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Abstract
The TXL transformation framework has been widely used in prac-
tical source transformation tasks in industry and academia for many
years. At the core of the framework is the TXL language, a func-
tional programming language specifically designed for express-
ing source transformation tasks. TXL programs are self-contained,
specifying and implementing all aspects of parsing, pattern match-
ing, transformation rules, application strategies and unparsing in a
single uniform notation with no dependence on other tools or tech-
nologies. Programs are directly interpreted by the TXL processor
without any compile or build step, making it particularly well suited
to rapid turnaround, test-driven development. In this paper we pro-
vide a practical introduction to using TXL in rapidly developing
source transformations from concrete examples, and review expe-
rience in applying TXL to a number of practical large scale appli-
cations in source code analysis, renovation and migration.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.1.2 [Program-
ming Techniques]: Automatic Programming - Automating analy-
sis of algorithms, Program Modification, Program Synthesis, Pro-
gram Transformations; D.2.7 [Software Engineering]: Distribu-
tion, Maintenance, and Enhancement - Restructuring, reverse en-
gineering, and reengineering; D.3.3 [Programming Languages]:
Language Constructs and Features - Patterns; D.3.4 [Program-
ming Languages]: Processors - Interpreters, Parsing, Preproces-
sors, Translator writing systems and compiler generators

General Terms Algorithms, Design, Languages

Keywords TXL, source transformation, translators, term rewrit-
ing, rule-based programming, rapid prototyping, test-driven devel-
opment, software analysis, migration, re-engineering

1. Introduction
TXL [7] is a programming language and rapid prototyping sys-
tem specifically designed for implementing source transformation
tasks. Originally designed in 1985 to support experiments in pro-
gramming language design [10], it has matured into a general pur-
pose source transformation solution that has been used in a wide
range of practical applications, including applications in program-
ming languages, software engineering, database technology and ar-
tificial intelligence.
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Figure 1. The TXL Paradigm

Other papers describe the history and design principles of TXL
[7], its formal semantics [23] and its application to software engi-
neering [12], artificial intelligence [32] and the semantic web [21]
in some detail. In this paper we concentrate on the practice of de-
veloping solutions in TXL using its native test-driven development
paradigm, and describe how this paradigm has been applied in a
number of applications. We begin with a short introduction to the
TXL language.

2. The TXL Programming Language
The TXL paradigm consists of parsing the input text into a tree
according to a grammar, transforming the tree to create a new
output parse tree, and unparsing the new tree to create the output
text (Figure 1). Grammars and transformation rules are specified in
the TXL programming language, which is directly interpreted by
the TXL processor (using an internal tree-structured bytecode for
efficiency).

TXL programs are self-contained, in the sense that they depend
on no other tools or technologies, and environment independent, so
they are easily run on any platform. TXL is not itself intended to
be a complete transformation environment or workbench, although
it can be used as such directly from the command line. Rather, it
is intended to serve as the engine embedded in such frameworks.
Because they depend only on the standard input, output and error
streams, TXL programs are easily configured as pipe-and-filters,
live servers, embedded transformers and interactive applications as
well as standalone batch transformation commands.

TXL programs normally specify a base grammar, which spec-
ifies the syntactic forms of the input structure, an optional set of
grammar overrides, which modify the grammar to include new
forms to be used or output by the transformation, and a rooted set
of transformation rules, that specify how input structures are to be
transformed to the intended output (Figure 2). The base grammar
defines the lexical forms (tokens) and syntactic forms (nonterminal
types) of the input language. The optional grammar overrides ex-
tend or modify the lexical and syntactic forms of the grammar to
allow for the output and intermediate forms of the transformation.
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Figure 2. Anatomy of a TXL Program

tokens 
    hexnumber  "0[Xx][\dABCDEFabcdef]+"
end tokens 

comments 
    /*   */
    //
end comments 

% keywords of standard Pascal
keys 
    program procedure function 
    repeat until for while do begin 'end
end keys 

compounds 
    :=  <=  >=  ->  <->  '%=
end compounds 

Figure 3. Specification of Lexical Forms

The ruleset defines the rooted set of transformation functions and
rules to be applied.

2.1 Parsing and Grammars
TXL does not use a separate grammar and parsing technology,
rather parser specification is an inherent part of the TXL program
itself. As a result the TXL programmer has direct control over the
interpretation of the grammar, and can easily modify parsing to suit
the application. As in most other tools, specification of the language
structure is in two parts: lexical forms and context-free syntactic
forms.

Lexical forms describe how the input text is to be divided into
the indivisible basic symbols (terminal symbols or tokens) of the
input language. These form the basic types of the TXL program.
Common basic lexical forms of the C / Java class of languages,
such as identifiers, integer and floating point numbers, strings and
character literals are predefined, and are often sufficient for the first
version of a transformation. Other lexical forms of the input lan-
guage are specified using regular expressions in the tokens and
compounds statements and keywords can be distinguished from
identifiers using the keys statement (Figure 3). Commenting con-
ventions are specified using the comments statement (Figure 3).
Comments, spaces and newlines are by default ignored but may
optionally be explicitly parsed and transformed if desired.

Syntactic forms specify how sequences of input tokens are to
be grouped into the structures of the input language. These form
the structured types of the TXL program, and are specified using
an (almost) unrestricted ambiguous ordered context free grammar
in a BNF-like notation (Figure 4). In essence, every TXL program
defines its own type system in this way, and the TXL program is
strongly and statically typed in the type system specified by the
grammar.

TXL inverts the usual BNF convention of quoting terminal sym-
bols and instead uses unquoted bare terminal symbols while en-

define program              % goal symbol of input
    [expression]
end define

define expression
    [term]
  | [expression] + [term]   % arbitrary recursion &
  | [expression] – [term]   %  ambiguity supported
end define

define term  
    [primary]                 define primary
  | [term] * [primary]              [number]
  | [term] / [primary]           |  ( [expression] )
end define                    end define

Figure 4. Specification of Syntactic Forms (Grammar)
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Figure 5. A TXL Parse Tree

closing nonterminal type names in square brackets, as in [expres-
sion]. This notation is used consistently throughout TXL, in gram-
mars, patterns and replacements to give the language an example-
like style. Each nonterminal is specified using a define statement,
and the special nonterminal type [program] (the goal symbol of
the grammar) describes the structure of the entire input. The usual
standard set of BNF extensions is supported, including sequences
[repeat X], comma-separted lists [list X] and optional items [opt
X]. Using these extended forms in preference to their recursive
counterparts makes TXL grammars most convenient and natural
for specifying patterns.

When a TXL program is run, its input is automatically tokenized
and parsed (structured) according to the grammar using a direct
top-down full backtracking functional interpretation, with heuris-
tics to resolve left recursion. The entire input must be recognizable
as the type [program], and the result is represented internally as
a parse tree representing the structural understanding of the pro-
gram according to the grammar (Figure 5). All pattern matching
and transformation acts on these parse trees.

The base grammar for the syntax of the input language is
normally kept in a separate grammar file which is rarely if ever
changed, and is included in the TXL program using an include
statement. Input language variants and extra output or intermediate
forms are added to the base grammar using grammar overrides,
which modify or extend the base grammar’s lexical and syntactic
forms (Figure 6). In the figure, the notation “...” is not an elision,
rather it is part of the TXL grammar notation meaning “whatever
[statement] was before”. In the example, the new form follow-
ing the bar is appended to the definition of [statement] as the last
alternative.

2.2 Rules and Functions
The actual input to output transformation is specified in TXL using
a rooted set of transformation rules and functions. Each transfor-
mation rule specifies a target type to the transformed, a pattern (an
example-like form of the particular instance of the type we are in-



% Base grammar for C++
include "Cpp.Grammar"

% Override to allow XML markup on statements
redefine statement 

... % original forms 
| <[id]> [statement] </[id]> % add new form

end redefine

Figure 6. Override to Allow XML Markup of Statements

% replace every 1+1 expression by 2
rule addOnePlusOne
   replace [expression] % target structure type
      1 + 1 % pattern to search for
   by
      2 % replacement to make
end rule

Figure 7. Simple Example TXL Rule

rule optimizeAddZero
   replace [expression]        
      N1 [number] + 0
   by
      N1 
end rule

Figure 8. Rule Using a Pattern Variable

terested in replacing), and a replacement (an example-like form of
the result we would like when we replace such an instance). An ex-
ample for recognizing and replacing expressions of the form 1+1
is shown in Figure 7.

TXL rules are both strongly and statically typed - that is, the
replacement must be an instance of the same nonterminal type as
the pattern. When the original target type does not include the form
we want as replacement, grammar overrides are added to explicitly
allow for it.

The pattern of a rule is an augmented source text example of the
instances we want to replace, expressed in concrete syntax. Patterns
consist of tokens (terminal symbols, such as 2 or +, which represent
themselves) and variables (placeholders which match and bind to
a name any instance of a given nonterminal type) (Figure 8). A
pattern must be parsable as an instance (sentential form) of the
target type.

When a pattern is matched, variable names are bound to the
instances of their types in the match. Bound variable names can
be used in the rule’s replacement to copy their bound instance into
the result. In the case of Figure 8, the [number] bound to N1 in
each match of the pattern is copied into the corresponding result.
The replacement is also expressed as an augmented source text
example of the desired result, consisting of tokens and variable
references. Since rules are strongly typed, it must also be parsable
as an instance of the target type.

References to variables in a replacement can optionally be trans-
formed by subrules (other transformation rules and functions),
which transform only the copy of the variable’s bound instance
in the result (9). Subrules are applied to variable references using
square bracket notation X[f], which in standard functional nota-
tion would be written f(X). Because all rules are strongly typed, a
variable reference transformed by a subrule retains its type, guar-
anteeing a well formed result in the replacement. The result of a
subrule application can itself be transformed by other subrules, as
in X[f][g], which denotes the composition g(f(X)).

When a rule is applied to a variable reference, we say that the
copied variable’s bound instance is the rule’s scope. A rule appli-
cation only transforms inside the scope that it is applied to. The
distinguished rule named main is automatically applied with the

rule resolveAdditions
   replace [expression]        
      N1 [number] + N2 [number]
   by
      N1 [add N2]
end rule

Figure 9. Rule Using a Subrule [add]

function main
   replace [program]        

   EntireInput [program]   
by
   EntireInput [resolveAdditions]
               [resolveSubtractions]
               [resolveMultiplys]
               [resolveDivisions]

end function

Figure 10. Example Main Rule

function resolveEntireAdditionExpression
   replace [expression]        
      N1 [number] + N2 [number]
   by
      N1 [add N2]
end function

Figure 11. A Simple Example TXL Function

function resolveFirstAdditionExpression
   replace * [expression]        
      N1 [number] + N2 [number]
   by
      N1 [add N2]
end function

Figure 12. Simple Example TXL Function

entire input parse tree as its scope – other rules must be explicitly
applied as subrules in order to have any effect. Often the main rule
is simply a function that applies other rules (Figure 10).

TXL actually has two kinds of transformation rules, called rules
and functions. The two are distinguished by whether they should
transform one (for functions) or many (for rules) occurrences of
their pattern. In all cases, TXL rules and functions are total – that is,
if their pattern does not match, the defined result is their unchanged
original scope.

By default, TXL functions do not search, but attempt to match
only their entire scope to their pattern, transforming it if it matches
(Figure 11). Searching functions, denoted by “replace *”, search to
find and transform the first instance of their pattern in their scope,
but do not automatically reapply (Figure 12). Rules are just a short-
hand for the compositional closure of the corresponding searching
function. That is, a rule repeatedly searches its scope for the first
instance of the target type that matches its pattern, transforms it in
place to yield an entire new scope, and then reapplies itself to that
entire new scope and so on until no more matches are found.

Rules and functions may be passed bound variables as parame-
ters, which allow the values of variables captured in the pattern of
an applying rule to the formal parameters of a subrule (Figure 13).
Rule parameters can be used to contextualize sub-transformations
as well as to build transformed results out of many disjoint parts of
the original scope.

2.3 Patterns and Replacements
Both patterns and replacements are parsed using the same grammar
as the input to create pattern tree / replacement tree pairs (Figure
14). TXL’s ordered grammar interpretation insures that ambiguities
are always resolved in the same way in both patterns and inputs,



rule resolveConstants
   replace [repeat statement]
      const C [id] = V [expression];
      RestOfScope [repeat statement]
   by
      RestOfScope [replaceByValue C V]
end rule

rule replaceByValue ConstName [id] Value [expression]
   replace [primary]
      ConstName
   by
      ( Value )
end rule

Figure 13. Using Rule Parameters in a Subrule
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rule resolveAdditions
   replace [expression]
      N1[number] + N2[number]
   by
      N1 [+ N2]
end rule

Figure 14. Parse Tree Form of Patterns and Replacements
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Figure 15. Rule Application by Tree Matching

reducing pattern matching a straightforward and efficient typed
tree-matching problem.

Rules are implemented by searching the scope parse tree for tree
pattern matches of the pattern tree, and replacing instances with
corresponding instantiations of the replacement tree with subtrees
copied for bound variable references. Each such replacement re-
sults in a new scope tree, which is then searched again for another
match, and so on until no more matches can be found (Figure 15).

Patterns may refer to previously bound variables later in a pat-
tern (i.e., may use nonlinear pattern matching [27]). This effectively
parameterizes the the pattern with a copy of the bound variable, in
order to specify that two parts of the matching instance must be the
same in order to have a match (Figure 16). Patterns can be similarly
paramtereized by formal parameters of the rule or function or any
other bound variables in order to specify that matching instances
must contain an exact copy of the variable’s bound instance at that
point in the pattern. In TXL, references to a bound variable always
mean a copy of the bound instance, no matter what the context.

rule optimizeDoubles
   replace [expression]
      E [term] + E
   by
      2 * E
end rule

Figure 16. Nonlinear Pattern Matching

rule optimizeFalseWhiles
   replace [repeat statement]
      WhileStatement [while_statement] ;
      RestOfStatements [repeat statement]
   deconstruct * [condition_expression] WhileStatement
      WhileCond [condition_expression]     
   deconstruct WhileCond
      false
   by
      RestOfStatements
end rule

Figure 17. Using Deconstructors to Refine the Pattern

rule vectorizeScalarAssignments
   replace [repeat statement]
       V1 [variable] := E1 [expression];
       V2 [variable] := E2 [expression];
       RestOfScope [repeat statement]
   where not
       E2 [references V1]
   where not
       E1 [references V2]
   by
       < V1,V2 > := < E1,E2 > ;
       RestOfScope
end rule

function references V [variable]
   deconstruct * [id] V
       Vid [id]
   match * [id]
       Vid
end function

Figure 18. Using Where Clauses to Constrain the Match

(Although obviously the TXL interpreter maximally optimizes the
implementation of this meaning to avoid copying whenever possi-
ble).

Patterns can be piecewise refined using deconstruct clauses in
order to allow for more complex patterns (Figure 17). Deconstruc-
tors specify that the deconstructed variable’s bound instance must
match the given pattern - if not, the rule’s entire pattern match
fails and the search continues for another match. Deconstructors
act like functions - that is, the variable’s entire bound instance must
match the deconstructor’s pattern. As with functions, there is also
a searching deconstruct (“deconstruct *”) that searches within the
variable’s bound instance for a match.

Pattern matches can also be constrained using where clauses
(Figure 18). Where clauses use a special kind of rule called a condi-
tion rule. Condition rules may be built-in, for example the ordering
functions [<] and [>], implementing semantic less than and greater
than respectively, or user-coded as subrules. Condition rules have
only a (possibly very complex) pattern, but no replacement. They
simply either succeed or fail to match their pattern, and the where
clause invoking them succeeds or fails correspondingly. Because
they are themselves TXL rules, they may use additional decon-
structs, constructs, subrules, where clauses and so on, allowing for
arbitrary computation in guards, including tests involving global or
external information (Section 2.4).

Replacements can also be piecewise refined, using construct
clauses to build results from several independent pieces (Figure
19). Constructors allow partial results to be bound to new variables,



rule addToSortedSequence NewNum [number]
   replace [repeat number]
      OldSortedSequence [repeat number]
   construct NewUnsortedSequence [repeat number] 
      NewNum OldSortedSequence     
   by
      NewUnsortedSequence [sortFirstIntoPlace]
end rule

Figure 19. Using Constructors to Build the Replacement

define symbol_table_entry
   [id] [type]
end define

function main
   export SymbolTable [repeat symbol_table_entry]
      % initially empty, filled in by subrules
   . . .
end function

rule translatePlusEqualIfString
   replace [statement]
      S1 [id] += E [expression];
   % This rule only applies if S1 is of type string
   import SymbolTable [repeat symbol_table_entry]
   deconstruct * [symbol_table_entry] SymbolTable
      S1 string
   by
      concatn (S1, E, 256); 
end rule

Figure 20. Using a Global Table

allowing sburules to further transform them. Thus a rule can build
a complex replacement from many different constructed pieces
transformed by different sets of subrules.

2.4 Global Tables
Complex transformation tasks often use a symbol table to collect
information which can then be used as a reference when imple-
menting transformation rules. TXL provides global variables for
this purpose. Globals in TXL are modelled after the Linda black-
board style of message passing[16]. In this style, bound local vari-
ables are exported to the global scope by a rule or function for later
import by some other rule or function. Exported variables may be of
any nonterminal type, including new types not related to the main
grammar.

Globals have a great many uses in transformations, but the most
common is the original use: symbol tables. Symbol tables in TXL
are typically structured as an associative lookup table consisting
of a sequence of (key, information) pairs. Both the key and the
information can be of any nonterminal type, including new types
defined solely for the purpose. Often the key is of type [id] (i.e.,
an identifier). TXL deconstructs are used to associatively look up
the information given the key (Figure 20). Because they use pattern
matching, table lookups are also two-way; if one wants to know the
key associated with some information, the deconstructor can just as
easily pattern match in the reverse direction.

3. Developing TXL Programs
We’ve now seen most of the basic features of TXL. Like most func-
tional languages, TXL builds its power from the combination of this
small set of general concepts rather than a large collection of more
specific features. And like other functional languages, its power and
expressiveness are not obvious from features themselves – rather
one must look at the paradigms for using them. In this section we
introduce three of the most basic paradigms for using TXL to solve
practical problems: test-driven development, cascaded transforma-
tion, and aspect transformation.

include "Cobol.Grm"

redefine add_statement
...

| [pli_assignment]
end redefine

define pli_assignment
[operand] = [expression];

end define

function main
replace [program]

OriginalCobol [program]
by

OriginalCobol [convertAddStatements]
              [convertIfStatements]
                  (and so on)

end function

Figure 21. Main Program for Conversion of Cobol to PL/I

rule convertAddIJK
replace [statement]

ADD I TO J GIVING K % COBOL
by

K = I + J; % PL/I
end rule

Figure 22. Beginning with a Concrete Example

3.1 Test Driven Development
TXL is well suited to the test-driven development style of eXtreme
Programming (XP) [3]. TXL applications are most easily devel-
oped beginning with an explicit set of test cases (example input-
output pairs), which serve as the specification of the transformation.
The transformation is then developed incrementally, as a sequence
of successive approximations to the final result. TXL’s interpreter
is designed for rapid prototyping and fast turnaround, so partial
transformations can be run against the test case inputs as we go in
order to keep track of progress during development and catch prob-
lems early. In the usual XP development style, we leave tuning until
later and concentrate on the simplest possible transformation rules
to achieve the intended result. TXL programs optimize well once a
correct solution has been implemented.

We’ll demonstrate the process of developing a new transforma-
tion using a realistic but toy example - translation of Cobol ADD
statements to PL/I code. The other basic rules of a Cobol to PL/I
transformation would be developed similarly. For the purposes of
the demonstration we’ll ignore a number of details in this problem
in order to concentrate on the method itself.

The transformation we have in mind takes Cobol as input, and
therefore includes the Cobol base grammar. The first thing we need
to do is to allow for the desired output by overriding the grammar.
In Figure 21 we have done this by allowing an [add statement] to
be a [pli assignment]. Rather than include the entire PL/I grammar,
we have chosen to work incrementally, adding output forms to the
grammar only as they are needed.

For the Cobol ADD statement to PL/I rule, we begin with a sin-
gle explicit example pattern and replacement to cover exactly one
particular statement in the test input, and generalize from there.
Figure 22 shows this first approximation of our rule for transform-
ing Cobol ADD statements to PL/I. It recognizes and converts only
and exactly the Cobol statement “ADD I TO J GIVING K” and
replaces it with the PL/I statement “K = I + J;”. This rule only
works if the variables in the statement have the exact names given.
We test this rule on our input, see that the statement in question is
transformed, and then move on to generalize it.

The second step involves generalizing by introducing TXL vari-
ables for the explicit names in the pattern, allowing for arbitrary
names rather than just I, J and K.. We could simply allow for ar-
bitrary identifiers (type [id] in TXL), but in the Cobol grammar it



rule convertAddGiving
replace [statement]

ADD I [operand] TO J [operand] GIVING K [operand]
by

K = I + J;
end rule

Figure 23. Generalizing Using Pattern Variables

rule convertAddNoGiving
replace [statement]

ADD I [operand] TO J [operand] 
by

J = J + I;
end rule

Figure 24. Specializing to Other Cases

rule convertAdds
replace $ [statement]                 % ($ = nonrecursive)

AddStatement [add_statement]
by

AddStatement [convertAddOne]       % ADD 1 to Z
[convertAddNoGiving]  % ADD Y TO Z

 [convertAddGiving]    % ADD X TO Y GIVING Z
 [checkAddConverted]   % check we translated
end rule

Figure 25. Abstracting, Integrating and Prioritizing Cases

makes more sense to move up to the more general type [operand],
which allows for both identifiers and literal constant values (so that
we match “ADD 10 to X GIVING Y” for example). Figure 23 shows
this generalization. Our rule should now recognize all statements of
the form “ADD I TO J GIVING K” for any arbitrary operands. Once
again we run the rule on our test input to see that it is still working
and correctly transforms all such statements.

In the next step we specialize by identifying, testing and gen-
eralizing special cases in the same way. For example, in Cobol the
GIVING clause is optional. Figure 24 shows a specialization of our
rule for that case. Again, we test each case as we go along to make
sure that things are working properly. We continue in this way, de-
veloping separate rules for each special case, until we have a com-
plete set.

Once we have developed working solutions for the general and
each of the special cases, we are ready to integrate them by ab-
stracting and prioritizing cases (Figure 25). Ruleset abstractions are
built using a higher level rule to invoke each of the cases as a sub-
rule. The order in which they are composed is important, because
special cases such as [convertAddOne] (intended to optimize in-
crements) may also be matched by [convertAddNoGiving]. Recall
that rules that do not match simply return their original scope as
result, so composed subrules simply pass on those cases that they
do not match. To be certain that some case matched each instance,
we add a special rule [checkAddConverted] that simply matches if
the statement is still in Cobol once all other subrules have tried to
transform it, and issues an error message if so. Once again, we test
our entire ruleset on the test inputs.

3.2 Cascaded Transformation
The style of starting with partial solutions and gradually refining
and combining them to make a sequence of successive approxi-
mations to the intended final result is typical of TXL development
at every level. An entire Cobol to PL/I transformation would con-
sist of developing translations for each of the statements and other
forms of Cobol in similar fashion, largely independently of each
other. The main transformation rule would then apply each of these
rulesets in succession (possibly recursively). After each ruleset is
applied, one more of the forms of the input language has been
transformed to the output language, while other forms still remain

T1 T2 T3

Figure 26. Generic Cascaded Transformation Architecture

T1

T3

T2

Figure 27. Generic Aspect Transformation Architecture

untranslated. The intermediate results are in a kind of hybrid lan-
guage where some forms are in the original Cobol and some in the
target PL/I. The grammar of this intermediate language is the base
grammar as modified by the overrides for the translated forms.

In order to organize large scale transformations and make them
easier to develop and maintain, TXL programmers normally sep-
arate them into a cascaded set of separate TXL programs, each of
which attacks only one issue or set of issues. The output of each
stage returns to a text file in the hybrid language which is then
reparsed using the overridden grammar to the next stage. In this
way, each stage can be developed and maintained independently,
and each has a precise, easy to understand specification described
by a test set that can be created (by hand) even in the absence of
previous stages.

While this cascaded transformation style is most obviously ap-
plicable to language translation tasks, it is used in virtually all large-
scale applications of TXL. A typical overall high-level application
architecture is shown in Figure 26. Each stage in the sequence han-
dles another aspect of the original input, until eventually everything
has been handled. Often the stages in the sequence are not sim-
ply disjoint transformations, but rather depend on the analysis and
transformation done by previous phases to support the next. For
example, in software maintenance tasks, an early phase typically
implements unique naming of variables [18] so that later phases
can more efficiently implement scope-sensitive transformations.

In addition to suiting implementation as a sequence of TXL
transformations, the cascaded style offers significant software en-
gineering benefits. Interfaces between phases of an overall trans-
formation are explicitly documented by the intermediate grammars
(base grammar plus overrides) that describe the intermediate hy-
brid languages, and each subtransformation can therefore be speci-
fied, developed, tested and maintained independently of the others,
allowing for parallel development and validation. Because inter-
mediate forms are in explicit hybrid language text, tests for each
phase can be crafted by hand even before previous phases are im-
plemented.

A prototype translator from COBOL to Java developed at
Legasys Corporation is perhaps the extreme demonstration of the
advantages of the cascaded transformation paradigm. After two
months of planning by the lead architect, a prototype translator
consisting of 72 cascaded phases was built in less than two months
by six developers, only three of whom were assigned to the project
full time. Each phase intentionally handled only one small part



rule transformClasses
   replace [repeat declaration_or_statement]
      type ClassId [id] :
         class
            Imports [repeat import_list]
            Exports [repeat export_list]
            Fields [repeat variable_declaration]
            Methods [repeat procedure_delaration]
         ‘end ClassId
      RestOfScope [repeat declaration_or_statement]
   by
      module ClassId :
         Imports
         export DataRecord
         Exports 
         type DataRecord:
            record
               Fields
            ‘end record
         Methods [fixFieldReferences each Fields]
                 [makeConstructorMethod]
                 [addObjectParameterToMethods]
      ‘end ClassId
      RestOfScope [transformClassReferences ClassId]
end rule

Figure 28. Rule to Implement Object Classes by Transformation
to Turing Modules (Adapted from [9])

of the overall transformation. The parallel development provided
by this approach paid large dividends in time and effort, quickly
demonstrating automated translation of a 60,000 line Cobol appli-
cation as part of the bid for a multi-million line contract.

3.3 Aspect Transformation
Many applications require radically different transformations to be
made to different parts of the input, or have outputs that require
a number of different transformations of the same or overlapping
parts of the input to generate the output. For example, this is
typically the case when the representation of particular aspects of
the input must be “woven” quite differently in the output language
than in the input one.

Such nonlinear transformations are handled in TXL using a dif-
ferent transformation architecture, in which the same entire input is
fed to several different transformations, each of which transforms
one aspect of the input to the output. The results are then reassem-
bled using a final transformation or weaver. Figure 27 demonstrates
this transformation architecture. Once again, the style has real soft-
ware engineering advantages due to its clear separation of concerns.
Transformations for the different aspects can be developed in par-
allel and maintained largely independently.

This aspect transformation architecture is also very common
in production TXL applications, both alone and in combination
with the cascaded paradigm. For example, design recovery appli-
cations typically use a set of parallel aspect transformations to rec-
ognize different design aspects of the program. TXL programmers
find that designing applications as cooperating sets of independent
subtransformations yields both the obvious engineering advantages
and technical advantages such as the ability to use different gram-
mar overrides tailored to each transformation (called grammar pro-
gramming or agile parsing [15]).

One can of course find both of these decomposition styles in ev-
ery software architecture book. What is different here is their fine-
grained application to software transformation tasks. Transforma-
tions that seem complex or challenging as single programs are often
straightforward when decomposed into cascaded or aspect steps.

4. Practical Experiences with TXL
TXL is a mature source transformation technology and has been
used in a wide range of applications in academia and industry over
the past 20 years. In this section we outline a number of typical
applications and how they have exploited the test-driven, cascaded
development paradigm.
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Figure 29. Java RMI to C++ / VeriSoft Transformation Architec-
ture (Adapted from [6])

4.1 Language Dialects
TXL”s original design goal was to support experiments in program-
ming language design in the context of the Turing programming
language project [20]. The idea was that proposed new language
features and variants could be implemented by source transforma-
tion to the original language in order to provide a rapid prototype
of the new language that could be used and experimented with right
away. By using TXL source transformations instead of modifying
the Turing language implementation directly, proposals could typi-
cally be evaluated in a day or two rather than several weeks.

In the late 1980’s many variants of the Turing language were
prototyped in this way using TXL, including competing proposals
for the addition of object-oriented features to Turing [9]. Figure 28
shows one of the main rules in the TXL rapid prototype of a Turing
dialect very close to the eventual winner, known as Object-Oriented
Turing. Even at this early stage in TXL, we can see the clear
influence of test-driven development in the generalized example
style of the pattern and replacement in the rule.

4.2 Language Translation
TXL has been used in many language translation tasks, such as
the Cobol to Java one mentioned in Section 3.2. Most recently
it has been used to extend the capabilities of the VeriSoft mod-
elling framework [17] to handle Java RMI (remote method invoca-
tion) programs by automatically transforming them to semantically
equivalent C++ / VeriSoft programs [6].

Translation of Java RMI to C++ / VeriSoft is a nontrivial trans-
formation task, involving both integration of widely separated in-
formation in the original Java into local contexts in C++ (global-
to-local transformation) and separation of local information in Java
into widely separated contexts in the generated C++ / VeriSoft com-
ponents (local-to-global and coupled transformations). In particu-
lar, three quite separate results, the Registry, the Proxy Stub and the
Unicast Remote Object, have wide dependency on many parts of
the original program.
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The solution is a staged aspect transformation architecture in
which the C++ transformation of the original Java RMI remote
object is fed in its entirely to three different TXL transformations,
each of which generates one aspect of the final C++ result (Figure
29). The result is then assembled to weave these generated pieces
together with the C++ transformations of the original Java RMI
components to yield the final C++ / VeriSoft program.

4.3 Design Recovery and Analysis
The Advanced Software Design Technology (ASDT) project was
a joint project involving IBM Canada and Queen’s University in
the early 1990’s. The global goal of the project was to study ways
to formalize and better maintain the relationship between design
documents and actual implementation code throughout the life
cycle of a software system (an approach perhaps now better known
as model-driven software engineering). Early on it was realized
that if such an approach is to be introduced into practice, it must
be applicable to handle existing large scale legacy systems whose
design documents have been long ago lost or outdated. Thus design
recovery, the reverse engineering of a design database from source
code artifacts, became an important practical goal of the project
[22].

At the time design recovery did not at first seem like a good ap-
plication for source transformation. However, it is clearly a problem
well suited to generalized pattern matching, and using a three stage
source annotation approach (Figure 30), a completely automated
design recovery system was implemented in TXL. The approach
involves several TXL transformations, beginning with a cascaded
transformation to prepare the source code for easy analysis (step
1). In this phase syntactic and positional variation is reduced by re-
ordering and simplification in order to reduce the number of cases
for the static design analysis phases. Identifiers are uniquely named
according to their declaration scope and all references renamed to
match in order to factor out scope dependence.

The second step is an aspect transformation of the normalized
source consisting of five static analysis transformations, each of
which searches for a set of source patterns corresponding to a par-
ticular design relationship. Each analysis transformation annotates
the source with design facts for its recognized relationships in Pro-
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\ struct {
char *name;
int (*addr)();

} func[] =
{

$AllEntries,
{"",0}

};
\ 

where AllEntries
\ {$X,$Y} \ [list init]

each function (F [id])
where X \ "" \ [string] [" F]
where Y \ mpro \ [id] [_ F]

\\

Figure 32. Example µ* C Metaprogram (Adapted from [12])

log notation. Finally, in the third step these “embedded” design
facts are extracted (using grep) and merged to create a Prolog de-
sign database for the entire program, which can then be analyzed
using Prolog or other graph-based analysis tools (step 3).

This application involves a combination of both cascaded trans-
formation paradigm (vertically) and the aspect-oriented method
(horizontally) to achieve its result. The ASDT project served as a
proof of concept for design recovery using TXL, and its basic ar-
chitecture has been used in a number of projects since, most spec-
tacularly in LS/2000 (Section 4.5).

4.4 Generative Programming
The ASDT project also concerned itself with the other half of main-
taining the relationship between design documents and implemen-
tation: the generation of original code from design documents, of-
ten called generative programming or metaprogramming [11]. In
metaprogramming, the generation of code from the design model
is guided by a set of code templates which are instantiated in re-
sponse to queries on the design database. For example, a procedure
header template may be instantiated once for each procedure fact
in the design database.

µ* (pronounced “mew star”) is a family of metaprogramming
languages sharing a common notation and implementation. In µ*,
templates are written as example source in the target programming
language, which may be one of many, including C, Prolog, Pascal
and others, and are instantiated under direction of metaprogram-
ming annotations added to the template source. The metaprogram-
ming annotations specify the design conditions under which the
parts of the template apply (Figure 32).

Implementation of µ* uses a two-stage source transforma-
tion system implemented in TXL (Figure 31). In the first stage,
metaprograms are transformed using TXL into a TXL ruleset that
implements their meaning as a source transformation of a design
database represented as Prolog facts, and in the second stage this
ruleset is run as a TXL source transformation of the design database
for the system to be generated. In a sense, this is a second-order
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cascaded transformation, in which the first stage transforms its in-
put into a second transformation.

The µ* system has been used for tasks such as generating the
several kinds of C and Prolog“glue” code necessary to allow Pro-
log programs access to C library interfaces described by a formal
interface design specification. This method was applied to gener-
ate the code to make the GL graphics library available to Prolog
programmers.

4.5 Maintenance Hot Spots and the Year 2000 Problem
Maintenance hot spots [13] are a generalization of code perfor-
mance hot spots to any kind of design or source code analysis ac-
tivity. Sections of source code are labeled as hot when a design or
source analysis looking for sensitivity to a particular maintenance
issue, such as the Year 2000 problem, has identified them as rele-
vant. Maintenance hot spots can be used either by human maintain-
ers to focus their maintenance and testing efforts, or by automated
reprogramming tools as targets for reprogramming templates.

LS/2000 [14] was a production software analysis system devel-
oped at Legasys Corporation to assist in the Year 2000 conversion
of billions of lines of Cobol, PL/I and RPG source code. Using a
variant of the ASDT design recovery technique followed by de-
sign analysis and a “hot spot markup” for the Year 2000 problem,
LS/2000 produced hot spot reports for every module of an appli-
cation that had any potential Year 2000 risks embedded in it, and
automatically reprogrammed the majority of hot spots according
to a large set of transformation templates. Clients of LS/2000 re-
ported a 30-40 fold increase in Year 2000 conversion productivity
using automated hot spot identification and reprogramming. Time
to examine and convert a source code module of tens of thousands
of lines of source code was reduced from a few hours to less than
five minutes, and tested accuracy of conversion was increased from
about 75% to well over 99%.

LS/2000 (Figure 33) is a classic instantiation of the generic
cascaded transformation architecture of Section 3.2, involving a
pipeline of successive approximations, each with a single indepen-
dent specification. Like ASDT, it also exploits an aspect transfor-
mation architecture in its design recovery component, in which sev-
eral transformations recognize different design aspects of the same
source code artifacts. This architecture yielded enormous practical
benefits in the high pressure environment of the Year 2000 project
since different parts of the architecture could be corrected, refined
and reengineered largely independently of one another. All phases
of LS/2000 were initially implemented and debugged as TXL trans-
formations, allowing for rapid development and deployment. As
production efficiency pressures grew, some components, such as
Date Analysis, were replaced by more efficient hand-coded C im-
plementations, using the TXL versions as precise specifications and
validation comparators.

At the core of LS/2000 were the Hot Spot Markup and Hot Spot
Transform phases of the process (Figure 4.5). Hot Spot Markup
took as input each source module of the software system being an-
alyzed along with the set of Year 2000 date relationships inferred by
design analysis for the module. In order to implement the markup
process as a pure source to source transformation, the inferred date
relationships were represented as Prolog source facts prepended to
the module source and parsed into a TXL global table in the main
rule. Potentially Year 2000 sensitive operations in the source were
marked as hot by a set of TXL rules using source patterns guarded
by pattern matches of the Prolog source facts in the global table.
Figure 34 shows one such markup rule.

Hot Spot Transform then took as input the resulting marked-
up source and used a set of TXL source transformation rules to
search for marked hot spots that were instances of a large set
of reprogramming templates based on a “windowing” solution to
Year 2000. Because the Hot Spot Markup phase had explicated the



rule markupDateLessThanYYMMDD
   import DateFacts [repeat fact]
   replace $ [condition]
      LeftOperand [name] < RightOperand [name]
   deconstruct * [fact] DateFacts
      Date ( LeftOperand, "YYMMDD" )
   deconstruct * [fact] DateFacts
      Date ( RightOperand, "YYMMDD" )
   by
      {DATE-INEQUALITY-YYMMDD  
        LeftOperand < RightOperand  
      }DATE-INEQUALITY-YYMMDD
end rule

Figure 34. An Example LS/2000 Markup Rule

kind of potential risk in the markup label of each hot spot, these
templates could be applied very efficiently. Figure 35 shows an
example of a TXL hot spot transformation rule for reprogramming
one kind of Year 2000 hot spot.

The hot spot transformation rules of LS/2000 were developed
using test-driven development from explicit examples of each Year
2000 risk for each different date format. Example conversions were
exhaustively tested to validate both that their behavior would re-
main consistent with the original unconverted code until the Year
2000 turnover, and to validate that (unlike the original) it would
continue to behave correctly afterwards. Each of these examples
was then encoded in a separate transformation rule as a TXL pat-
tern / replacement pair, generalized and conditioned as outlined in
Section 3.1. The result was a Year 2000 transformation that was
highly robust and accurate.

4.6 Other Applications of TXL
TXL has been used in a wide range of other tasks in software
engineering in addition to those above [12]. However, in recent
years it has also been applied to a much wider range of applications
in other areas, including recognition of hand-written mathematical
fromulae [32], document analysis for the semantic web [21] and
security analysis of network protocols [28].

5. Related Work
Many other practical source transformation systems address a sim-
ilar problem domain to TXL, but each has its own particular ap-
proach. Like TXL, Stratego [30] is a programming language specif-
ically designed for expressing source transformations. Stratego’s
strengths lie primarily in its emphasis on abstraction and reusabil-
ity. Unlike TXL, which is designed to maximize independence be-
tween programs and provides reuse only at the whole transforma-
tion level, Stratego is designed to allow for fine-grained reuse of
transformation strategies and rules, providing the ability to program
generic strategies on top of pure term rewriting. Stratego/XT [31]
embeds Stratego in a toolset framework to support development of
complex transformation systems.

ASF+SDF [4] is a powerful general toolkit for end-to-end im-
plementation of complex transformations and other language pro-
cessing tasks. ASF+SDF’s “meta-environment” [5] provides a so-
phisticated and powerful workbench for developing transforma-
tions. Unlike TXL, both Stratego and ASF+SDF are based on a
Generalized LR (GLR) [29] parser. ANTLR [24], on the other
hand, like TXL is based on generalized top-down (LL) parsing.
ANTLR provides a user-configurable framework based on gener-
alized compiler technology. APTS[26, 25] is a very general trans-
formation system based on parse tree rewriting that is primarily
aimed at program derivation. Like TXL, APTS uses nonlinear tree
pattern matching, but using a bottom-up search in place of TXL’s
top-down search. APTS is particularly well suited to expressing
constraint-based transformations.

rule transformLessThanYYMMDD
   replace $ [repeat statement]
      IF {DATE-INEQUALITY-YYMMDD
            LeftOperand [name] < RightOperand [name] 
         }DATE-INEQUALITY-YYMMDD
         ThenStatements [repeat statement]
         OptElse [opt else_clause]
      END-IF
      MoreStatements [repeat statement]
   construct RolledLeftOperand [name]
      LeftOperand [appendName "-ROLLED"]
   construct RolledRightOperand [name]
      RightOperand [appendName "-ROLLED"]
   by
      {TRANSFORM-INSERTED-CODE
         ADD LeftOperand ROLLDIFF-YYMMDD GIVING RolledLeftOperand 
         ADD LeftOperand ROLLDIFF-YYMMDD GIVING RolledRightOperand 
      }TRANSFORM-INSERTED-CODE
      IF {TRANSFORMED-DATE-INEQUALITY-YYMMDD
            RolledLeftOperand < RolledRightOperand
         }TRANSFORMED-DATE-INEQUALITY-YYMMDD
         ThenStatements
         OptElse
      END-IF
      MoreStatements
end rule

Figure 35. An Example LS/2000 Transform Rule

In the commercial domain, Semantic Designs’ DMS Software
Reengineering Toolkit (SRT) [2] provides a framework for im-
plementing software analysis and transformation tasks in a wide
range of languages based on user-configurable, generalized com-
piler technology, and GrammaTech’s CodeSurfer [1] and related
tools can be used to provide code analysis and transformation for
C and Ada.

6. Conclusion
This paper has provided a quick introduction to the basic ideas of
TXL and its use in a few practical applications in software analy-
sis and transformation. Obviously in such a short paper there has
been no room to explore any details of semantics or implemen-
tation or to do a really thorough review of applications and tech-
nique. Details of the language itself can be found in the TXL Ref-
erence Manual [8], and its mathematical semantics is defined de-
notationally in terms of functional tree rewriting [23]. Many other
papers on TXL and its applications are listed on the TXL website
(http://www.txl.ca).
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