
Mutation Operators for Concurrent Java (J2SE 5.0)1

Jeremy S. Bradbury, James R. Cordy, Juergen Dingel
School of Computing, Queen’s University

Kingston, Ontario, Canada
{bradbury, cordy, dingel}@cs.queensu.ca

Abstract

The current version of Java (J2SE 5.0) provides a high
level of support for concurreny in comparison to previous
versions. For example, programmers using J2SE 5.0 can
now achieve synchronization between concurrent threads
using explicit locks, semaphores, barriers, latches, or ex-
changers. Furthermore, built-in concurrent data structures
such as hash maps and queues, built-in thread pools, and
atomic variables are all at the programmer’s disposal.

We are interested in using mutation analysis to evalu-
ate, compare and improve quality assurance techniques for
concurrent Java programs. Furthermore, we believe that
the current set of method mutation operators and class op-
erators proposed in the literature are insufficient to evaluate
concurrent Java source code because the majority of oper-
ators do not directly mutate the portions of code responsi-
ble for synchronization. In this paper we will provide an
overview of concurrency constructs in J2SE 5.0 and a new
set of concurrent mutation operators. We will justify the op-
erators by categorizing them with an existing bug pattern
taxonomy for concurrency. Most of the bug patterns in the
taxonomy have been used to classify real bugs in a bench-
mark of concurrent Java applications.

1 Introduction

As a result of advances in hardware technology (e.g.
multi-core processors) a number of practioners and re-
searchers have advocated the need for concurrent software
development [14]. Unfortunately, developing correct con-
current code is much more difficult than developing cor-
rect sequential code. The difficulty in programming con-
currently is due to the many different, possibly unexpected,
executions of the program. Reasoning about all possible in-
terleavings in a program and ensuring that interleavings do

1This work is supported by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC).

not contain bugs is non-trivial. Edward A. Lee discussed
concurrency bugs in a recent paper [9]:

“I conjecture that most multithreaded-general
purpose applications are so full of concurrency
bugs that - as multicore architectures become
commonplace - these bugs will begin to show up
as system failures.”

The presence of bugs in concurrent code can have seri-
ous consequences including deadlock, starvation, livelock,
dormancy, and incoincidence (calls occurring at the wrong
time) [11].

We are interested in using mutation to evaluate, com-
pare, and improve quality assurance techniques for concur-
rent Java. The use of mutation with Java has been proposed
in previous work – for instance the MuJava tool [13]. Mu-
Java includes two general types of mutation operators for
Java: method level operators [7, 13] and class level opera-
tors [12]. The method level operators include modifications
to statements (e.g., statement deletion) and modifications to
operands and operators in expressions (e.g., arithmetic op-
erator insertion). The class level operators are related to
inheritance (e.g., super keyword deletion), polymorphism
(e.g., cast type change), and Java-specifc features. In gen-
eral, the method and class level mutation operators do not
directly mutate the synchronization portions of the source
code in Java (J2SE 5.0) that handle concurrency. Further-
more, we conjecture that additional operators are needed in
order to provide a more comprehensive set of operators that
can truly reflect the types of bugs that often occur in con-
current programs. In this paper we present a set of concur-
rent operators for Java (J2SE 5.0). We believe our new set
of concurrency mutation operators used in conjunction with
existing method and class level operators provide a more
comprehensive set of mutation metrics for the comparison
and improvement of quality assurance testing and analysis
for concurrency.

In the next section (Section 2) we will provide an
overview of the support for concurrency in Java (J2SE 5.0).
In Section 3 we provide an overview of real concurrency

bug patterns which we will use to classify our concurrency
mutation operators and demonstrate that the set of opera-
tors is both comprehensive and representative of real bugs.
The set of mutation operators for concurrency and the bug
pattern classification are presented in Section 4. Finally in
Section 5 we provide our conclusions and an overview of
our future work on using our new mutation operators.

2 Java Concurrency

Threads. Java concurrency is built around the notion of
multi-threaded programs. The Java documentation defines a
thread as “...a thread of execution in a program.”2 A typical
thread is created and then started using the start() method
and will be terminated once it has finished running. While a
thread is alive it can often alternate between being runnable
and not runnable. A number of methods exist that can affect
the status of a thread:

• sleep(): will cause the current thread to become not
runnable for a certain amount of time.

• yield(): will cause the current thread that is running to
pause (temporarily).

• join(): will cause the caller thread to wait for a target
thread to terminate.

• wait(): will cause the caller thread to wait until a condi-
tion is satisfied. Another thread notifies the caller that
a condition is satisfied using the notify() or notifyAll()
method.

Synchronization. Prior to J2SE 5.0, Java provided sup-
port for concurrency primarily through the use of the syn-
chronized keyword. Java supports both synchronization
methods and synchronization blocks. Additionally, syn-
chronization blocks can be used in combination with im-
plicit monitor locks.

Other Concurrency Mechanisms. In J2SE 5.0, addi-
tional mechanisms to support concurrency were added as
part of java.util.concurrent:

• Explicit Lock: Provides the same semantics as the im-
plicit monitor locks but provides additional functional-
ity such as timeouts during lock acquisition.

• Semaphore: Maintains a set of permits that restrict the
number of threads accessing a resource. A Semaphore
with one permit acts the same as a Lock.

• Latch: Allows threads from a set to wait until other
threads complete a set of operations.

• Barrier: A point at which threads from a set wait until
all other threads reach the point.

• Exchanger: Allows for the exchange of objects be-
tween two threads at a given synchronization point.

2java.lang.Thread documentation

Built-in Concurrent Data Structures. To reduce the
overhead of developing concurrent data structures, J2SE 5.0
provides a number of collection types including Concurren-
tHashMap and five different BlockingQueues.

Built-in Thread Pools. J2SE 5.0 provides a built-in
FixedThreadPool and an unbounded CachedThreadPool.

Atomic Variables. The java.util.concurrent.atomic
package includes a number of atomic variables that can be
used in place of synchronization: AtomicInteger, Atom-
icIntegerArray, AtomicLong, AtomicLongArray, Atom-
icBoolean, AtomicReference and AtomicReferenceArray.
Each atomic variable type contains new methods to support
concurrency. For example, AtomicInteger contains meth-
ods such as addAndGet(), getAndSet() and others.

3 Bug Patterns for Java Concurrency

Farchi, Nir, and Ur have developed a bug pattern taxon-
omy for Java concurrency [6]. The bug patterns are based
on common mistakes programmers make when developing
concurrent code in practice. Furthermore, the taxonomy has
been expanded and used to classify bugs in an existing pub-
lic domain concurrency benchmark maintained by IBM Re-
search [5]. The benchmark contains 40 programs ranging
in size from 57 to 17000 loc. Programs in the benchmark
are from a variety of sources including student created pro-
grams, tool developer programs, open source programs, and
a commercial product. In our attempt to develop a compre-
hensive set of concurrency mutation operators we will later
classify our operators with respect to the bug patterns taxon-
omy. Since this bug pattern taxonomy was developed prior
to J2SE 5.0 we have had to add some additional patterns that
occur in concurrency constructs not available at the time the
taxonomy was proposed. We distinguish between the origi-
nal bug patterns(*), the added bug patterns also used in the
benchmark classification(**) and new patterns that we are
including (+):

• Nonatomic operations assumed to be atomic bug
pattern.* “...an operation that “looks” like one oper-
ation in one programmer model (e.g., the source code
level of the programming language). but actually con-
sists of several unprotected operations at the lower ab-
straction levels” [6]. In this paper we also include
nonatomic floating point operations** in this pattern.

• Two-state access bug pattern.* “Sometimes a se-
quence of operations needs to be protected but the pro-
grammer wrongly assumes that separately protecting
each operation is enough” [6].

• Wrong lock or no lock bug pattern.* “A code seg-
ment is protected by a lock but other threads do not
obtain the same lock instance when executing. Either
these other threads do not obtain a lock at all or they

obtain some lock other than the one used by the code
segment” [6].

• Double-checked lock bug pattern.* “When an object
is initialized, the thread local copy of the objects field
is initialized but not all object fields are necessarily
written to the heap. This might cause the object to be
partially initialized while its reference is not null” [6].

• The sleep() bug pattern.* “The programmer assumes
that a child thread should be faster than the parent
thread in order that its results be available to the par-
ent thread when it decides to advance. Therefore, the
programmer sometimes adds an ‘appropriate’ sleep()
to the parent thread. However, the parent thread may
still be quicker in some environment. The correct so-
lution would be for the parent thread to use the join()
method to explicitly wait for the child thread” [6].

• Losing a notify bug pattern.* “If a notify() is exe-
cuted before its corresponding wait(), the notify() has
no effect and is “lost” ... the programmer implicitly as-
sumes that the wait() operation will occur before any
of the corresponding notfiy() operations” [6].

• Other missing or nonexistent signals.+ This pattern
generalizes the losing a notify bug pattern to all other
signals. For example, at a barrier the await() method
has to be called by a set number of threads before the
program can proceed. If an await() from one thread
never occurs then all of threads at the barrier may be
stuck waiting.

• Notify instead of notify all bug pattern.** If a no-
tify() is executed instead of notifyAll() then threads
with some of its corresponding wait() calls will not be
notified [10].

• A “blocking” critical section bug pattern.* “A
thread is assumed to eventually return control but it
never does” [6].

• The orphaned thread bug pattern.* “If the master
thread terminates abnormally, the remaining threads
may continue to run, awaiting more input to the queue
and causing the system to hang” [6].

• The interference bug pattern.** A pattern in which
“...two or more concurrent threads access a shared
variable and when at least one access is a write,
and the threads use no explicit mechanism to prevent
the access from being simultaneous.” [11]. The in-
terference bug pattern can also be generalized from
classic data race interference to include high level
data races** which deal “...with accesses to sets of
fields which are related and should be accessed atom-
ically” [1].

• The deadlock (deadly embrace) bug pattern.** “...a
situation where two or more processes are unable to
proceed because each is waiting for one of the others
to do something in a deadlock cycle ... For example,

this occurs when a thread holds a lock that another
thread desires and vice-versa” [11].

• Starvation bug pattern.+ This bug occurs when their
is a failure to “...allocate CPU time to a thread. This
may be due to scheduling policies...” [8]. For example,
an unfair lock acquisition scheme might cause a thread
never to be scheduled.

• Resource exhaustion bug pattern.+ “A group of
threads together hold all of a finite number of re-
sources. One of them needs additional resources but
no other thread gives one up” [8].

• Incorrect count initialization bug pattern.+ This
pattern occurs when there is an incorrect initialization
in a barrier for the number of parties that must be wait-
ing for the barrier to trip, or an incorrect initialization
of the number of threads required to complete some
action in a latch, or an incorrect initialization of the
number of permits in a semaphore.

4 Concurrent Mutation Operators

We propose five categories of mutation operators for
concurrent Java: modify parameters of concurrent methods,
modify the occurrence of concurrency method calls (remov-
ing, replacing and exchanging), modify keywords (addition
and removal), switch concurrent objects, and modify critical
regions (shift, expand, shrink and split). The relationship
between these general operator categories and the concur-
rency mechanisms provided in J2SE 5.0 is presented in Ta-
ble 1 – which demonstrates that the operators provide cov-
erage over the J2SE 5.0 concurrency mechanisms.

A complete list of the operators we will be presenting
in this section is provided in Table 2. The mutant oper-
ators are designed specifically to represent mistakes that
programmers may make when implementing concurrency.
Therefore, many of the operators are specific only to con-
currency methods, objects and keywords. We have tried to
use context and knowledge about Java concurrency to make
the operators as specific as possible in order to make con-
currency mutation analysis more feasible by reducing the
total number of mutants produced.

Readers familiar with method and class level mutation
operators will notice that some of our mutation operators
are special cases of existing mutation operators while oth-
ers are new operators that have not been previously pro-
posed. Other related work from the concurrency bug de-
tection community includes a set of 18 hand-created con-
currency mutants [10] for a previous version of Java that
did not contain many of the concurrency mechanisms avail-
able in J2SE 5.0. We have compared our comprehensive
set of operators with this work and found that our operators
in combination with the method and class level operators
subsume the manual mutants used in the previous work.

Java (J2SE 5.0) Concurrency Mutation Operator
Categories Th

re
ad

s

Sy
nc

hr
on

iz
at

io
n

m
et

ho
ds

Sy

nc
hr

on
iz

at
io

n
st

at
em

en
ts

Sy

nc
hr

on
iz

at
io

n
w

ith

im
pl

ic
it

m
on

ito
r l

oc
ks

Ex
pl

ic
it

lo
ck

s

Se
m

ap
ho

re
s

Ba
rri

er
s

La
tc

he
s

Ex
ch

an
ge

rs

Bu
ilt

-in
 c

on
cu

rre
nt

 d
at

a
st

ru
ct

ur
es

 (e
.g

. q
ue

ue
s)

Bu
ilt

-in
 th

re
ad

 p
oo

ls

At
om

ic
 v

ar
ia

bl
es

(e

.g
. L

on
gI

nt
eg

er
)

Modify Parameters of Concurrent Methods ! – ! ! ! ! ! ! – – – –
Modify the Occurrence of Concurrency Method Calls ! – – – ! ! ! ! – – – !
Modify Keyword – ! ! ! ! – – – – – – –
Switch Concurrent Objects – – – – ! ! ! ! ! ! ! –
Modify Concurrent Region – ! ! ! ! ! – – – – – –

Table 1. The relationship between new mutation operators for concurrency and the concurrency
features provided by J2SE 5.0

Operator
Category

Concurrency Mutation Operators
for Java (J2SE 5.0)
MXT – Modify Method-X Time
(wait(), sleep(), join(), and await() method calls)
MSP - Modify Synchronized Block Parameter
ESP - Exchange Synchronized Block Parameters
MSF - Modify Semaphore Fairness
MXC - Modify Permit Count in Semaphore and Modify
Thread Count in Latches and Barriers

M
od

ify
 P

ar
am

et
er

s
of

C

on
cu

rr
en

t M
et

ho
ds

MBR - Modify Barrier Runnable Parameter
RTXC – Remove Thread Method-X Call
(wait(), join(), sleep(), yield(), notify(), notifyAll()
Methods)
RCXC – Remove Concurrency Mechanism Method-X
Call (methods in Locks, Semaphores, Latches,
Barriers, etc.)
RNA - Replace NotifyAll() with Notify()
RJS - Replace Join() with Sleep()
ELPA - Exchange Lock/Permit Acquisition

M
od

ify
 t

he
 O

cc
ur

re
nc

e
of

C

on
cu

rr
en

cy
 M

et
ho

d

C
al

ls

EAN - Exchange Atomic Call with Non-Atomic
ASTK – Add Static Keyword to Method
RSTK – Remove Static Keyword from Method
RSK - Remove Synchronized Keyword from Method
RSB - Remove Synchronized Block
RVK - Remove Volatile Keyword

M
od

ify
 K

ey
w

or
d

RFU - Remove Finally Around Unlock
RXO - Replace One Concurrency Mechanism-X with
Another (Locks, Semaphores, etc.)

Sw
itc

h
C

on
cu

r-
re

nt

O
bj

ec
ts

EELO - Exchange Explicit Lock Objects
SHCR - Shift Critical Region
SKCR - Shrink Critical Region
EXCR – Expand Critical Region M

od
ify

C

rit
ic

al

R
eg

io
n

SPCR - Split Critical Region

Table 2. Concurrency mutation operators for
Java

4.1 Modify parameters of concurrent
method

These operators involve modifying the parameters of
methods for thread and concurrency classes. Some of the

method level mutation operators that modify operands are
similar to the operators proposed here.

4.1.1 MXT - Modify Method-X Timeout

The MXT operator can be applied to the wait(), sleep(),
and join() method calls (introduced in Section 2) that
include an optional timeout parameter. For example, in
Java a call to wait() with the optional timeout param-
eter will cause a thread to no longer be runnable until
a condition is satisfied or a timeout has occurred. The
MXT replaces the timeout parameter, t, of the wait()
method by some appropriately chosen fraction or mul-
tiple of t (e.g., t/2 and t ∗ 2). We could replace the
timeout parameter by a variable of an equivalent type
however since we know that the parameter represents a
time value it is just as meaningful to mutate the method
to both increase and decrease the time by a factor of 2.

Original Code: MXT Mutant:
long t ime = 10000 ;
t r y {

w a i t (t ime) ;
} ca tch . . .

long t ime = 10000 ;
t r y {

w a i t (t ime ∗2) ;
/ / or t i m e / 2

} ca tch . . .

The MXT operator with the wait() method is most likely
to result in an interference bug or a data race. The MXT
operator with the sleep() and join() methods is most likely
to result in the sleep() bug pattern. For example, in a sit-
uation where a sleep() or join() is used by a caller thread
to wait for another thread, reducing the time may cause the
caller thread to not wait long enough for the other thread to
complete.

The MXT operator can also be applied to the optional
timeout parameter in await() method calls. Both barriers
and latches have an await() method. In barriers the await()

method is used to cause a thread to wait until all threads
have reached the barrier. In latches the await() method is
used by threads to wait until the latch has finished counting
down, that is until all operations in a set are complete. The
MXT operator when applied to an await() method call will
most likely result in an interference bug.

4.1.2 MSP - Modify Synchronized Block Parameter

Common parameters for a synchronized block include the
this keyword, indicating that synchronization occurs with
respect to the instance object of the class, and implicit mon-
itor objects. If the keyword this or an object is used as a
parameter for a synchronized block we can replace the pa-
rameter by another object or the keyword this. For example:

Original Code:
p r i v a t e O b j e c t l o c k 1 = new O b j e c t () ;
p r i v a t e O b j e c t l o c k 2 = new O b j e c t () ;
. . . .
p u b l i c vo id methodA () {

synchronized (l o c k 1) { . . . }
}
. . .

MSP Mutant:
p r i v a t e O b j e c t l o c k 1 = new O b j e c t () ;
p r i v a t e O b j e c t l o c k 2 = new O b j e c t () ;
. . .
p u b l i c vo id methodA () {

synchronized (l o c k 2) { . . . }
}
. . .

Another MSP Mutant:
p r i v a t e O b j e c t l o c k 1 = new O b j e c t () ;
p r i v a t e O b j e c t l o c k 2 = new O b j e c t () ;
. . .
p u b l i c vo id methodA () {

synchronized (t h i s) { . . . }
}
. . .

The MSP operator will result in the wrong lock bug pattern.

4.1.3 ESP - Exchange Synchronized Block Parameters

If a critical region is guarded by multiple synchronized
blocks with implicit monitor locks the ESP operator ex-
changes two adjacent lock objects. For example:

Original Code:
p r i v a t e O b j e c t l o c k 1 = new O b j e c t () ;
p r i v a t e O b j e c t l o c k 2 = new O b j e c t () ;
. . . .
p u b l i c vo id methodA () {

synchronized (l o c k 1) {
synchronized (l o c k 2) { . . . }

}
}
. . .
p u b l i c vo id methodB () {

synchronized (l o c k 1) {
synchronized (l o c k 2) { . . . }

}
}
. . .

ESP Mutant:
p r i v a t e O b j e c t l o c k 1 = new O b j e c t () ;
p r i v a t e O b j e c t l o c k 2 = new O b j e c t () ;
. . . .
p u b l i c vo id methodA () {

synchronized (l o c k 2) {
synchronized (l o c k 1) { . . . }

}
}
. . .
p u b l i c vo id methodB () {

synchronized (l o c k 1) {
synchronized (l o c k 2) { . . . }

}
}
. . .

The ESP mutation operator can result in a wrong lock bug
because exchanging two adjacent locks will cause the locks
to be acquired at incorrect times for incorrect critical re-
gions. The ESP operator can also cause a classic deadlock
(via deadly embrace) bug to occur as is the case in the above
example.

4.1.4 MSF - Modify Semaphore Fairness

Recall in Section 2 that a semaphore maintains a set of
permits for accessing a resource. In the constructor of a
Semaphore there is an optional parameter for a boolean fair-
ness setting. When the fairness setting is not used the de-
fault fairness value is false which allows for unfair permit
acquisition. If the fairness parameter is a constant then the
MSF operator is a special case of the Constant Replacement
(CRP) method level operator and replaces a true value with
false and a false value with true. In the case that a boolean
variable is used as a parameter we simply negate it.

A potential consequence of expecting a semaphore to be
fair when in fact it is not is that there is a potential for star-
vation because no guarantees about permit acquisition or-
dering can be given. In fact, when a semaphore is unfair
any thread that invokes the Semaphore’s acquire() method
to obtain a permit may receive one prior to an already wait-
ing thread - this is known as barging3.

Original Code:
i n t p e r m i t s = 1 0 ;
p r i v a t e f i n a l Semaphore sem

= new Semaphore (p e r m i t s , t rue) ;
. . .

MSF Mutant:
i n t p e r m i t s = 1 0 ;
p r i v a t e f i n a l Semaphore sem

= new Semaphore (p e r m i t s , f a l s e) ;
. . .

3java.util.concurrent documentation

4.1.5 MXC - Modify Concurrency Mechanism-X
Count

The MXC operator is applied to parameters in three of
Java’s concurrency mechanisms: Semaphores, Latches, and
Barriers. A latch allows a set of threads to countdown a
set of operations and a barrier allows a set of threads to
wait at a point until a number of threads reach that point.
The count being modified in Semaphores is the set of per-
mits, and in Latches and Barriers it is the number of threads.
We will next provide an example of the MXC operator for
Semaphores. For examples involving Latches and Barriers
see our technical report [3].

The constructor of the Semaphore class has a parame-
ter that refers to the maximum number of available permits
that are used to limit the number of the threads accessing
the shared resource. Access is acquired using the acquire()
method and released using the release() method. Both the
acquire() and release() method calls have optional count pa-
rameters referring to the number of permits being acquired
or released. The MXC operator modifies the number of per-
mits, p, in calls to these methods by decrementing (p--) and
incrementing (p++) it by 1. For example:

Original Code:
i n t p e r m i t s = 1 0 ;
p r i v a t e f i n a l Semaphore sem

= new Semaphore (p e r m i t s , t rue) ;
. . .

MSC Mutant:
i n t p e r m i t s = 1 0 ;
p r i v a t e f i n a l Semaphore sem

= new Semaphore (p e r m i t s−−,t rue) ;
. . .

A potential bug that can occur from modifying permit
counts in Semaphores or number of threads in Latches and
Barriers is resource exhaustion. In the above example if the
total number of permits had been one then decrementing the
number of permits by 1 would have lead to a situation where
no permits were ever available. Another bug could occur
if we increased the number of permits acquired by the ac-
quire() method but did not increase the count in the release()
method which could eventually exhaust the resources. In
this case we could end up with a blocking critical section
bug once all of the permits were held but not released.

4.1.6 MBR - Modify Barrier Runnable Parameter

The CyclicBarrier constructor has a parameter that is an op-
tional runnable thread that can happen after all the threads
complete and reach the barrier. The MBR operator modifies
the runnable thread parameter by removing it if it is present.
This is a special case of the method level mutation operator,
statement deletion (SDL). For example:

Original Code:
i n t i =10;
C y c l i c B a r r i e r b a r r i e r 1

= new C y c l i c B a r r i e r (i ,
new Runnable () {

p u b l i c vo id run () {
}

}) ;
. . .

MBR Mutant:
i n t i =10;
C y c l i c B a r r i e r b a r r i e r 1

= new C y c l i c B a r r i e r (i) ;
. . .

An example of a bug caused by the MBR operator is
missed or nonexistent signals if some signal calls were
present in the runnable thread.

4.2 Modify the occurrence of concurrency
method calls: remove, replace, and
exchange

This class of operators is primarily interested in modi-
fying calls to thread methods and methods of concurrency
mechanism classes. Examples of modifications include re-
moval of a method call and replacement or exchange of a
method call with a different but similar method call. The
operators that remove method calls are special cases of the
method level operator: Statement Deletion (SDL).

4.2.1 RTXC - Remove Thread Method-X Call

The RTXC operator removes calls to the following meth-
ods: wait(), join(), sleep(), yield(), notify(), and notifyAll().
Removing the wait() method can cause potential interfer-
ence, removing the join() and sleep() methods can cause
the sleep() bug pattern, and removing the notifiy() and noti-
fyAll() method calls is an example of losing a notify bug.
We will now provide an example of the RTXC operator
used to remove a wait() method call.

Original Code: RTXC Mutant:
t r y {

w a i t () ;
} ca tch . . .

t r y {
/ / removed
/ / w a i t () ;

} ca tch . . .

4.2.2 RCXC - Remove Concurrency Mechanism
Method-X Call

The RCXC operator can be applied to the following con-
currency mechanisms: Locks (lock(), unlock()), Condition
(signal(), signalAll()), Semaphore (acquire(), release()),
Latch(countDown(), and ExecutorService(e.g., submit()).
For details on each method as well as the application of the
RCXC operator to each method see [3]. In this paper we
will only discuss the RCXC operator when using locks. In

a ReentrantLock or a ReentrantReadWriteLock a call to the
unlock() method attempts to release the lock. The RCXC
operator removes this call thus the lock is not released. This
is an example of a blocking critical section bug. For exam-
ple:

Original Code: RCXC Mutant:
p r i v a t e Lock l o c k 1

= new R e e n t r a n t L o c k () ;
. . .
l o c k 1 . l o c k () ;
t r y {

. . .
} f i n a l l y {

l o c k 1 . un loc k () ;
}
. . .

p r i v a t e Lock l o c k 1
= new R e e n t r a n t L o c k () ;

. . .
l o c k 1 . l o c k () ;
t r y {

. . .
} f i n a l l y {

/ / removed l o c k 1 . u n l o c k () ;
}
. . .

4.2.3 RNA - Replace NotifyAll() with Notfiy()
RJS - Replace Join() with Sleep()

The RNA operator replaces a notifyAll() with a notify() and
is an example of the notify instead of notify all bug pattern.

Original Code: RNA Mutant:
. . . n o t i f y A l l () ; n o t i f y () ; . . .

The RJS operator replaces a join() with a sleep() and is an
example of the sleep() bug pattern.

Original Code: RJS Mutant:
. . . j o i n () ; s l e e p (1 0 0 0 0) ; . . .

4.2.4 ELPA - Exchange Lock/Permit Acquistion

In a Semaphore the acquire(), acquireUninterruptibly() and
tryAcquire() methods can be used to obtain one or more
permits to access a shared resource. The ELPA operator
exchanges one method for another which can lead to poten-
tial timing changes as well as starvation. For example, an
acquire() method will try and obtain one or more permits
and will block and wait until the permit or permits become
available. If the thread that invoked the acquire() method
is interrupted it will no longer continue to block and wait.
If the acquire() method invocation is changed to acquire-
Uninterruptibly() it will behave exactly the same except it
can no longer be interupted. Thus in situations where the
semaphore is unfair or if for other reasons the number of
requested permits never becomes available the thread that
invoked the acquireUninterruptibly() will stay dormant and
wait. If an acquire() method invocation is changed to a try-
Acquire() then a permit will be acquired if one is available
otherwise the thread will not block and wait. tryAcquire()
will acquire a permit or permits unfairly even if the fairness
setting is set to fair. Use of tryAcquire() may cause starva-
tion for threads waiting for permits.

Original Code:
i n t p e r m i t s = 1 0 ;
p r i v a t e f i n a l Semaphore sem

= new Semaphore (p e r m i t s , t rue) ;
. . .
sem . a c q u i r e () ;
. . .

ELPA Mutant:
i n t p e r m i t s = 1 0 ;
p r i v a t e f i n a l Semaphore sem

= new Semaphore (p e r m i t s , t rue) ;
. . .
sem . a c q u i r e U n i n t e r r u p t i b l y () ;
. . .

Another ELPA Mutant:
i n t p e r m i t s = 1 0 ;
p r i v a t e f i n a l Semaphore sem

= new Semaphore (p e r m i t s , t rue) ;
. . .
sem . t r y A c q u i r e () ;
. . .

The ELPA operator can also be applied to the lock(),
lockInterruptibly(), tryLock() method calls with Locks.

4.2.5 SAN - Switch Atomic Call with Non-Atomic

A call to the getAndSet() method in an atomic variable class
is replaced by a call to the get() method and a call to the set()
method. The effect of this replacement is that the combined
get and set commands are no longer atomic. For example:

Original Code: SAN Mutant:
A t o m i c I n t e g e r i n t 1 = 1 5 ;
. . .
i n t o l dV a l

= i n t 1 . g e t a n d S e t (4 0) ;
. . .

A t o m i c I n t e g e r i n t 1 = 1 5 ;
. . .
i n t o l dV a l = i n t 1 . g e t () ;
i n t 1 . s e t (4 0) ;
. . .

4.3 Modify keywords: add and remove

We consider what happens when we add and remove
keywords such as static, synchronized, volatile, and finally.

4.3.1 ASTK - Add Static Keyword to Method
RSTK - Remove Static Keyword from Method

The static keyword used for a synchronized method indi-
cates that the method is synchronized using the class ob-
ject not the instance object. The ASTK operator adds static
to non-static synchronized methods and the RSTK removes
static from static synchronized methods. Since the addition
or removal of the static keyword causes synchronization to
occur on the class or instance object the ASTK and RSTK
operators are both examples of the wrong lock bug pattern.

Original Code:
p u b l i c synchronized void aMethod () { . . . }

ASTK Mutant:
p u b l i c s t a t i c synchronized void aMethod () { . . . }

Original Code:
p u b l i c s t a t i c synchronized void bMethod () { . . . }

RSTK Mutant:
p u b l i c synchronized void bMethod () { . . . }

4.3.2 RSK - Remove Synchronized Keyword from
Method

The synchronized keyword is important in defining concur-
rent methods and the omission of this keyword is a plausible
mistake that a programmer might make when writing con-
current source code. The RSK operator removes the syn-
chronized keyword from a synchronized method and causes
a potential no lock bug. For example:

Original Code:
p u b l i c synchronized void aMethod () { . . . }

RSK Mutant:
p u b l i c vo id aMethod () { . . . }

4.3.3 RSB - Remove Synchronized Block

Similar to the RSK operator, the RSB operator removes
the synchronized keyword from around a statement block
which can cause a no lock bug.

Original Code: RSB Mutant:
synchronized (t h i s) {
<s t a t e m e n t c 1 >
}

. . .
<s t a t e m e n t c 1 >
. . .

4.3.4 RVK - Remove Volatile Keyword

The volatile keyword is used with a shared variable and pre-
vents operations on the variable from being reordered in
memory with other operations. In the below example we
remove the volatile keyword from a shared long variable. If
a long variable, which is 64-bit, is not declared volatile then
reads and writes will be treated as two 32-bit operations in-
stead of one operation. Therefore, the RVK operator can
cause a situation where a nonatomic operation is assumed
to be atomic.

Original Code: RVK Mutant:
v o l a t i l e long x ; long x ;

4.3.5 RFU - Remove Finally Around Unlock

The finally keyword is important in releasing explicit locks.
In the below example, finally ensures that the unlock()
method call will occur after a try block regardless of
whether or not an exception is thrown. If finally is removed
the unlock() will not occur in the presence of an exception
and cause a blocking critical section bug.

Original Code: RFU Mutant:
p r i v a t e Lock l o c k 1

= new R e e n t r a n t L o c k () ;
. . .
l o c k 1 . l o c k () ;
t r y {

. . .
} f i n a l l y {

l o c k 1 . un loc k () ;
}
. . .

p r i v a t e Lock l o c k 1
= new R e e n t r a n t L o c k () ;

. . .
l o c k 1 . l o c k () ;
t r y {

. . .
}
l o c k 1 . un loc k () ;
. . .

4.4 Switch concurrent objects

When multiple instances of the same concurrent class
type exist we can replace one concurrent object with the
other.

4.4.1 RXO - Replace One Concurrency Mechanism-X
with Another

When two instances of the same concurrency mechanism
exist we replace a call to one with the other. Due to space
we will only consider the replacement of Locks:

Original Code: RXO Mutant:
p r i v a t e Lock l o c k 1

= new R e e n t r a n t L o c k () ;
p r i v a t e Lock l o c k 2

= new R e e n t r a n t L o c k () ;
. . .
l o c k 1 . l o c k () ;
. . .

p r i v a t e Lock l o c k 1
= new R e e n t r a n t L o c k () ;

p r i v a t e Lock l o c k 2
= new R e e n t r a n t L o c k () ;

. . .
l o c k 2 . l o c k () ;
. . .

We can also apply the RXO operator when 2 or
more objects exist of type Semaphore, CountDownLatch,
CyclicBarrier, Exchanger, and more. For details on the
RXO operator with these other mechanisms see [3].

4.4.2 EELO - Exchange Explicit Lock Object

We have already seen the exchanging of two implicit lock
objects in a synchronized block and the potential for dead-
lock (Section 4.1.3). The EELO operator is identical only it
exchanges two explicit lock object instances:

Original Code: EELO Mutant:
p r i v a t e Lock l o c k 1

= new R e e n t r a n t L o c k () ;
p r i v a t e Lock l o c k 2

= new R e e n t r a n t L o c k () ;
. . .
l o c k 1 . l o c k () ;
. . .
l o c k 2 . l o c k () ;
. . .
f i n a l l y {

l o c k 2 . un loc k () ;
}
. . .
f i n a l l y {

l o c k 1 . un loc k () ;
}
. . .

p r i v a t e Lock l o c k 1
= new R e e n t r a n t L o c k () ;

p r i v a t e Lock l o c k 2
= new R e e n t r a n t L o c k () ;

. . .
l o c k 2 . l o c k () ;
. . .
l o c k 1 . l o c k () ;
. . .
f i n a l l y {

l o c k 2 . un loc k () ;
}
. . .
f i n a l l y {

l o c k 1 . un loc k () ;
}
. . .

4.5 Modify critical region : shift, expand,
shrink and split

The modify critical region operators cause the modifica-
tion of the critical region by moving statements both inside
and outside the region and by dividing the region into mul-
tiple regions.

4.5.1 SHCR - Shift Critical Region

Shifting a critical region up or down can potentially cause
interference bugs by no longer synchronizing access to a
shared variable. An example of shifting a synchronized
block up is provided below. The SHCR operator can also
be applied to shift up or down critical regions using other
concurrency mechanisms. We also provide an example in
the extended technical report version of this paper of shift-
ing the critical region using explicit locks [3].

Original Code: SHCR Mutant:
<s t a t e m e n t n1>
<s t a t e m e n t n2>
synchronized (t h i s) {

/ / c r i t i c a l r e g i o n
<s t a t e m e n t c1>
<s t a t e m e n t c2>

}
<s t a t e m e n t n3>
<s t a t e m e n t n4>
. . .

<s t a t e m e n t n1>
<s t a t e m e n t n2>
/ / c r i t i c a l r e g i o n

<s t a t e m e n t c1>
synchronized (t h i s) {

<s t a t e m e n t c2>
<s t a t e m e n t n3>

}
<s t a t e m e n t n4>
. . .

4.5.2 EXCR - Expand Critical Region

Expanding a critical region to include statements above and
below the statements required to be in the critical region
can cause performance issues by unnecessarily reducing the
degree of concurrency. For example:

Original Code: EXCR Mutant:
<s t a t e m e n t n1>
<s t a t e m e n t n2>
synchronized (t h i s) {

/ / c r i t i c a l r e g i o n
<s t a t e m e n t c1>
<s t a t e m e n t c2>

}
<s t a t e m e n t n3>
<s t a t e m e n t n4>
. . .

<s t a t e m e n t n1>
synchronized (t h i s) {

<s t a t e m e n t n2>
/ / c r i t i c a l r e g i o n

<s t a t e m e n t c1>
<s t a t e m e n t c2>
<s t a t e m e n t n3>

}
<s t a t e m e n t n4>
. . .

The EXCR operator can also cause correctness issues
and consequences such as deadlock when an expanded criti-
cal region overlaps with or subsumes another critical region.

4.5.3 SKCR - Shrink Critical Region

Shrinking a critical region will have similar consequences
(interference) to shifting a region since both the SHCR and

SKCR operators move statements that require synchroniza-
tion outside the critical section. Below we provide an ex-
ample of the SKCR operator using a Lock.

Original Code: SKCR Mutant:
p r i v a t e Lock l o c k 1

= new R e e n t r a n t L o c k () ;
. . .
p u b l i c vo id m1 () {
<s t a t e m e n t n1>
l o c k 1 . l o c k () ;
t r y {

/ / c r i t i c a l r e g i o n
<s t a t e m e n t c1>
<s t a t e m e n t c2>
<s t a t e m e n t c3>

} f i n a l l y {
l o c k 1 . un loc k () ;

}
<s t a t e m e n t n2>
. . .

p r i v a t e Lock l o c k 1
= new R e e n t r a n t L o c k () ;

. . .
p u b l i c vo id m1 () {
<s t a t e m e n t n1>
/ / c r i t i c a l r e g i o n

<s t a t e m e n t c1>
l o c k 1 . l o c k () ;
t r y {

<s t a t e m e n t c2>
} f i n a l l y {

l o c k 1 . un loc k () ;
}
<s t a t e m e n t c3>
<s t a t e m e n t n2>
. . .

4.5.4 SPCR - Split Critical Region

Unlike the SHCR or SKCR operators, splitting a critical
region into two regions will not cause statements to move
outside of the critical region. However, the consequences
of splitting a critical region into 2 regions is potentially just
as serious since a split may cause a set of statements that
were meant to be atomic to be nonatomic. For example, in
between the two split critical regions another thread might
be able to acquire the lock for the region and modify the
value of shared variables before the second half of the old
critical region is executed.

Original Code: SPCR Mutant:
<s t a t e m e n t n1>
synchronized (t h i s) {

/ / c r i t i c a l r e g i o n
<s t a t e m e n t c1>
<s t a t e m e n t c2>

}
<s t a t e m e n t n2>
. . .

<s t a t e m e n t n1>
synchronized (t h i s) {

/ / c r i t i c a l r e g i o n
<s t a t e m e n t c1>

}
synchronized (t h i s) {

<s t a t e m e n t c2>
}
<s t a t e m e n t n2>
. . .

4.6 Summary

In the above subsections we have provided an overview
of concurrency mutation operators for Java (J2SE 5.0). For
more details on the operators as well as the relationship be-
tween our new operators and the existing method and class
level operators please see our extended technical report ver-
sion of this paper [3]. In our discussion of each operator we
have briefly mentioned the bug pattern that relates to that
operator. Table 3 provides a summary of this relationship
and shows that the operators we propose are examples of
real bug patterns. Overall almost all of the bug patterns
are covered by the operators demonstrating that the pro-
posed concurrency operators are not only representative but

provide good coverage. The bug patterns that do not have
mutation operators are typically more specific complex pat-
terns and the development of general operators related to
these patterns is not feasible.

Concurrency Bug Pattern Mutation Operators
Nonatomic operations assumed to
be atomic bug pattern

RVK, EAN

Two-stage access bug pattern SPCR
Wrong lock or no lock bug pattern MSP, ESP, EELO, SHCR,

SKCR, EXCR, RSB, RSK,
ASTK, RSTK, RCXC, RXO

Double-checked locking bug pattern –
The sleep() bug pattern MXT, RJS, RTXC
Losing a notify bug pattern RTXC, RCXC
Notify instead of notify all bug
pattern

RNA

 Other missing or nonexistent
signals bug pattern

MXC, MBR, RCXC

A “blocking” critical section bug
pattern

RFU, RCXC

The orphaned thread bug pattern –
The interference bug pattern MXT, RTXC, RCXC
The deadlock (deadly embrace) bug
pattern

ESP, EXCR, EELO, RXO

Starvation bug pattern MSF, ELPA
Resource exhaustion bug pattern MXC
Incorrect count initialization bug
pattern

MXC

Table 3. Concurrency bug patterns vs. con-
currency mutation operators

5 Conclusion

We have presented a set of concurrency mutation opera-
tors to be used as a metric in the comparison of different test
suites and testing strategies for concurrent Java as well as
different quality assurance tools for concurrency. Although
we are primarily interested in concurrent mutation operators
as comparative metrics we believe that these operators can
also serve a role similar to method and class level mutation
operators as both comparative metrics and coverage criteria.
Our new concurrency operators should be viewed as a com-
plement not a replacement for the existing operators used
in tools like MuJava. For example, using the concurrency
operators can cause direct concurrency bugs while using the
method and class level operators can cause indirect concur-
rency bugs.

We believe that our concurrency operators are compre-
hensive and representative of real bugs. We have justified
the operators by comparing them to a set of bug patterns that
have been used to identify real bugs in concurrent Java pro-
grams. Additionally, our classification of concurrency op-
erators shows that the operators are well distributed across
the majority of bug patterns.

Currently we are implementing our concurrency muta-

tion operators in a source transformation language TXL [4].
Upon completion of our implementation we plan to val-
idate the operators with our mutation analysis framework
ExMAn [2]. We are interested in using our concurrency op-
erators with the programs in the IBM concurrency bench-
mark to compare concurrency testing and model checking.

References

[1] C. Artho, K. Havelund, and A. Biere. High-level data races.
Software Testing, Verification and Reliability (Special Issue
VVEIS 2003), 13(4):207–227, 2003.

[2] J. S. Bradbury, J. R. Cordy, and J. Dingel. ExMAn: A
generic and customizable framework for experimental mu-
tation analysis. In Proc. of the Work. on Mutation Analysis
(Mutation 2006), 2006.

[3] J. S. Bradbury, J. R. Cordy, and J. Dingel. Mutation opera-
tors for concurrent Java J2SE 5.0. Technical Report 2006-
520, Queen’s University, 2006.

[4] J. Cordy, T. Dean, A. Malton, and K. Schneider. Source
transformation in software engineering using the TXL trans-
formation system. J. of Information and Software Technol-
ogy, 44(13):827–837, 2002.

[5] Y. Eytani and S. Ur. Compiling a benchmark of documented
multi-threaded bugs. In Proc. of PADTAD 2004, pages 266–
273, 2004.

[6] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and
how to test them. In Proc. of IPDPS 2003, 2003.

[7] K. N. King and A. J. Offutt. A Fortran language system
for mutation-based software testing. Softw. Pract. Exper.,
21(7):685–718, 1991.

[8] D. Lea. Concurrent Programming in JavaTM Second Edi-
tion. Addison Wesley, 2000.

[9] E. Lee. The problem with threads. Computer, 39(5):33– 42,
May 2006.

[10] B. Long, R. Duke, D. Goldson, P. A. Strooper, and L. Wild-
man. Mutation-based exploration of a method for verifying
concurrent Java components. In Proc. of IPDPS 2004, page
265, Apr. 2004.

[11] B. Long, P. Strooper, and L. Wildman. A method for ver-
ifying concurrent Java components based on an analysis of
concurrency failures. In Concurrency Computat.: Pract. Ex-
per. (in press), 2006.

[12] Y.-S. Ma, Y.-R. Kwon, and J. Offutt. Inter-class mutation
operators for Java. In Proc. of ISSRE 2002, pages 352–363.
IEEE Computer Society Press, Nov. 2002.

[13] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. MuJava : An automated
class mutation system. J. of Software Testing, Verification
and Reliability, 15(2):97–133, Jun. 2005.

[14] H. Sutter and J. Larus. Software and the concurrency revo-
lution. Queue, 3(7):54–62, 2005.

