we see that it is less than a day in many of
the cases where the recency based heuristic is used.

Application Heuristic HR AHR APA
(%) (%) (in days)

NetBSD MRM 22.4 9 0.3
MRF 20.6 15 0.8
MFM 24.4 24.4 133.8
MFF 25.3 25.3 138.7

FreeBSD MRM 32.6 22.2 0.98
MRF 32.6 27.2 1.7
MFM 44.9 44.9 252.7
MFF 45.1 45.1 245.1

OpenBSD MRM 28.5 17.6 0.71
MRF 24.5 21.8 3.11
MFM 32.1 32.1 182.22
MFF 28.8 28.8 168.5

Postgres MRM 42.1 36.2 3.3
MRF 35.4 31.4 4.4
MFM 48.4 48.4 287.8
MFF 46.6 46.6 288.6

KDE MRM 46.6 21.7 1.4
MRF 49.3 31.7 3.9
MFM 54.3 54.3 375.4
MFF 56.1 56.1 394.1

Koffice MRM 53.6 38.3 2.4
MRF 56 46.6 4.6
MFM 53.4 53.4 133.8
MFF 54.1 54.1 341.3

Table 2: HR, AHR, and APA for the Studied Systems Dur-
ing the 3 Years

6 THE EFFECTS OF A LARGER LIST
In the previous section, we presented the performance of the
Top Ten list approach using various heuristics. In this sec-
tion, we examine if increasing the size of the list would im-
prove the performance of the heuristics. Due to space re-
strictions we will focus on only two of the four proposed
heuristics, we chose MFM to represent the frequency based
heuristics as its performance is very similar to MFF and we
chose MRM to represent the recency based heuristics as its
performance is similar to MRF.

For both MFM and MFF, we re-ran the same experiments
done in the previous section while varying the size of the Top
Ten list. We chose to make the size of the list as a function
of the number of subsystems (subdirectories) in the software
system. Thus we chose to have the size of the list vary be-
tween 2%, 10%, 20%, 50%, 80%, and 100% of the number
of subsystems. In the case of 100%, we are able to see the
best possible HR but unfortunately this is not practical as
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Figure 2: Hit Rate Growth As a Function of The Top List
Size Using MRM Heuristic

managers would have to focus their attention to all the sub-
systems in the software system which defeats the purpose of
a Top list.

Figures 2 and 3 show the growth of the Hit Rate as we vary
the size of the Top list. We notice that when the Top list
size is under 50% of subsystems in the software system then
MFM (frequency based heuristic) outperforms the MRM (re-
cency based heuristic). Once we are above 50% both types
of heuristics have the same performance. Also we can never
reach a Hit Rate of 100% as we always have misses in our
predictions as we populate the list initially. For example, for
the MFF heuristic a subsystem would have to have at least
one fault that was not predicted at the beginning to be con-
sidered for inclusion in the predicted Top list.

Examining the growth of the Hit Rate in Figures 2 and 3,
we notice that the Hit Rate exhibits a logarithm growth as
we increase the size of the Top list. This indicates that
the benefit of increasing the size of the Top list diminishes
exponentially. From both figures, we see that a Top list
which is around 20% the number of subsystems in the soft-
ware achieves the best return on investment for managers.
The 20% value supports previous findings by Munson and
Khoshgoftaar [10] and by Adams [1] which showed that
faults tend to occur in a subset of the subsystems of large
software systems. It also showcases the value of using the
Top Ten list as managers will expend less effort on fault-free
subsystems and can allocate more resources to troublesome
ones.

7 DISCUSSION
In this section, we elaborate on issues relating to the perfor-
mance of the heuristics used to build the Top list.
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Figure 3: Hit Rate Growth As a Function of The Top List
Size Using MFM Heuristic

An Accurate Measure of the Performance of a Heuristic
The Top Ten list assists managers in allocating testing re-
sources by focusing on the subsystems that are likely to have
a fault appear in them in the near future. In our analysis,
we used the change history to measure the performance of
heuristics. In particular, we used the fact that a fix was ap-
plied to a subsystem as an indication that a fault was detected
in that subsystem. A record of all reported bugs from the
field throughout the lifetime of a software system could have
been used to evaluate the performance of the different heuris-
tics. Unfortunately, for many open source systems detailed
bug tracking systems do not exist. Furthermore, reported
bugs are not an indication of the occurrence of faults or their
severity, since the reported bugs may be due to misunder-
standings of the functionality of the software system by the
reporter of the bug. We believe that the use of fixes instead
of bug reports is a reasonable measure since detailed bug re-
ports do not exist for the systems we studied, and managers
tend to focus their resources on the most critical faults.

Performance of Fault Based Heuristics
In our analysis we used two heuristics (MFF and MRF) that
are based on fault counts. Unfortunately even though these
two heuristics have good performance as presented in the
previous section, it may be challenging to measure their per-
formance if a Top list did actually exist for the development
team. The Top list biases the effort and work performed by
a development team. There is a high tendency for develop-
ers to focus their testing resources to subsystems that are in
the Top list. Thus over time, the fault discovery may be in-
fluenced by the Top list and using the fault counts becomes
an inaccurate measure. Instead using heuristics based on
the modification counts are likely to be more stable and un-
affected by the Top list suggestions. This poses an interesting
challenge for software engineering research where introduc-



ing new techniques to a process may invalidate the analysis
of benefits of the new techniques. Thus, even though histor-
ical data show the benefits of a research idea, validating the
idea in a practical setting may reveal interesting challenges
and issues.

Determining a Practical Average Prediction Age
Throughout the paper we emphasized the need for heuris-
tics that are able to provide high HR. To ensure that our
results are useful and practical we measured the Prediction
Age (PA) for each hit and chose not to count hits with low
PA. As a manager is not given enough warning to react when
the PA is low. We then chose to measure the APA which is
the sum of the PA’s for all the Hits divided by the number
of hits. Looking at Table 2, we list the APA for all heuris-
tics for each of the studied software systems. As pointed
out earlier, recency based heuristics have a rather low APA.
Unfortunately, frequency based heuristics have a high APA.
This is mainly due to thecache pollution problem. The need
for a heuristic that can combine a low APA with a high HR is
justified. It would be very useful and practical for managers
to get advance warnings that are not too early and are not too
late. We now briefly discuss and present some measurements
for such a heuristic.

Based on the results shown in Table 2, we would like a
heuristic which keeps track of the recency and measures the
frequency of events as well. We propose the use of an ex-
ponential decay function to build our heuristic. The decay
function would reduce exponentially the effect of a modifi-
cation or a fault on the probability that a fault will be dis-
covered, based on how long ago a fault/modification to the
subsystem has occurred. Then to measure the frequency,
instead of adding up the number of times a modification/-
fault occurred, we add up the exponentially decayed values.
Consequently, given two subsystems who both have had 3
modifications to them, the subsystem with the 3 more recent
modifications will have a higher heuristic value and would be
considered more likely to have a fault discovered in the near
future. More formally, we define a heuristic function (HF )
and the Top list is created by choosing subsystems with the
highestHF value. TheHF for a modification based heuris-
tic is defined as:

HF (S) =
∑

m∈M(S)

eTm−Current T ime

whereM(S) is the set of modifications to a subsystemS and
Tm is the time of modificationm.

We reran our results on four of the software systems in our
system. Table 3 shows the performance results for using an
exponential decay heuristic. We note that the APA values are
much more moderate compared to the corresponding values
shown in Table 2. The APA suggests that the new heuristic
provides enough early warning and is still capable of dynam-

Application AHR APA
(%) (in days)

NetBSD 25.3 26.1
FreeBSD 42 129
OpenBSD 33.1 38.6
Postgres 49 33.8

Table 3: AHR and APA for the Exponential Decay Heuristic

ically updating as the development of the project progresses
over time.

8 RELATED WORK
The work most closely related to our work is done by Khosh-
goftaaret al. In [7], they present a technique to predict the
order of the subsystems that are most likely to have a large
number of faults. The main similarity between our work
is the recognition that managers have limited resources and
need to focus these limited resources on a selected few sub-
systems in a large software project. Whereas, Khoshgoftaar
orders subsystems based on their degree of fault proneness,
we order subsystems based on their likelihood of containing
a fault in the near future. Thus, our technique may choose
to rank highly subsystems that may not be considered fault
prone, yet they may have a fault appearing very soon in them.

9 CONCLUSIONS AND FUTURE WORK
We presented a new approach to assist managers in determin-
ing which subsystems to focus their limited resources on. By
using this approach managers should be able to allocate test-
ing resources wisely, locate faults in a timely manner and
fix them as soon as possible. The approach uses ideas that
have been extensively researched in the literature of web and
file systems. The idea of caching as a limited resource is
extended to the idea of limited testing resources. We show
that the problem of determining which entities to cache is
similar to the problem of determining which subsystems to
focus testing resources on. We present the concept of Hit
Rate which is widely used to measure the performance of
various caching heuristics. Then we extend it to measure the
performance of our heuristics that are used to build the Top
Ten list.

We studied our proposed approach and heuristics using the
development history of six large open source project. We
saw that we can achieve a Hit Rate that is higher than 60% for
some of the systems. We then examined the possibility of in-
creasing the size of the Top Ten list and noticed that a list that
contains 20% to 30% of the subsystems in a software system
provides very good results even when using rather simple
heuristics (Figures 2 and 3). We then presented a more elab-
orate heuristic based on an exponential decay function. We
showed that the results using the new heuristics combine the
benefits of early warnings for faults and the ability to dynam-
ically adjust as new development data is available.



In this paper, we proposed the Adjusted Hit Rate (AHR)
metric which counts warnings for which the managers had
enough time to react and does not count hits with a short
warning time. For example, a warning before a bug occurs
by a day or two may not be counted but a warning before a
bug occurs by a week or two would be counted. Mathemat-
ically speaking, the AHR metric uses a step function which
assigns a value of zero if a warning is less than a day or two
and one for all other warning times. It would be interesting
to investigate other types of metrics to gauge the value of
a heuristic. For example we could consider a metric which
uses a bell curve shaped function to assign a low value for
too early (minutes) or too late (months) warnings but assigns
high value for warnings with enough adequate time (e.g.2-3
weeks).

We believe that the Top list approach holds a lot of promise
and value for software practitioners, it provides a simple and
accurate technique to assist them in maintaining large evolv-
ing software systems.
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