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Abstract. Graphs are a populalatastructure,and graph-manipulation
programs are common. Graphanipulationscan be cleanly, compactly, and
explicitly describedusing graph-rewriting notation. However, when a
software developeris persuadedto try graph rewriting, several problems
commonly arise. Primarily, it is difficult for a newcomerdevelopa feel for
how computationsare expressedria graph rewriting. Also, graph-rewriting
is not convenient for solving all aspects of a problémtter mechanismsare
neededfor interfacing graph rewriting with other styles of computation.
Efficiency considerationsandthe limited availability of developmenttools
further limit practical use of graptewriting. The inaccessibleappearancef
the graph-rewriting literature is an additiortdhdrance. Theseproblemscan
be addressedhrough a combination of “public relations” work, and further
researchand development,thereby promoting the widespreaduse of graph
rewriting.

1. Introduction

Graphrewriting hasthe potentialto be usefulin a large variety of applications.
Graphs provide an expressiveand versatile data representation. Typically, nodes
representobjects or concepts,and edgesrepresentrelationshipsamong them. In
addition, hierarchicalrelationshipscan be depictedby node-nestingHare88][SiGJ93].
Auxiliary informationis expressedy addingattributesto nodesor edges. Given the
widespread use of graphs as a data representatismaturalthat graphmanipulations
form the basis of manyseful computations. Graphmanipulationscan be represented
implicitly, embeddedn a programthat, amongotherthings, constructsor modifiesa
graph. Alternatively, graph manipulationan be represente@xplicitly, using clearly-
delineatedgraphrewriting rules that modify a host graph. The explicit useof graph-
rewriting rules offers severaladvantagesGraph rewriting providesan abstract,high-
level representatiof a solutionto a computationalproblem. Also, the theoretical
foundations of graph rewriting assist in proving correctness and convergence properties.

Despitethis potential, graph rewriting has not attainedwidespreadpractical use.
To discover the reasons for this, it is helpful to consider an outside viewpoint:

Mr. and Mrs. Maggraphen manage a small software house in Bavaria. ofMost
their important data structures are graphs. Currently, ahaf programsare
written in C, with much of the code devoted to graph manipulations.

The Maggraphens are planning for theure, andwant to switch from C to a
graph-rewriting language.
The Maggraphens are enthusiastic about graph rewriting, but haveguestjons. To
begin with, important practical considerations arigéill the graph-rewritinglanguage

be fast enough? Are theretools for developing,displaying, and debugginggraph-
rewrite rules? Supposepptimistically, that the answerto both questionsis “Yes".
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Evenso, thereis anothermajor hurdle: the Maggraphengan’timagine how to recast
their C programs in terms of graph rewriting. Thimsperatelyneedsmall-scaleadvice
(how to formulateindividual rewrite rules) and large-scaleadvice (how to organizea
collectionof rules). Let us considera samplingof their questions. (Figure 1 shows
our terminology.)

Graph g A directed or undirected graph. Nodes and/or edges may be labeled and
may have associated attributes.

Graph Rewrite Rule A rule specified by:

* g = 0, 9 and g are unattributed graphs. During rule application, an attributed
subgraph ¢St (isomorphic to ¢ is replaced by §°St(asubgraph
created to be isomorphic tg)g

* Embedding Information
Calculates post-embedding edges from pre-embedding edges (defined
below). Embedding information can be textual or graphical.

Gluing models specify embedding with a gluing isomorphism.

» Application Condition (Optional)

Defines conditions on attribute values or host-graph structure.

These conditions must hold for rule application to proceed.
Attribute Transfer Function (Optional)

Assigns attribute values tqrtj’St, using attribute values irfé’St.
Host Graph g The graph to which a rule is being applied.

glhost A subgraph of the host graph g, isomorphic to lm some models, '@"St
must be annduced subgraph: if an edge of g connects two nodeqh?ﬁb
then that edge must be part gt

RestGraph The graph g -{Qost (The “-" operator denotes removal of all nodes and
edges of dms and all edges with one or both endpoints %)
g, host A subgraph isomorphic to.gused to replace st

Pre-embedding Edges the set of edges joining*lj’Stto RestGraph
Post-embedding Edges the set of edges joiningrrt,j)Stto RestGraph

Figure 1. Our terminology for graph rewriting. Thesedefinitions assumethe use of
subgraph isomorphism, where some models actually allow for a general graph morphism.

2. Mrs. Maggraphen: We are new to graph rewriting. Where do we
start?

The Maggraphens are looking to us, the graph-rewriting communitys@seeof
information about how to expresscomputationsin graph rewriting. Consideran
analogous change from C to Lisp programmiryid C programmersvho cannotuse
Lisp effectively (dueto a C mindsetthat dominatestheir approachto programming),
can absorbiLisp culture” by immersingthemselvesn an environmentof experienced
Lisp programmers. These same C programmers,in attempting to learn graph
rewriting, may havetrouble locating sourcesof “graph-rewrite culture”. The graph-
rewriting community should make an effort to promote such a culture, to allow
newcomersto quickly develop a proper mindset for performing practical, effective
computations using graph rewriting. Relevant materials include the following:



» Accessible written expositions abahe practicaluse of graphrewriting: systems
organizations, styles of computation, etc.

« Easily-availabletools for creating,editing, executing,debugginggraph rewriting
systems (Section 4).

« Examplesof non-trivial, practicalusesof graphrewriting. Complete,executable
systems are most helpfulTheseillustrate variouscomputationalstylesin which
graph rewriting may be used. (Relevant references, discusfigiér95], include:
softwareengineering[EnLS87] [ELNSS92] [LoKa92] [Pfei90], syntactic pattern
recognition [Fu82], document image analysis [Bunk82a] [FaBI93] [GrBI95]
[CoTV93], 3D object recognition[LiFu86], visual programmingenvironments
[EgPM92], diagrameditors[G6tt92] [DoTo88], databasefEhKr80], and semantic
networks [EhHK92]. Further discussion is given by [Panel91].)

The fostering of a graph-rewriting culture will go far toward the popularizatiagraph

rewriting.

3. Mr. Maggraphen: In C, we use standard algorithms (searching,
sorting, hashing)and algorithm-designmethods
(divide-and-conquer, dynamic programming,
greedy algorithms). What is the equivalentto
this in graph rewriting?

Currently, we have little to offer the Maggraphensjn terms of graph-rewrite-
oriented techniques for algorithm design or analy$iée havefew libraries of standard
graph-rewritingcode. (An inspiring exampleis given by the parameterizedyraph-
rewrite rules for abstract-syntax-tree manipulation reported in [ELNSS92]).

We needto developspecializedalgorithm designtechniques gearedtoward graph
rewriting asthe primitive operation. Precedentfor suchspecializedalgorithm design
techniguesnclude VLSI design(with area*timeusedas a cost function) and optical
computing(where primitive operationsnclude Fouriertransform,convolution, union
and intersection of figures, coordinate transforms).

4. Mrs. Maggraphen: What development tools are available?

As everyone is well aware, practiaae of graphrewriting dependsheavily on the
availability of development andebuggingtools. Unfortunately,constructionof these
tools is a time-consuming,complextask, due to the needto combine textual and
diagrammaticelementsthe needto provide readabledisplaysof large graphs,and the
need to visualize the interactions among graph rewritithes. Developmenbf graph-
rewrite debugging techniques is an interesting and challenging researchGapiently
it is difficult even to define what kind of tools are needed to support widespraeiital
useof graphrewriting. This will becomeclearerovertime, asthe improving set of
availabletools allow us to gathermore extensiveexperiencewith executablegraph-
rewriting systems.

For the reader interested éxperimentingwith graphrewriting, hereis a brief list
of graph-rewriting environments. The first teovironmentsare matureenoughto be
in widespreaduse, and are under active further development. The remaining
environmentsmay becomeavailablefor generaluse. Our apologiesif this list is
incomplete.

- PROGRES provides extensivefacilities for ordered graph rewriting [NaSc91]

[ELNSS92]. Contact andy@i3.informatik.rwth-aachen.de to obtain this software.



GraphEd[Hims91] provides extensivegraph-displaycapabilities,and supportsa
limited form of graph-rewriting (direct-derivationsteps of context-free rewrite
rules). Contact himsolt@fmi.uni-passau.de to obtain this software.

Pfeiffer describesdevelopmentplans for a graphical editing environment for
algebraic graph rewritinfPfei90]. In the meantime,a textual representationf a
graph grammar is compiled into C.

A prototype implementationof algebraic graph transformationis describedin
[L6Be93]. At thattime, the tool performeddirect derivationstepsin the single-
pushout approach.

Gottler [G6tt92] mentionsa successiorf implementationdor executingordered
graph rewriting (Y and X notation); a new C implementationis under
development, including a graphical editor for X notation rules.

5. Mr. Maggraphen: Can graph rewriting be efficient? Isn’t
subgraph-isomorphism testing intractable?

This question readily comes to mind, but we gare somereassurancelt is true
that subgraph-isomorphism testing is dR-completeproblemin general but various
factorsmakeit tractablein a graph-rewritingsystem. Firstly, it is often possibleto
expressa computationusing small subgraphson the left-hand-sideof rewrite rules.
Secondly, node labels, edge labels, and direstiggsdrasticallyreducethe searchspace
for isomorphic subgraphs. Finally, some graph-rewrigggtemshavecertainphrases
that frequently appear in application conditions; these caxpleitedto greatly reduce
the searchspacefor isomorphicsubgraphghat meetthe applicationcondition. The
optimization of subgraph-isomorphism testing is discussed in [BuGT91] [ZUnd94].

Of course, graphewriting shouldnot be marketedas a fast style of computation:
the von Neumannarchitecturg(gearedtoward instruction fetch and execution,with a
bottleneckbetweenprocessoland memory),is not well-suitedto the interpretationof
graphrewriting. Strongdemandcould motivatethe developmentof a new computer
architecturewith graph-rewritingas a fundamentabperation. First we would needto
developsuitable graph-rewritingarchitecturesn software,and thus popularizegraph
rewriting as a style of computation. Special-purposgraph-rewritinghardwaremay
soundfar-fetched,but considerneural-networkcomputationsas an analogy: years of
researchwith software-implementecheural-net architectureshave now resulted in
commercially-available neural-net architectures implemented as VLSI circuits.

6. Mrs. Maggraphen: How can we organize rewrite rules?

The graph-rewriting literature reports on various methods of orgarezangjection
of graph-rewriterules: unorderedprderedand event-drivengraph-rewritingsystems,as
well as graph grammars (Table 1Jhis taxonomyarosefrom our efforts to organize
our reading of the graph rewriting literature. (This literature is confusdegusenany
systemsare called “grammars”, whetherthey define a graph-language®r not.) An
understandingpf thesesystems-organizationgrovide a helpful starting point in the
process of deciding how a computation could be expressed as graph rewrite rules.

The choice of system organizationgreatly affects the number of rewrite-rule
applicationsthat must be tried during execution. Parsingwith a grammarnormally
requires backtracking, and frequent testing of inapplicabés. In contrast,an ordered
graph rewriting system can directly transform an input graph into an output grigiph,
a limited number of production rulesmderconsideratiorat any given time [Bunk82a].
Event-driven graph-rewriting systems daahighly time-efficient,applying rules only
in directresponsdo externalactions. Thus, if an applicationis suchthat it can be



System Components System Execution

Unordered Graph-rewriting System

A set of graph-rewrite rules. Rewrite the given host graph (choosing
nondeterministically among applicable
rules) until no further rules apply.

Graph Grammar

A set of graph-rewrite rulegi(oductions). | In generative use, rewrite the start graph

A start graph. obtain a terminal graph (no non-termina
A designation of labels as terminal or | labels.) The set of generatable terminal
nonterminal. graphs is théanguage of the grammar.

For recognition, parsethe given graph:
find a sequencef rewrite-rulesthat derive
the given graph from the start graph.

Ordered Graph-rewriting System

A set of graph-rewrite rules. Rewrite the given host graph (choosing
A control specification(providescomplete nondeterministically among applicable
or partial ordering of rule-application). | rules consistent with the control
specification) until a final state in the
control specification is reached.

Event-driven Graph-rewriting System

A set of graph-rewrite rules. Rewrite the given initial host graph:
An externally-arising sequence of events rewrite rules are executed in response tq
events.

Table 1. Four organizations for graph-rewriting systems.

implemented using event-driven graph-rewritittgen likely it canrun with acceptable
time-efficiency. If the application calls for ordered fartially ordered)graphrewriting
without backtracking, then it may well run with acceptable efficiency. lat@ication
calls for graph grammar use, then careful grammar and parser const(ootitextfree,
if possible)are necessaryf thereis to be hopeof parsingspeedsallowing large-scale
practical use. In any case, graph rewriting bamseful evenif it doesnot provide an
acceptably efficient implementation: a practisaftwaredevelopmentycle caninclude
the use of graph rewriting to form an executable specification (e.g. [ZUSc92]).
We now briefly review the practical use of these four system organizations.

Unorderedyraphrewriting

An excellentexampleof unorderedgraph rewriting is provided by A-rewriting
[KaLG91] [LoKa92]. The rewriting systemis given an initial host-graph(e.g. the
quicksortexampleof [LoKa92, p. 177] usesa list of numbersto be sorted, the
specification of the Actor language of [KaLG91, p. 484] uses a graph configitacan
Actor program). This initial host-graphis transformedvia graph-rewriterules, either
infinitely (as in the dining philosophersexample of [LoKa92, p. 112]), or with
termination (as in the quicksort example). phatform conceptusedto modularizeA-




rewriting is discussedn Section8. Unfortunately,no A-rewriting environmentis
available; current experienceis limited to paper-baseddescriptionsof A-rewriting
systems.

Graphgrammars

In a pure graph grammar, productionscan be listed in any order, but order-
dependence often arises in practice. Once a developer has ahgséinular parser the
developeris usually awareof the orderin which the parsertries alternatives. The
developermay makeuse of this to designa smaller or faster graph grammar. For
example, Anderson [Ande77] uses a set-based“coordinate grammar” to recognize
mathematicalnotation. He describeshis reliance on production-rule ordering to
distinguish aninput “cos” as a word denotinga trigonometricfunction, ratherthan as
an implied multiplication denoting “c*o*s”. It would be possible to rewrite the
grammarto avoid this orderdependenceyut the grammarwould increasein size and
complexity. Thedrawbackof suchorderdependencés that the languages no longer
defined by the grammar alone, but arises through the interagftithe grammarwith a
particular parser.

In additionto order-dependencéhereis the issue of reversibility. Can a given
grammarbe usedboth for recognitionand generation? While a pure grammaris
reversible, in practice non-reversible constructs égplicationconditionsand attribute
computations are common. Reversibility is desired in various dontaibsljfficult to
achieve. For example thereis on-goingresearctinto reversiblestring-grammargor
naturallanguageprocessindStrz90]. On a relatednote, a graph grammarwith non-
reversible rules is limited to either bottom-up or top-down parsers.

Practical use ofraphgrammards seriouslyhamperedy the high complexity of
parsing. Sub-exponentiaparsershavebeendevelopedor certain restrictedclassesof
graphgrammars. A selectionof parsingreferencesare as follows. Kaul presentsa
linear-time precedenceparser for a special class of context free graph-grammars
[Kaul83]. Bunke and Haller describe an extension of Early’s parseofaext-freeplex
languagegBuHa92]; this parserpermits left-recursionand is capableof recognizing
partial structures.Recently,a parsingalgorithm applicableto context-sensitivegraph
grammars has been developed [ReSc94]. Egar et al.graptagrammaparserin the
design of a visual programming environment for clinical protocols [EgPMB2]. and
Fu recognize three-dimensiorabjects(in two-dimensionaimages)using a semantic-
directed top-down backtrack parser fdex grammargLiFu86]. Collin et al. interpret
dimensions in engineerindrawingsusing a plex-grammaiparserthat mixes top-down
andbottom-upprocessindCoTV93]. A chart-basedbarserfor hierarchicalgraphsis
discussedn [MaKI92]. More recently,Klauck reportson a heuristically-drivenchart
parser andt's applicationto CAD/CAM [Klau94]. On a relatednote, Hendersorand
Samal discussefficient parsingof stratified shapegrammars,building on the table-
driven methodsusedfor LR(k) string grammargHeSa86];thesetechniquesmight be
relevant to graph-grammar parsing.

Orderedgraphrewriting

For many computations it is convenient to orderpartially order,a collection of
rewrite rules. For example,Bunke recognizescircuit diagramsby first applying a
collectionof noise-reductiomrules[Bunk82a]. It is critical that thesenoise-reduction
rules be appliedfirst, andexhaustively beforeapplicationof rules for recognition of
transistors, capacitors, and so on. Similarly, a recognition approantufic notation
[FaBI93] uses ordered recognition stages, each of which consigteee orderedphases
(Build creates edge¥yeed removes inconsistent edges, &nmbrporate prunesthe graph




while adding semanticinformation to attributes). Graph applicationsin software
engineering have made extensive use of ordered graph rewriting (e.g. [ELNSS92)).

Various forms of ordered graph rewriting are possible, depending on tlo¢ nee-
determinism and backtracking:

* A completelydeterministicsystemresultsfrom pairing a deterministic control
specification with the use of cursor-nodes (alatted demonnodes)to indicatethe
desiredhost graphlocation for rule application. Determinismis desirablein
editing applicationswhereend-userexpecta deterministicresponsdo an editing
command (e.g. [G6tt92]).

« Partially ordered rewrite systems, without backtracking, have been used for
softwareengineering(e.g. [ELNSS92]) and diagram recognition (circuit-diagrams
[Bunk82a], music-notationFaBI93] [Fahm95], math-notation[GrBI95]). In the
diagram recognition work, the control specification ordbesphaseshat makeup
the recognition process; rules within a phaseunorderecor partially ordered,and
all non-deterministic alternatives lead to a desired result.

 Partially orderedrewrite systems,with backtracking,can be expressedn the
PROGRES language [ZiSc92]. The PROGRES interpreter automatically
backtracksn the searchfor a successfulpath through the control specification:
alternatematchesfor glhOS‘, andalternatecontrol paths,aretried as needed. This
allows straightforward coding of classioal searchproblemsas a partially-ordered
collection of rewrite rules.

Control specifications can be expressed in a variefgrofis, including lists, diagrams,
or text. The simplestcontrol specificationassociateswo setswith eachproduction
rule. The Success set lists the possible productiontsy tafter successfubpplication
of the currentproduction. The failure set lists productionsto try after unsuccessful
applicationof the production. This canbe specifiedin tabularform [Fu82], which
quickly becomesdifficult to read. Diagrammatic control specifications (control
diagrams) are usedby [Bunk82a],with extensionsby [DoTo88] [FaBI93] and others.
For example, @&lock condition allows the control diagramto test attribute valuesof
any nodes involved in theost recentproduction[DoTo88]. To permit more flexible
control constructs,the control specificationcan take a textual form, similar to an
imperativeprogramminglanguage. For example,PROGRESprovides deterministic
and non-deterministiozersionsof And, Or, Loop [ZUSc92][ELNSS92]in addition to
encapsulation tools such as transactions and subdiagrams.

Event-drivergraphrewriting

Whereas ordered graph rewritisgstemsprovide an internally-imposecdrdering of
the rewrite rules, event-drivensystemshave an externally-imposedordering, arising
from the ordering of external events. Thislhsstratedby the library systemof Ehrig
andKreowski [EhKr80]. An externalevent,suchasloaning, returning,or orderinga
library book, resultsin the invocation of a correspondingewrite rule. Parameters
providethe rewrite rule with information describingthe details of the event. The
authors mention an anticipated need for control structures within a single transaction.

Ordered graph rewriting can be used to regulate event-driven graph rewlrititige
Forrester-diagraneditor of [DoTo88], the control specificationdefineswhich editing
events are legal at any given point. Events not foreseen by the spdoificationare
disallowed, resulting in an error message to the user. A similar structigedly the
diagram editors described in [G6tt92].




7. Mr. Maggraphen: How do we choose a graph-rewriting
mechanism?

A largevariety of graph-rewritingmechanismshave beeninvestigated. No one
rewriting mechanism is universally suitable. Practical choice of a rewritghanism
depends on the application, on the availability of tools, and on personal Redevant
factors include the power of the embedding,formal properties of rewrite rules,
readability and intellectual manageability, and efficiency of rule application.

Powerof the Embedding
Complex embeddingmechanismspermit significant graph inspection and graph
manipulationduring the embeddingstep. Conversely, highly-restricted embedding
mechanismssuchasthe invariantembeddingof the gluing models, are inconvenient
for expressing certain common graph operations such as node deletion (Figure 2).
The choiceof an embeddingmechanisminvolves a tradeoffbetweenusing fewer,
but complex, rewrite rules versus using a lang@mberof simplerrules. Up to now,
we havefew practical examplesof graph-rewritingsystemsthat make heavy use of
complex embeddings. It appears that maofgjwaredesignerdind it is easieror more
natural to express a computation using more rules of a restricted embedding type.

(@) (b)

Figure 2 Delete an A-labeled node and all incident edges. (a) With an elementary
embedding mechanism. (b) With a gluing mod&he invariant embeddingnecessitateghat
g, be expanded to include abigesincident on the A-labelednode. A set of rewrite rulesis

usedto enumerateeach possible configuration of incident edges. (The “...” notation,
denoting variable repetition of nodesand edges,is adaptedfrom [EhHK92]. Similarly,

A-notation uses *-groups, which denote zero or more occurresfcatarredgraph elements,
to implement node-deletion[KaLG91, p. 478]. A A-rule that deletesa node is syntactic
shorthand for an infinite collection @-rules that meet the gluing condition.)

FormalPropertieof RewriteRules

Formal propertie®f graphrewriting are practicallyimportant. The strongtheoretical
foundationsof the gluing models can offer significant advantages.For example,
algebraicgraph rewriting simplifies constructionof proofs aboutthe integrity of a
database system, as illustrated by the library-transaction system of [EhKr80].

Using rewrite rules with formally-characterizedproperties,graph rewriting can
provide a formal definition ofraphclassespxamplesncludethe classof well-formed
Forrester diagrams [DoTo88] and the class of well-formed semantic networks
[EhHK92].

ReadabilityandIntellectualManageability

Readability of rewrite rules affects intellectual manageability,system development
time, easeof maintenanceand easeof debugging. It can be particularly difficult to
present complex embeddings in a readable v&igce textual embeddingspecifications
can be difficult to read, varioudiagrammatimotationshavebeenproposedFigure 3).
Visual presentationcan be simplified by avoiding the duplication of graph-parts




commonto g, andg, (Figure4). In our opinion, thesediagrammaticdepictionsare
advantageous for embeddings of intermediate complexity:

» Elementaryembeddinggan be specifiedtextually, and are easily perceivedfrom
visually-correspondingiodesin g, andg, (Figure5). Similarly, gluing isomor-
phisms are effectively conveyed by the visual correspondengeanéig, nodes,as
in [EhHK92].

» Embeddingghat are more complexthanthe elementarytype (e.g., they involve
testing of node-labels in RestGraph, or following of edgeRestGraphjre easier
to perceive if a diagrammatic notation is used instead of a textual one.

» Selectedembeddingpathsthat are very long and highly complex benefit from
textual rather than diagrammaticdepiction. An example is the use of the
PROGRES “path” construct, which permégtensivesearchingandtesting of the
host-graph, as part of the embedding process [ELNSS92].

Some applications require complex embeddings, others don't. In our expenejoe,
difficulties arise not in the formulation of individual rewrite rules, but indtracturing
of a large collection of rules that interact in a desired way.

Optional Context Application Condition
(Embedding) (the "guard")

Optional Context

(Embedding) unique part of g
unique part of E(the "retraction”

(to be added)

unique part of g
(the "insertion")

unique part of

[ (to be deleted)
Required

Context

Required Context
(parts common toj@and g)

Prohibited Context
(the "restriction™)

(a) Y notation [G6tt83] (b) X notation [G6tt92] (c) A notation [LoKa92]

Figure 3 Three diagrammatinotations for graph-rewriterules. In Y and X notations, the
embeddingis shown as optional context: thesediagrammaticdepictions of embeddingare
usedif they match in the host graph. The required context must match infordée rewrite
rule to be applied. I& notation, the centerof the A is usedboth for requiredand optional
context, with a * placed next to the optiorrts. (Elementsof a* group may occurzero,
one or moretimes.) The prohibited context depicts host-graphstructurethat must not be
present; restrictions on labels and attributes are expressed textually in the guard.
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Figure 4 Graph-rewriterulesto add a secondedge betweenan A-labeled node and a B-
labeled node. Avoiding duplication of graph-parts common, tang g, shrinks the drawing
of g, and g, and greatly reducethe graphical depiction of the embedding. (The Y-notation
rule appears in [G6tt92, Fig. 14].)

q

Application Condition: §,v = any node label)

Above Above & (M(2) = undetermined)
2 v 20 N
G@ 5 Fra@ (Default) Embedding: {(1,1),(2,2'),(3.3"
A A
Below Below Attribute Transfer: m(2") ="

bove

(b)

X -
‘Ab

@

Figure 5 Textual (a) versusgraphical (b, ¢) depiction of a simple embedding. Theseare
three notations for graph-rewriterule to replacea Line-labelednodeby a Fraction-labeled
node, in the context of incoming Above and Below edges(as usedin [GrBI95]). (a) The
analogousembeddingis conveyedby similarly-denotatednodesin visually-corresponding
places; this is reinforced by the textual description “{(1,1"), (2,2"), (3,3")}". (b) In X-
notation, the embeddingis conveyedas optional context. One filled-in node (indicating
arbitrary nodelabel) andtwo edgesdepict a node-correspondenceSince directededgesare
used, this must be repeatedfor incoming and outgoing edges. (c) In A-notation, the
embeddingis conveyedsimilarly, using *-groups to indicate O or more occurrencesof the

starred structures.
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Isomorphisms/ersusGeneralGraphMorphisms

Selectionof a rewrite mechanisminvolves choosing isomorphismsor general
morphismsfor finding a subgraphglhost matchingg,. The utility of generalgraph
morphismsis illustrated by small examplesin the literature ((EhHK92, p. 560],
[KrR090, p. 200]). However,generalmorphismscould easily result in  unexpected
matchesWe would be interestedto hear of the use of generalgraph morphismsin
large-scale system; debugging of such rewrite systems could be difficult.

A useful compromiseis to allow the rule-authorto selectively and explicitly
indicate where general morphisms may be used. For example, A-rewriting uses
subgraph isomorphism, but witnlabel-subscripnotation (calleda fold) to explicitly
indicate groups ohodeswhich can optionally be matchedto a single host-graphnode
[KaLG91] [LoKa92]. The utility of this construct is demonstrated by a rule to iasert
element into a circular list: one rule works for circular lists of any leadth

Extensiongo the RewriteMechanism

Many extensiongo rewrite mechanismsareuseful in practice[BIFG95]. These
include hierarchicallabel organization;calculation of attribute values; application
conditions; parametergo graph-rewriterules; variable node and edge labels within
rewrite rules; variable graph structurewithin rewrite rules (e.g. optional or repeated
nodesand/oredges). While all of theseextensionsare useful in certain applications,
caremust be usedto selectonly the featuresnecessarnto cleanly expressthe graph
transformations needed in a given application.

8. Mrs. Maggraphen: How do we modularize a graph-rewriting
system?

A graph-rewriting system that onstructedn a modularway is easierto design,
implement, debugand maintain. Various aspectof a graph-rewritingsystemcanbe
modularized-- the host-graphstructure,the rewrite rules, the control specification.
This is an active research area. Seleajgotoacheso modularizationare listed below.
Several of these approaches can be used in combination.

Modularspecificationof host-graplstructure

A description of allowable host-graph structure provides a founddiotie design
of a graph-rewritingsystem. For example,the graph schemein PROGRESdefines
statically-declarablgraphpropertieslELNSS92]. The graph schemedefinesa class
hierarchyfor nodelabelsand edgelabels(multiple inheritanceis allowed). Basedon
this, edge typing information is declared: for each edge-label, defiaénode-typesare
admissibleat the endpointsof the edge. This static type information allows useful
compile-time and run-time checks on graph-rewrite rules and on host-graph structure.

Host-grapttriggers

This method of modularization is proposed fonserderedyraph-rewritingsystem
(wherein a host-graphis nondeterministicallytransformedby a set of graph-rewrite
rules, with no control specification).To allow the designerto divide a large problem
into more manageablsubproblemsA-rewrite systemsuse platforms of relatedrules
[LoKa92] [ToKa94]. Theseplatforms are definedvia specially labeled nodes called
trigger nodes. To define a platforrmhoosea new trigger label. Every rewrite rule in
the platform contains this trigger nodegpn(i.e., in the requiredcontextor retraction).
If some rewrite rule wishe® invoke rulesin a particularplatform P, the rewrite rule
addsthe P trigger to the host graph. This satisfiesone of the preconditionsof rule-
applicationfrom platform P, andthus may resultin executionof a P-platformrule.
The label of a trigger node is a tuple of arbitrary structure, and can include parameters
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influence the resultant application of a P-platform rulghis style of computationhas
been used to solve (on paper) a variety of specification and concurrency problems.

Modularcontrol specification

In an ordered graph-rewriting system, the control specification can be structared in
modularway. For example,PROGRES provides transactionsand subdiagramsas
encapsulation tools [ZiSc92Drderingcanbe usedto structurethe computationinto
phases; foexample,Build-Constrain-(Rank)-Incorporatecognitionstagesare usedin
[FaBI93] [GrBI95].

Two-levelrewriterules

Generic graph-rewrite rules (expressed as graphs) cmartsformedvia meta-rules,
to produceexecutableewrite rules. This hasbeenusedin a systemto describelegal
databasdransaction§GoHi94]: complextransactionsare convenientlyexpresseds a
hyperproduction,which is transformedby a metaproductionto produce the final
production. Thisconstructallows generaloperationgo be expressedjenerically,asa
hyperproduction, and thewmsedin a variety of ways. For example,a hyperproduction
for the manipulationof geometricobjectscanbe specializedvia metaproductionsjo
treat polylines or rectangles.

Modulesof rewriterulesarisingfrom host-grapHocality

In many applications,a host graph can be representechierarchically, with an
abstract level, as wedls a refinedlevel (consistingof local graphsandinterfaces). In
this case, graph productions can be modularized, with soogelestransforminglocal
graphs,others changinginterfacesor the global graph, and yet others changingthe
graph hierarchy (split or join local graphs) [EhEn94] [Taen94].

Inheritance

Inheritanceis a powerful tool for layering in object-orientedsystem design.
Severalforms of inheritancecan be used within a graph-rewriting system; some
examples are mentioned earlier in this list, as well as in [EhEn94].

Import-Export-Interface

As describedn [EhEN94], graphtransformationscan be organizedinto modules,
whereeachmodulehasan import interface,local operations,and an export interface.
This is challengingto implement,becausemportedgraph-rewriterules are known by
name only.

9. Mr. Maggraphen: How canwe designa graph-rewriting systemto
accommodate evolving host-graph structure?

The Maggraphengre producingsoftwarefor clients with changingneeds. Thus
they need to plan fogvolution of their graph-rewritingsystem. Adding a new feature
may requireextensiongo the host-graptrepresentationfor example,new nodelabels
and edge labels may be introducéd/henthis happensthe Maggraphengxpectmost
of their old rewrite rulesto continueto work properly, and they want it to be clear
which of the old rules must be updatedin responseto the expandedhost-graph
representation. Many aspects of a rewrite system bear on this problerasshetuse
of graph schemedo statically declarepermissiblehost-graphstructure [ELNSS92].
Here we consideronly the effect of choosing induced versus non-inducedsubgraph
matching. (If gj"OStis an induced subgraph of g, thqi‘P@t must include all locaédges
of g, i.e. all edgesof g that connecttwo glhost nodes. A non-inducedsubgraphmay
omit some or all of these edges. This is illustrated in Figure 6.)
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Comparedto non-induced subgraphs,induced subgraphsmeet more stringent
matching criteria, and providaore information aboutlocal host-graphstructure. The
following consequences result.

* Using inducedsubgraphsncreaseshe numberof rewrite rules: g, cannotmatch
unless the rule-author hasticipatedall the edgespresentin that part of the host
graph. Various edge-configurationmust be enumeratedn separategraph-rewrite
rules (where a single non-induced rewrite rule could suffice).

* Non-induced subgraphs require extra application conditions, necéssamgurethe
absence of certain host-graph edges.

 Implicit edge-deletioris a major pitfall of non-inducedsubgraphs. Edgespresent
in host-graph but not mentioned inage deleted by rule application (Figure 6).

These points become particularly significant in caskast-graphevolution. Consider
the additionof a new type of edge,with the new edge-label'Grow”. Ideally, the old
graph-rewriterules shouldcontinuefunctioning as before,so that we merely needto
createa few new rulesthat directly procesghe Grow edges. Both inducedand non-
induced subgraphs disappoint us.

 Using induced subgraphs, the presenca Grow edgepreventsapplicationof any
of the old rules. The old rules must be replicated,to enumerateall possible
permutations of Grow edges that might occur in {ieStarea.

* Using non-inducedsubgraphsthe old graph-rewriterules continueto apply, but
they performimplicit Grow-edgedeletion. Rewrite rules apply whetheror not a
Grow-edge is present, but ifGrow-edgewas presentbeforerule application,it is
no longer present after rule application.

Theseproblemsare independenbf the embeddingmechanismarising similarly in all
gluing and embeddingmodelsthat use removal of g|h°5t during the rewriting step.
Improved semanticscan be defined by using non-inducedsubgraph matching and
avoiding node deletion where possible. (Wg‘and gh°5tcontaincorrespondingwodes,
then these nodes are identified, rather than removingﬂ‘?ﬁérg)de and replacing with
the ghOStnode.) Such incomplete removal of non-indusatdgraphss providedin the
definition of structuredgraph rewriting [KrR090], and in the current PROGRES
language [Schi91, p. 652]. (These semantics evolvedtiover an earlier PROGRES
reference describes the removal from host-graph of the complete subgregsponding
to the non—induce(tJlhOSt [EnLS87,p. 192]). Many graph-rewritingpapersgive scant
mention of their choicéo useinducedor non-inducedsubgraphmatching. This issue
is important both theoretically and practically.
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Figure 6 Inducedversusnon-inducedsubgraphs. Rewriterule (a) is applied to the host
graph (b). If aninducedg, 0stis required,the isomorphism test fails and the rewrite rule

cannot be applied.If non-inducedsubgraphmatchingis used,a suitable g hostis found and

replaced, resulting in the new host graph (Q)Ve usethe standardremoval andreplacement
of g|h°5t, asin the LEARRE steps: Locate, establish EmbeddingArea, Remove, Replace,
Embed [Roze87].) Note the implicit edge-deletion in (c): the edge from the C-latededo

the B-labeled node is removedin host-graph, an effect that may or may not have been
anticipated by the author of rewrite-rule (a).

10. Mrs. Maggraphen: Can hierarchical graphs be rewritten?

Hierarchical host-graph structuragsenaturallyin many applications. In a strict
definition of hierarchicalgraphs,all edgesmust connectsiblings, or connecta parent
and a child node. However, many practical problems cannot be modeled without
additional edgeghat crossthe hierarchy,for exampleto connect‘cousin” nodes. The
presence of such hierarchy-crosseugesgreatly complicateshe constructionof tools
for hierarchical graph rewritingVarious notationsfor hierarchicalgraphstructuresare
described in [Hare8dSiGJ93]. Hierarchicalstructureassistsin the display of a large
graph. Zoom-inand zoom-outoperationgreducethe graphto manageabl@roportions
for viewing, or delimit selected portions of the graph for processing.

It is possible to consider hierarchical graphs as merely a notational device
pertainingto graph display: a hierarchically-structuredyraph can easily be translated
into a flat graph, with the addition of special edgemtiticate parent/childrelationships
in the hierarchy. Howeves full implementationof hierarchical-grapmewriting must
give many specialconsiderationso theseedges. Thereis significant interestin the
topic of hierarchicalgraphrewriting. Relevantreferencesnclude a chart-basecparser
for hierarchical-graphgMaKI92]; abstract graphs in a prototype algebraic-rewrite
environmentL6Be93]; graphswherenodelabelscan be graphsthemselvedSchn93];
flat host-graph structure withierarchy-expressingewriting rules usedto zoomin and
out [EhHK92] andto manageand display a derivation [Hims94]; use of hierarchical
graphsin a formal approachto plan generation[ArJa94]; use of hierarchically
distributed graph transformations [Taen94].
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11. Mr. Maggraphen: A lot of our C code performs graph inspections.
How can we translate this into graph-rewrite
rules?

The Maggraphensturrentsoftwarefreely mixes graph-inspectioroperationswith
graph-manipulatioroperations.Their graphinspectionoperationgest local or global
host-graphproperties;examplesinclude searchingor a short path betweennodes,or
testing whether a graph is bipartite. The Maggraphensare concernedabout the
feasibility of translating to a pure graph-rewrititegnguage. It is true that somehost-
graph inspection is performed duringyaph-rewritingstep (find glhOSE find embedding
edges, test thapplicationcondition). But thesehost-graphinspectionsaccompanyor
follow subgraph-isomorphisrnesting, making it clumsy and expensiveto express
graph inspections that should be undertaken before the subgraph-isomorphism test.

More direct methodsfor expressinghost-graphinspectionsare desirable. The
designersof PROGRES recognize this, providing a variety of graph-inspection
languageconstruct§ELNSS92]. Statically-declarablegraph propertiesare definedin
the graphschemetheseinclude the classhierarchyfor nodelabelsand edgelabels, as
well as restrictions on the source- and target-node-labels for wdltpea particularedge
label. In addition to this static construct,a variety of dynamic graph-inspection
constructs are provided. Genecahtrol structuresdirect the applicationof graphtests
andgraphproductions[ZiSc92]. A rule’s g, canbe augmentedvith path constructs,
permitting complex, far-reaching examination of graph structure as part of the
localization ofglhOSt. Independenbf rewrite-ruleapplication,path descriptionscan be
used to compute values fderivedattributes. The applicability of a rewrite rule (or a
subprogramof rules) can be testedwithout executingit. ~Global on-going graph
inspectionis proposedn [NaSc91]:global runtime conditionsare usedto state host-
graph conditions that should always (or never) hold.

In summary, practically-usablegraph rewriting languagesmust provide general
facilities for graphinspection. Different languageconstructsmay be suitable for
unordered, grammar-based, or ordered graph-rewriting environments.

12. Mrs. Maggraphen: What about our user-interface and image-
processing code? Weantto leavethat coded
in C.

Graph rewriting is a suitable formalism for expressingonly part of the
Maggraphens’ computation. Temcouragevidespreadise of graphrewriting, we need
convenientmethodsto combine graph rewriting with other styles of computation.
This is an interestingresearctopic. A few possible approachesnclude combining
graph rewriting with a blackboard architecture (with the host gstqniedas part of the
blackboard); combining graph rewriting with methods for performing major
computations on attributgsvhereattributescanbe complexentities suchas tablesor
lists or even other graphs); using graph rewriting with or on top of a standard
programminglanguage(as is alreadybeing done with some ordered graph-rewriting
systems such as PROGRES [Z1Sc92]).

13. The Maggraphens: Thanks for the information. we'll
probably continue to use C...

Currently we cannotadvisethe Maggraphengo staketheir financial future on
graph rewriting as their tool for product development. We hbagtthis situation will
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change, so thah perhapgen yearstime we could give different advice. Here’'swhat
we have to do to achieve this.

« Makeit lessdifficult for an outsiderto learn how to use graphrewriting in a
practical application. The Maggraphens’ experience mirrors our own: as wgtset
to apply graphrewriting to diagramrecognition[FaBI93] [GrBI95] [Fahm95],we
found it hard to figure out how torganizeour computation. A careful readingof
the literaturewas only of limited help: we found extensivediscussionof graph-
rewriting mechanisms, but little discussion of systems issues, and few exafples
significantly-large graph-rewriting systems. Currently, the graph-rewriting
literature appears confusing and uninviting to an outsider.

» Disseminatethe graph-rewriting research/experiencthat is currently available.
Graph rewriting is an intuitive, widely appealing concept, and outsiders are
continually reinventingit.  (Several attendeesat Williamsburg invented graph
rewriting during the course of their research, only later to discover thataiheady
existed research on this subject, and flousd their way to the workshop. Other
reinventors ofgraph-rewritingneverfind us. This shouldnot be happeningor a
researchcommunity that has a decades-longhistory.) The profile of graph-
rewriting must beraised. Oneimportantgoal is to havegraph-rewritingincluded
in the standard undergraduate computing science curriculufew fectures’worth
of material can béncludedin a data-structuresr algorithmscourse ,wheregraph-
representationtechniquesand graph-inspectionalgorithms are already taught.
Alternatively, graph grammars can be introduced in a formal languages class.

» Develop a better sense for which applications (or gEregoplications)are suitable
for implementation via graprewriting. (We found an enthusiastiaatmospheret
the Williamsburg conference:all sorts of computer-scienceapplications were
eagerly characterizeak "yes, yes, graphgrammarswould be a greatway to solve
that problem".) We needto develop guidelines for identifying when graph
rewriting useis advisable andwe needto developmethodsfor integrating graph
rewriting into systems that use other styles of computation as well.

» Continue to develop and refine environments for graph rewritidg.are delighted
that the PROGRES environment (and other environmentsto follow) are
sufficiently matureto be generally usable. (When we began our diagram-
recognitionwork, we found that the [Bunk82a] softwarewas not in a stateto be
reused. Thusve hadto createour own modestgraph-rewritingenvironment;this
took time, and the poor quality of the executing environmenthamperedour
debugging and testing. Wae happythat now, if we interestother colleaguesn
graph rewriting, we can direct them to existing graph-rewriting environments!)

In summary,our currentsituationis this. We arevery enthusiasticabout graph
rewriting as a style of computation,andwe are eagerto convinceotherresearchero
usegraphrewriting. However,when we do succeedn convincing someoneto try
graph rewriting, we are left in the awkward position of being flooded Maggraphen-
type questionsfew of which we cananswersatisfactorily. Let us continueto work
toward giving graph rewriting the widespread use it deserves.
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