Comparative Assessment of Testing and Model Checking
Using Program Mutation

Jeremy S. Bradbury
Faculty of Science

University of Ontario Institute of Technology

Oshawa, Ontario, Canada
Jeremy.Bradbury @uoit.ca

Abstract

Developing correct concurrent code is more difficult
than developing correct sequential code. This difficulty is
due in part to the many different, possibly unexpected, ex-
ecutions of the program, and leads to the need for special
quality assurance techniques for concurrent programs such
as randomized testing and state space exploration. In this
paper an approach is used that assesses testing and for-
mal analysis tools using metrics to measure the effective-
ness and efficiency of each technique at finding concurrency
bugs. Using program mutation, the assessment method
creates a range of faulty versions of a program and then
evaluates the ability of various testing and formal analysis
tools to detect these faults. The approach is implemented
and automated in an experimental mutation analysis frame-
work (ExMAn) which allows results to be more easily repro-
ducible. To demonstrate the approach, we present the re-
sults of a comparison of testing using the IBM tool ConTest
and model checking using the NASA tool Java PathFinder
(JPF).

1. Introduction

In order to fully exploit recent hardware advances such
as multi-core processors, software needs to be concurrent.
In the past, advances in single processors have lead to free
speed-up of sequential programs which will no longer occur
with multi-core technologies. Many imperative program-
ming languages like Java, which are often used in the devel-
opment of sequential programs, can also be used for han-
dling concurrency. For example, Java provides a number

Ithis work is supported by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC).

2from Jan. to Aug. 2007 on leave to Software Systems Engineering In-
stitute, Braunschweig University of Technology, Braunschweig, Germany.

James R. Cordy, Juergen Dingel?
School of Computing
Queen’s University
Kingston, Ontario, Canada
{cordy, dingel } @cs.queensu.ca

of synchronization events (wait, notifyAll) for the develop-
ment of concurrent programs. The synchronization events
in Java can affect the scheduling of threads and access to
variables in the shared state [7]. The interleaving space of
a concurrent Java program consists of all possible thread
schedules [12].

The development of concurrent software offers a set of
challenges not present in the development of sequential
code. For example, in software with multiple threads dead-
lock and race conditions can occur. Furthermore, a fault
that leads to a deadlock or race condition may only occur in
a very small number of execution interleavings meaning it is
extremely difficult to detect it prior to software deployment.

Our work focuses primarily on better understanding fault
detection techniques for concurrent software. Many ap-
proaches to ensuring concurrent Java source code is correct
have been proposed including: concurrency testing (e.g.,
ConTest [11]), model checking (e.g., Java PathFinder [15,
22, 1], Bandera/Bogor [19]), dynamic analysis (e.g., Co-
nAn [17]) and static analysis (e.g., FindBug [16]). The
goal of this paper is to compare two existing fault detec-
tion techniques — namely concurrency testing with the IBM
tool ConTest [11] and model checking with NASA’s Java
PathFinder (JPF) [15, 22, 1]. With respect to these two tools
we ask the following questions:

Which technique is more effective?
Which is more efficient?

Effectiveness refers to the ability of each tool to detect con-
currency faults and efficiency refers to how quickly each
tool is capable of finding faults. Our interest in exploring
the relationship between testing and model checking tools
is motivated by a need for improved quality assurance tech-
niques for concurrent industrial source code. Testing has
been an effective industrial technique for fault detection of
sequential programs while model checking tools offer the
potential to substantially aid in the debugging of concurrent
programs.

Tests & II
Properties

ExMAn
Framework

Tests & I Original
Properties Source
ConMAn
Operalors
Hﬁ‘ Java
ConTest Mutant PathFinder
<
Source (JPF)

v

(Mutant Analysis Results Generator)

Figure 1. Experimental mutation analysis us-
ing the ExMAn framework and the ConMAn
operators

We conducted a controlled experiment to compare Con-
Test and JPF. Our research approach for comparing testing
and model checking is a generalization of mutation testing.
Program mutation is traditionally used to evaluate the effec-
tiveness of test suites. It provides a comparative technique
for assessing and improving multiple test suites. A num-
ber of empirical studies (e.g., [2, 8]) have relied on using
mutants as a proxy for real faults during the experimental
process. The use of program mutation as a proxy has been
well researched. Jeff Offutt studied the coupling effect of
simple mutant faults with more complicated faults [18]. An-
drews, Briand and Labiche have studied the relationship be-
tween mutant faults and real faults with respect to sequential
source code [2]. The previous studies on mutation testing
establish a firm basis for the use of mutation in empirical
research.

Although mutation as a comparative technique has been
used primarily within the testing community, it does have
application in the broader area of fault detection techniques.
Our work is based on the idea that mutation can be used to
assess testing, model checking, static analysis and dynamic
analysis. In previous work we have detailed our Experi-
mental Mutation Analysis (ExMAn) framework which im-
plements our research approach [3]. We have also defined
a set of Concurrency Mutation Analysis (ConMAn) opera-
tors to support program mutation with concurrent Java [4].
We use ExXMAn in combination with ConMAn to automate
the research methods used in our controlled experiment (see
Figure 1).

In Section 2 we overview concurrency testing with Con-
Test and model checking with JPF. We outline our experi-
mental goals in Section 3, our experimental setup in Sec-
tion 4 and our experimental procedure in Section 5. Our
experimental results and outcomes are given in Section 6
and threats to validity are discussed in Section 7. Finally,

Run Test

Rerun Test with heuristically

A

generated interleaving
Record interleaving
Update Coverage
Not
Reached
Correct Problem
Check Fix Bug
Coverage Rerun test —
Target using replay
Reached

Figure 2. Testing with ConTest [11]

we review related work and present our conclusions in Sec-
tions 8 and 9.

2 Background

A variety of quality assurance techniques are used to de-
tect faults in concurrent programs. We begin with a brief
background on two of these techniques — testing and model
checking.

2.1. Testing

Conventional testing of sequential programs usually in-
volves developing a set of test cases that provide a certain
kind of code coverage (e.g., path coverage). These tests are
executed on the code to detect possible faults and failures.
If a fault is detected in sequential code for a given test case
then we can rerun the test case to demonstrate the fault and
reuse the test case on a new version of the software to ensure
that the fault no longer occurs.

Due to the non-determinism of the execution of concur-
rent source code and the high number of possible interleav-
ings, concurrency testing can not rely on coverage metrics
alone to guarantee the quality of the source code. In addi-
tion to ensuring that all code is covered we must also pro-
vide some probabilistic confidence that faults that manifest
themselves in only a few of the interleavings are found. For
example, since a race condition or deadlock may only oc-
cur in a small subset of the possible interleaving space, the
more interleavings we test the higher our confidence that
the fault that causes the race condition or deadlock will be
found [21].

data/scheduling VM

MJI heuristics observation
- I|brar¥ choice) vm verification report
verification target | abstraction generator listener
(Java bytecode ~ ‘ T —.
program) Step #11 Thread #0
Q Q oldclassic.java:65 eventi.wait_for_event();
; ; . java:37 wait();
Virtual Machine » .
b Step #14 Thread #1
é oldclassic.java:95 event2.wait_for_event();
oldclassic.java:37 wait();
‘ Search Strategy ‘ Core JPF semsrsesrssssss oo d stacks
_m L Thread: Thread-0
at java.lang.Object.wait(java/lang/Object.java:429)

| !

property search

checker listener end
system/ search

apps observation

at Event.wait_for_event(oldclassic.java:37)
Thread: Thread-1

at java.lang.Ojbect.wait(java/lang/Object java:429)
at Event.wait_for_event(oldclassic.java:37)

property ’
violatiM

error-path

Figure 3. Model Checking with Java PathFinder [1]

Although conventional testing can find faults in con-
current source code it may not be capable of finding all
faults. ConTest is an IBM concurrency testing tool devel-
oped specifically to enhance the ability of testing to find
more faults by exploring the interleaving space of the pro-
gram [11]. ConTest works with concurrent Java and uses
a randomized scheduler and heuristics to increase the con-
fidence that interleavings with a high-risk of faults are ex-
plored (see Figure 2). Randomized scheduling is obtained
by automatically and systematically inserting delays into
Java bytecode. For example, one way to delay the execu-
tion of a thread is to cause it to sleep for a random amount
of time.

2.2. Model Checking

Software model checking is a formal methods approach
that typically involves developing a finite state model of a
software system and specifying a set of assertions or tempo-
ral logic properties that the software system should satisfy.
The model checker determines if the model of the software
system satisfies the specified properties by conducting an
exhaustive state space search. The exhaustive search means
that all possible interleavings of the model of a concurrent
system are examined and thus provides a high leave of con-
fidence regarding the quality of the software. Although
model checking can provide more confidence then testing
it typically requires a long time to search the state space.

Traditionally model checkers are used to prove correct-
ness, however model checkers also provide benefits as de-
buggers. A shift in the focus of techniques like model
checking from proofs of correctness to debugging and test-
ing has been advocated by a number of researchers includ-
ing Rushby [20]. The ability of today’s state-of-the-art soft-

ware model checkers to directly analyze source code and the
increase in size of systems that can be analyzed has helped
them become a viable option for software debugging. For
example, in most model checkers a counter-example is pro-
duced if the verification of a property fails. When a counter-
example is produced it can be used to locate the error in
source code.

Several software model checkers support the analysis of
concurrent Java including JPF and the Bandera/Bogor tool
set, developed at Kanas State University. In this paper we
have chosen to use JPF for our experiment however in the
future we also plan to conduct further experiments with
Bandera/Bogor.

JPF (see Figure 3) is an example of an explicit state
model checker. It uses Java bytecode as an input language
and thus eliminates the semantic gap between source and
model artifacts. It also uses a special virtual machine to
manage the program state. JPF is fairly flexible and can use
different algorithms to search the state space. Search algo-
rithms supported by JPF include a depth first search, breadth
first search, heuristic searches, and a random search. JPF is
also flexible in terms of the kind of properties detected. By
default it detects deadlocks and exception violations but the
user can also create custom properties such as race condi-
tion detection. Upon detecting a property violation JPF will
provide both the property that was violated and the error
path as output to the user.

3. Experimental Definition

The goal of our controlled experiment is to statistically
evaluate ConTest and JPF for concurrent Java using mea-
surements to determine both the effectiveness the efficiency

of each tool at finding faults.

In terms of effectiveness, there are two outcomes that are
most likely. One, ConTest and JPF are complementary. For
example, it may be the case that JPF can find bugs that Con-
Test can not find and vice versa. Two, ConTest and JPF are
alternatives. For example, it may be the case that both tools
are equally likely to find most of the faults in a concurrent
program. In this situation the use of both techniques in com-
bination would provide very little, if any, benefit over either
approach in isolation.

In terms of efficiency, there are three possible outcomes
that are most likely. One, it might be the case that overall
ConTest or JPF is more efficient. Two, a mixed result is
possible where in certain cases ConTest is more efficient
and in other cases JPF is more efficient. Three, it may be
the case that there is no statistical difference between the
efficiency of ConTest and JPF.

In order to determine the actual outcome of our con-
trolled experiment we collected 3 measurements: mutant
score, ease to kill a kind of mutant and cost to kill a mutant.

To evaluate the effectiveness of ConTest and JPF at de-
tecting (killing) faults we use the mutant score. The mutant
score provides a good comparative measurement to quantify
the ability of different fault detection techniques at finding
mutant faults.

mutant score of £ = the percentage of mutants de-
tected (killed) by a technique t (e.g., ConTest,
JPF)

To evaluate the effectiveness of ConTest and JPF at de-
tecting a particular kind of fault we measure the ease to kill
a kind of mutant. The ease to kill a mutant is a measure-
ment used by Andrews et al. [2]. We use ease to kill to help
identify any relationships regarding the kinds of faults that
are found by a given tool.

ease to kill a kind of mutant by ¢t = the percentage
of mutants of a given kind that are detected
(killed) by a technique t .

To evaluate the efficiency of ConTest and JPF at detect-
ing faults we measure the cost to kill a mutant. We record
both the real time and the CPU time required to detect faults
and can compare tools based on either time.

cost to kill a mutant by t = the total time to detect
(kill) the mutant by a technique t

4. Experimental Setup

In this section we define the setup of our experiment. The
setup involves selecting the approaches under comparison,
the example programs used in the experiment, the mutation

operators used to generate faults, the quality artifacts used
by the approaches under comparison and the experimental
environment. As we describe the selection of each part of
the experimental setup we will justify our choices by an-
swering important questions that may affect the validity of
the experiment.

4.1. Selection of Approaches for Compari-
son

We have already outlined testing with ConTest in Sec-
tion 2.1 and model checking with JPF in Section 2.2. Re-
call that JPF can be customized with different search algo-
rithms which explore the program state space in different
ways. We have chosen to use JPF with a depth-first search
and non-random scheduling that will exhaustively explore
the entire state space of the abstracted program. We have
selected this configuration for JPF because it is the default
configuration.

Are the approaches or tools applied to the same kinds
of applications? Both ConTest and Java PathFinder are in-
tended to be used with concurrent Java applications indicat-
ing that they are appropriate tools for comparison.

Do the approaches or tools have similar goals? Both
ConTest and JPF can be used for the detection of faults
in concurrent applications. However, one difference in
terms of the goals of each tool is that ConTest is not in-
tended to automatically detect deadlock faults while Java
PathFinder is intended to find deadlocks in addition to other
kinds of faults. To allow our testing approach to find dead-
lock we combine ConTest with the Java Virtual Machine’s
(JVM) Ctrl-Break handler. The Ctrl-Break handler provides
a thread dump of a running program and performs deadlock
analysis on the program reporting any deadlocks detected.
The combined use of ConTest and the Ctrl-Break handler
ensures that both testing and model checking are capable of
detecting the same kinds of faults.

4.2. Selection of Example Programs

We selected 4 example programs from the IBM Concur-
rency Benchmark [13] for our experiment:

o TicketsOrderSim: A simulation program in which
agents sell airline tickets.

e LinkedList: A program that has two threads adding el-
ements to a shared linked list.

o BufWriter: A simulation program that contains a num-
ber of threads that write to a buffer and one thread that
reads from the buffer.

e AccountProgram: A banking simulation program
where threads are responsible for managing accounts.

Example Program loc | classes | methods | stmts synch synch synch synch critical critical
blocks block mthds mthd regions region
stmts stmts stmts
TicketsOrderSim 75 2 3 21 1 6 (28.6%) 0 (0%) 0 (0%) 1 6 (28.6%)
LinkedList 303 5 22 70 2 4 (5.7%) 0 (0%) 0 (0%) 2 4(5.7%)
BufWriter 213 5 9 55 3 20 (36.4%) 0 (0%) 0 (0%) 3 20 (36.4%)
AccountProgram 145 3 7 40 2 3(7.5%) 3(429%) | 5(125%) 5 8 (20%)

Table 1. Metrics for the example programs used in our experiment

Are the example programs representative of the kinds of
programs each approach is intended for? Selecting our ex-
ample programs from an existing benchmark was our best
opportunity to find examples that are representative of con-
current Java applications. However, it is important to note
that the programs in the benchmark use synchronized blocks
and methods to protect access to shared data (see Table 1)
and none of the programs use the new J2SE 5.0 concur-
rency mechanisms. We had difficulty finding example pro-
grams that used these mechanisms and plan to conduct fur-
ther experiments in the future once these mechanisms be-
come more widely used. Another reason for not including
the new concurrency mechanisms is that they are not fully
supported in ConTest. Therefore, our example programs are
not representative of all concurrent Java programs written
with J2SE 5.0 mechanisms like semaphores, built-in thread
pools and atomic variables.

Are the example programs developed by an independent
source? The example programs in the IBM Benchmark
were all developed by independent sources however we did
have to make modifications to the programs in order to fa-
cilitate their use in our experiment. Modifications were re-
quired because all of the programs in the benchmark had
existing faults and our mutation-based setup requires cor-
rect original programs to compare with mutants. Therefore
we modified each of the programs by hand to fix existing
faults. In fixing the faults we were careful to use the same
synchronization techniques used in other parts of the pro-
gram. In order to assure that the modified programs were
correct we defined correctness as any program that can be
executed for a fixed amount of time in ConTest without un-
covering a fault and can be model checked in JPF for a fixed
amount of time without uncovering a fault.

4.3. Selection of Mutation Operators

In our experiment we decided to use a subset of the Con-
MAn operators (see Table 2) that mutate the Java concur-
rency mechanisms prior to J2SE 5.0. For examples of the
ConMan operators see [4].

Are the mutation operators modifying parts of the source
code analyzed or tested by the approaches under compar-
ison? The operators are ideal for this comparison because

Name | Description
MXT Modify Method-X Time (wait(),sleep() and join()
method calls)
MSP Modify Synchronized Block Parameter
RTXC | Remove Thread Method-X Call (wait(),sleep(),
join(), yield(), notify() and notfiyAll() method calls)
RNA Replace notfiyAll() with notify()
RJS Replace join() with sleep()
ASTK | Add static keyword to method
RSTK | Remove static keyword from method
ASK Add synchronized keyword to method that contains
a synchronized block
RSK Remove synchronized keyword from method
RSB Remove synchronzied block
RVK Remove volatile keyword
SHCR | Shift critical region (up and down)
SKCR | Shrink critical region
EXCR | Expand critical region
SPCR | Split critical region

Table 2. A subset of the ConMAn opera-
tors [4] used in our experiment

they modify the concurrency parts of the source code tested
by ConTest and analyzed by JPF.

Are the mutants generated by the mutant operators de-
tectable using the approaches? The operators are also ideal
because they generate mutants that ConTest and JPF are ca-
pable of detecting. Our only concern regarding the capabil-
ity of ConTest and JPF to detect the mutant faults was the
ability of ConTest to detect mutants that may cause dead-
lock. We have alleviated this concern by using ConTest with
the JVM’s Ctrl-Break handler as described in Section 4.1.

4.4. Selection of Quality Artifacts

In our experiment we use test inputs and assertions. In
most cases the programs have preexisting test inputs in the
form of a driver class and each have one embedded property
regarding the correctness of the program upon termination.

Are the artifacts of any approach more mature or ad-
vanced? Do the artifacts of one approach provide an advan-
tage over the artifacts of another approach? In order to en-
sure that testing with ConTest or model checking with JPF

does not use more mature quality artifacts we have decided
to use the same artifacts for both techniques. Specifically,
we use fixed test inputs and built-in assertions when testing
and model checking. On the one hand, ConTest can detect
assertion violations at run-time in addition to using test in-
puts. On the other hand, JPF can search the state space of a
program for assertion violations with respect to specific test
inputs.

4.5. Selection of Experimental Environment

The environment used for the experiment was a single
user, single processor machine (Pentium 4 3GHz) with 3
GB of memory running the ubuntu Linux operating system.

Are there any factors in the experimental environment
that can give one approach an advantage? Are there any
other factors that could affect the results of the experiment
in general? We chose a system with a single processor
to eliminate an unfair environmental factor. The version
of JPF used in our experiments does not include a multi-
threaded state space search while testing with ConTest can
take advantage of multiple processors. Therefore, conduct-
ing the experiment in a multi-processor environment would
provide ConTest with an unfair advantage in terms of effi-
ciency. In the future we would like to compare ConTest with
a version of JPF that uses a parallel randomized state-space
search [9].

We chose a single user machine because we will use real
time instead of CPU time as the primary measure of effi-
ciency. We use real time because ConTest utilizes random
delays (e.g., sleep()) which are not captured when measur-
ing only CPU time. In a multi-user environment we can
not control the effect of other user processes on the analysis
times of ConTest and JPF.

5 Experimental Procedure

Our procedure for comparing the fault detection capabil-
ities of ConTest and JPF involved three main steps, which
are repeated for each example program:

1. Mutant generation: A subset of the ConMAn mutation
operators for concurrent Java are applied to an exam-
ple program to generate mutants. Each mutant is the
example program with one syntactic change. Table 3
provides details on the number mutant generated for
our example programs.

2. Analysis: The analysis step is conducted for both Con-
Test and JPF. We will now describe the analysis with
reference to examples of using ConTest. First, we an-
alyze the example program to determine the expected
observable output. The expected output could include
any output generated by the program or the analysis

ConMAn | Tickets- Linked- Buf- Account-
Op OrderSim List Writer | Program
MXT 0 0 0 0
MSP 0 0 3 1
RTXC 0 0 2 1
RNA 0 0 0 0
RJS 0 0 1 0
ASTK 0 0 0 0
RSTK 0 0 0 0
ASK 0 0 3 1
RSK 0 0 0 3
RSB 1 2 3 2
RVK 0 0 0 0
SHCR 1 0 0 0
SKCR 0 0 3 0
EXCR 0 0 0 0
SPCR 1 2 3 1
TOTAL 3 4 18 9

Table 3. The number of mutants generated for
each example program

technique. For example, with ConTest we include the
standard command-line output and the standard error
produced by any exceptions. After obtaining the ex-
pected output we analyze each mutant program and
compare the mutant output with the expected output.
An example of comparing the output of the mutant
with the original program would be to use the diff pro-
gram under Linux to compare the output of one ex-
ecution of a mutant using ConTest with the expected
output. It is possible that before comparing the out-
put it may have to be normalized. For example, with
ConTest the output was sorted to account for different
interleavings of the concurrent example programs. The
Analysis process for ConTest and JPF were conducted
sequential.

3. Merge and display of results: We compare the analysis
results of ConTest and JPF to determine which tool is
more effective and efficient. To determine which tech-
nique is more effective we compare the mutant scores
and the ease to kill kinds of mutants by each tech-
nique. To determine which technique is more efficient
we compare the cost to kill a mutant by each technique.

6 Experimental Outcome
6.1. Effectiveness

There are two possible outcomes for the effectiveness
of ConTest and JPF on our example programs. Both tools
might be alternatives and capable of finding the same mu-
tant faults or both tools might be complementary and be
beneficial to use in combination. To assess the effectiveness

ConTest JPF ConTest+JPF
Example No. of Mutants | Mutants | Mutant | Mutants | Mutant | Mutants | Mutant
Program Generated Killed Score Killed Score Killed Score
TicketsOrderSim 3 3 100% 3 100% 3 100%
LinkedList 4 2 50% 2 50% 2 50%
BufWriter 18 7 38.9% 9 50% 9 50%
AccountProgram 9 7 78% 5 56% 7 78%
TOTAL 34 19 56% 19 56% 21 62%

Table 4. The mutant scores of ConTest, JPF and ConTest+JPF for each example program

of ConTest and JPF at detecting faults we use the results of
the mutant score and ease to kill measurements.

Using the ConMAn operators we generated a total of 34
mutants for our four example programs. Both ConTest and
JPF were able to detect 19 mutants each (a mutant score of
56%). The mutant score for each of the four example pro-
grams is given in Table 4. The reason the mutant scores are
not higher is that some of the mutants may not be detectable
using the test inputs and properties used in the experiment
and some mutants may be equivalent. We have chosen to
leave in these mutants because the identification of equiv-
alent mutants is undecidable and estimating if a mutant is
equivalent for concurrent programs is very difficult. In Fig-
ure 4 we provide a more detailed view of how mutant faults
were detected by ConTest and JPF. Most of the faults in
both tools were detected by assertion violations. However
one interesting thing to note is that ConTest was able to de-
tect a deadlock that was not detected by JPE. The reason
there were not more deadlocks detected by both tools is that
the example programs were all small in size and typically
did not contain nested critical regions. Mutation of nested
critical regions is most likely to produce mutants that will
cause deadlock.

To determine if the distribution of mutants killed and not
killed by ConTest and JPF is the same we used a chi-squared
test. The null hypothesis for the test was: measurements
from ConTest and JPF are from the same distribution. The
test produced a low 2 value (0.06) indicating that at the
standard confidence level of 0.05 we can not reject the null
hypothesis. Although the percentage of mutant faults de-
tected by both tools is identical we have still not determined
if ConTest and JPF are alternative or complementary for our
example programs.

To assess if ConTest and JPF are alternatives or comple-
mentary we need to consider the ease to kill and the ability
of each tool to detect different types of mutants. Figure 5 is
a bar graph which shows the percentage of mutants gener-
ated by each ConMAn operator that are killed by ConTest
and JPF. The graph shows that there are some variations
in the ability of ConTest and JPF at the mutant operator
level. In particular ConTest found a higher percentage of
ASK and MSP mutants while JPF found a higher percent-

ConTest |

JPF

S

15 20 25 30 35
Number of Mutants

B Output Different
ONo Error Detected

o
[$)]
-
o

H Assertion Violation
ODeadlock Detected
E Tool Failure

Figure 4. Detailed mutant results

100%

90% -
80% -
70% -
60% -
50% -
40% -
30% -

Percentage of Mutants Killed

20% -
10% A

00/0 n
ASK MSP RJS RSB RSK RTXC SHCR SKCR SPCR
ConMAnN Mutation Operator

| mJavaPathFinder (JPF) DConTest |

Figure 5. Ease to kill each kind of mutant

age of RJS and RSB mutants. For all other types of mutants
both tools found the same percentage. Figure 6 provides an
analysis of the number of mutants detected by both tools,
one tool or neither tool. Of the 34 mutants, 17 (50%) were
detected by both tools, 2 (6%) were detected by ConTest

17
50%

2

6% 2
6%
B ConTest & JPF B ConTest
B JPF O Neither

Figure 6. Mutants killed by both, one or nei-
ther tool

only, 2 (6%) were detected by JPF only and 13 (38%) were
detected by neither tool. The mutant score of using Con-
Test and JPF in combination is 62%, 6% higher than using
either approach in isolation. The improved mutant score
overall seems to indicate that ConTest and JPF are com-
plementary and their combined usage is beneficial for the
example programs. However, when we consider the mutant
scores for each example program the two tools seem to be
alternatives. Table 4 shows the mutant scores for each pro-
gram. In both the LinkedList and the TicketsOrderSim pro-
grams the mutant scores are the same for ConTest and JPF
together and in isolation. For the AccountProgram, Con-
Test was able to detect 2 more mutants (ASK, MSP) and
for the BufWriter program, JPF was able to detect 2 more
mutants (RJS, RSB). Therefore, for each example program
the combined use of ConTest and JPF achieved the same
mutant score as the better of the two tools in isolation indi-
cating that for our example programs ConTest and JPF are
alternatives.

6.2. Efficiency

There are 3 possible outcomes with respect to the effi-
ciency of ConTest and JPF at detecting faults in our 4 ex-
ample programs. ConTest or JPF might be more efficient,
there may be no difference in the efficiency or there may
be a mixed result. To determine the efficiency outcome we
used the cost to kill a mutant. That is, for all mutant faults
detected by both ConTest and JPF we compared the real
time to detect a mutant for each tool.

To visually compare the cost to kill a mutant we present
side-by-side box plots in Figure 7. For each box plot the
middle line in the box indicates the median value and the

+
6 ;
X +
5] +
[}
°
c
3
o 41
)
£
E 3
©
[}
0:2_
1
0 T 1
JPF ConTest

Figure 7. Box Plots of cost to kill mutants for
ConTest and JPF

ends of the box are the first and third quartile. From the box
plots it appears that ConTest is more efficient at detecting a
fault when both techniques are capable of finding the fault.
Specifically, ConTest has a smaller median and smaller first
and third quartiles.

Based on the box-plot we tested the proposition that the
cost to kill a mutant using JPF was less than using ConTest.
We tested the proposition using a 1-tailed paired t-test>. We
were able to conclude that at the 0.05 level our proposition
was not correct (p-value = 0.0085).

In summary the results of our box plot and paired t-test
conclude that ConTest is more efficient than JPF for our ex-
ample programs.

7 Threats to Validity

There are a number of issues of validity to be consid-
ered: internal validity, external validity, construct validity,
and conclusion validity[23].

Internal validity. Threats to internal validity are
“...influences that can affect the independent variable
with respect to causality, without the researcher’s knowl-
edge” [23]. There is a clear history regarding the causal
relationship between fault detection tools (the independent
variable) and the number of faults detected (the dependent
variable). This history limits the possibility of threats to

3In order to perform a paired t-test an important assumption is that the
difference between the test data must by normally distributed. That is, the
difference in detection times for each mutant using ConTest and JPF must
be normal. We used the Shapiro-Wilk test to assess normality.

internal validity.

External validity. Threats to external validity are
“...conditions that limit our ability to generalize the results
of our experiment...” [23]. In our experiment there are three
major threats to external validity. First, a threat to exter-
nal validity is possible if the mutant faults used do not ad-
equately represent real faults for the programs under ex-
periment. We ensure representative mutants by using the
ConMAn mutation operators which are based on an exist-
ing fault model [14]. Second, a threat to validity is possible
if the software being experimented on is not representative
of the software to which we want to generalize. In our ex-
periment the small set of programs are not representative of
all concurrent Java applications and therefore our results do
not generalize well. Third, an additional threat to the valid-
ity is that the configurations of JPF and ConTest used in our
experiment limit our ability to generalize to each approach.
For example, JPF can be customized with other search al-
gorithms and scheduling strategies that may affect both its
effectiveness and efficiency with respect to fault detection.
In a recent study, Dwyer, Person, and Elbaum concluded
that the search order used in a tool can influence the effec-
tiveness of the analysis [10].

Construct validity. Threats to construct validity are
“...concerned with the relation between theory and prac-
tice” [23] and “...refer to the extent to which the experimen-
tal setting actually reflects the construct under study” [23].
There is a potential for threats to construct validity if Con-
Test and JPF are not used in the way in which they are in-
tended. We discussed this issue briefly when we outlined
the importance of selecting tools with similar goals that are
applied to the same kind of applications. Ensuring this is
the case limits the need to modify how the tools are used.

Conclusion validity. Threats to conclusion validity are
“...concerned with issues that affect the ability to draw the
correct conclusion about relations between the treatment
and the outcome of an experiment” [23]. In order to ensure
conclusion validity in our experiment we need to have con-
fidence that our measurements are correct and the statistical
tests are used correctly. First, we ensure that our measure-
ments are recorded correctly by automating the collection
of measurements using our ExXMAn framework. Second, in
order to ensure that the statistical tests used to evaluate the
measurements allow for correct conclusions we have done
our best to ensure that none of the statistical test assump-
tions are violated.

8. Related Work

Several empirical studies have focused on the ability
of testing and model checking to find faults. For exam-
ple, a case study involving testing and model checking was
conducted by Chockler et al., who compared ConTest and

the ExpliSAT model checker using two real programs at
IBM [6]. The results of the case study focused on the usage
and the comprehensiveness of the results of each tool. Over-
all, ConTest was found to be easier to use but was not as a
comprehensive in identify potential problems in the soft-
ware. The comprehensiveness considered by Chockler et
al. is a similar measurement to our effectiveness. One dif-
ference between this research and our own is that Chockler
et al. do not focus on the efficiency of each tool.

Brat el al. conducted a controlled experiment involv-
ing traditional testing, runtime analysis, model checking
and static analysis [5]. The experiment involved human
participants using the different techniques to detect 12
seeded faults in NASA’s Martian Rover software. The
kinds of faults included deadlock, data races and other non-
concurrency faults. Although no statistically significant
conclusions were drawn from the experiment the authors
stated that the results “...confirmed our belief that advanced
tools can out-perform testing when trying to locate concur-
rency errors” [5]. We achieved a different outcome in our
experiment that compared the same model checker (JPF)
with testing. We believe the primary difference for our re-
sults is the kind of testing used. On the one hand, we used
testing with ConTest, which is a sophisticated tool that au-
tomatically seeds delays into Java byte code to explore dif-
ferent interleavings. On the other hand, Brat el al. used
standard black box system testing. Exploration of different
interleavings was not automatic — instead the testing relied
on native scheduling differences by using different operat-
ing systems with different Java Virtual Machines. Further-
more, manual instrumentation of delays as well as thread
priorities were used.

Our work differs from this previous work in that we
are able to draw statistically significant conclusions regard-
ing both the effectiveness and efficiency of testing (with
ConTest) and model checking (with JPF) at finding mutant
faults. Although the previous comparisons did not have sta-
tistically significant quantitative results it is important to ac-
knowledge their contributions to the community and to our
own work since we build upon these previous studies.

9. Conclusion

We have presented a controlled experiment that uses
program mutation to compare the fault detection capabili-
ties of testing with ConTest and model checking with JPF.
The experimental procedure is automated using our ExXMAn
framework and the use of mutation with concurrent Java
is supported by our ConMAn operators. The experiment
demonstrates the feasibility of program mutation as an aid
to understanding testing and model checking of concurrent
software.

Our experiment has tried to better understand the effec-

tiveness and efficiency of ConTest and JPF at detecting mu-
tant faults in our example programs. With respect to effec-
tiveness, we conclude that ConTest and JPF are most likely
alternative fault detection techniques rather than comple-
mentary. However, the ease to kill measurements show that
both tools do not detect all of the same kinds of mutants
equally. With other example programs there maybe a poten-
tial to use ConTest and JPF in a complementary way. With
respect to efficiency, we conclude that ConTest is more effi-
cient and can kill a mutant in less time on average than JPF
for our example programs.

It is important to be clear that the results of our exper-
iments do not generalize to all concurrent Java software.
The example programs are relatively small in size and do
not contain any of the new J2SE 5.0 concurrency mecha-
nisms. However, the results still provide insight into the re-
lationship between testing with ConTest and model check-
ing with JPF and the usefulness of each in detecting bugs
and improving the quality of concurrent software. In order
to achieve stronger and more general conclusions we need
to conduct further experiments. We need to compare testing
with ConTest and model checking with JPF using larger sets
of example programs and differemt configurations of each
tool in order to build a strong body of empirical results.

References
[1] Java PathFinder website. Web page: http://
javapathfinder.sourceforge.net/.
[2] J. H. Andrews, L. C. Briand, and Y. Labiche. Is muta-

tion an appropriate tool for testing experiments? In Proc.

of 27" International Conference on Software Engineering

(ICSE 2005), pages 402-411, May 2005.

J. S. Bradbury, J. R. Cordy, and J. Dingel. ExMAn: A

generic and customizable framework for experimental mu-

tation analysis. In Proc. of the 2™* Workshop on Mutation

Analysis (Mutation 2006), pages 57-62, Nov. 2006.

J. S. Bradbury, J. R. Cordy, and J. Dingel. Mutation oper-

ators for concurrent Java (J2SE 5.0). In Proc. of the ond

Workshop on Mutation Analysis (Mutation 2006), pages 83—

92, Nov. 2006.

[5] G. Brat, D. Drusinsky, D. Giannakopoulou, A. Goldberg,

K. Havelund, M. Lowry, C. Pasareanu, A. Venet, W. Visser,

and R. Washington. Experimental evaluation of verifica-

tion and validation tools on Martian Rover software. Formal

Methods in Systems Design Journal, 25(2-3):167-198, Sept.

2004.

H. Chockler, E. Farchi, Z. Glazberg, B. Godlin, Y. Nir-

Buchbinder, and 1. Rabinovitz. Formal verification of con-

current software: Two case studies. In Proc. of the Workshop

on Parallel and Distributed Systems: Testing and Debugging

(PADTAD-1V), pages 11-21, Jul. 2006.

[7] J.-D. Choi and H. Srinivasan. Deterministic replay of Java
multithreaded applications. In Proc. of the SIGMETRICS
Symposium on Parallel and Distributed Tools (SPDT 98),
pages 48-59. ACM Press, 1998.

3

—

[4

—

[6

—_

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

H. Do and G. Rothermel. A controlled experiment assess-
ing test case prioritization techniques via mutation faults. In
Proc. of the 21°" IEEE International Conference on Soft-
ware Maintenance (ICSM 2005), pages 411-420, 2005.

M. B. Dwyer, S. Elbaum, S. Person, and R. Purandare. Par-
allel randomized state-space search. In Proc. of the 29"
International Conference on Software Engineering (ICSE
2007), pages 3—12, May 2007.

M. B. Dwyer, S. Person, and S. Elbaum. Controlling fac-
tors in evaluating path-sensitive error detection techniques.
In Proc. of the 14" ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (SIGSOFT
"06/FSE-14), pages 92-104. ACM Press, Nov. 2006.

O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur. Mul-
tithreaded Java program test generation. IBM Systems Jour-
nal, 41(1):111-125, 2002.

Y. Eytani, E. Farchi, and Y. Ben-Asher. Heuristics for find-
ing concurrent bugs. In Proc. of the 1°* International Work-
shop on Parallel and Distributed Systems: Testing and De-
bugging (PADTAD 2003), Apr. 2003.

Y. Eytani and S. Ur. Compiling a benchmark of documented
multi-threaded bugs. In Proc. of the 2"? International Work-
shop on Parallel and Distributed Systems: Testing and De-
bugging (PADTAD 2004), Apr. 2004.

E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and
how to test them. In Proc. of the 1°" International Workshop
on Parallel and Distributed Systems: Testing and Debugging
(PADTAD 2003), Apr. 2003.

K. Havelund and T. Pressburger. Model checking Java pro-
grams using Java PathFinder. International Journal on Soft-
ware Tools for Technology Transfer (STTT), 2(4), Apr. 2000.
Special issue containing selected submissions for the 4"
SPIN Workshop.

D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN
Not., 39(12):92-106, 2004.

B. Long, D. Hoffman, and P. Strooper. Tool support for
testing concurrent Java components. IEEE Trans. on Soft.
Eng., 29(6):555-566, Jun. 2003.

A. J. Offutt. Investigations of the software testing coupling
effect. ACM Trans. Softw. Eng. Methodol., 1(1):5-20, 1992.
Robby, M. B. Dwyer, and J. Hatcliff. Bogor: an exten-
sible and highly-modular software model checking frame-
work. In Proc. of the gth European Software Engineering
Conference held jointly with the 11*" ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineer-
ing (ESEC/FSE-11), pages 267-276. ACM Press, 2003.

J. Rushby. Disappearing formal methods. In Proc. of the
High-Assurance Systems Eng. Symp. (HASE’00), pages 95—
96, Nov. 2000.

H. Sutter and J. Larus. Software and the concurrency revo-
lution. Queue, 3(7):54-62, 2005.

W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda.
Model checking programs. Automated Software Engineer-
ing Journal, 10(2):203-232, Apr. 2003.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell,
and A. Wesslén. Experimentation in Software Engineering:
An Introduction. Software Engineering. Kluwer Academic
Publishers, 2000.

