
Are PHP Applications Ready for Hack?
Laleh Eshkevari⇤, Fabien Dos Santos†, James R. Cordy‡, and Giuliano Antoniol⇤

⇤Department of Génie Informatique et Génie Logiciel, Ecole Polytechnique de Montréal, Canada
laleh.mousavi-eshkevari@polymtl.ca, antoniol@ieee.org

†Departement Informatique et Gestion, Ecole Polytechnique Universitaire de Montpellier, France
Fabien.dos-santos@polytech.univ-montp2.fr

‡School of Computing, Queen’s University, Canada
cordy@cs.queensu.ca

Abstract—PHP is by far the most popular WEB scripting
language, accounting for more than 80% of existing websites.
PHP is dynamically typed, which means that variables take on
the type of the objects that they are assigned, and may change
type as execution proceeds. While some type changes are likely
not harmful, others involving function calls and global variables
may be more difficult to understand and the source of many
bugs. Hack, a new PHP variant endorsed by Facebook, attempts
to address this problem by adding static typing to PHP variables,
which limits them to a single consistent type throughout execution.

This paper defines an empirical taxonomy of PHP type
changes along three dimensions: the complexity or burden im-
posed to understand the type change; whether or not the change is
potentially harmful; and the actual types changed. We apply static
and dynamic analyses to three widely used WEB applications
coded in PHP (WordPress, Drupal and phpBB) to investigate (1)
to what extent developers really use dynamic typing, (2) what
kinds of type changes are actually encountered; and (3) how
difficult it might be to refactor the code to avoid type changes,
and thus meet the constraints of Hack’s static typing.

We report evidence that dynamic typing is actually a relatively
uncommon practice in production PHP programs, and that most
dynamic type changes are simple representational changes, such
as between strings and integers. We observe that most PHP type
changes in these programs are relatively simple, and that the
largest proportion of them are easy to refactor to consistent static
typing using simple local renaming transformations. Overall, the
paper casts doubt on the usefulness of dynamic typing in PHP,
and indicates that for many production applications, conversion
to Hack’s static typing may not be very difficult.

Keywords—PHP, Dynamic typing, Type safety

I. INTRODUCTION

Php is a scripting language, dynamically typed with no
static type checking or variable declarations, and is supported
by an ecosystem of hundreds of pre-defined, ready to use
libraries, modules and functions. Development in such a rich
ecosystem is at a faster pace; there is no need to compile,
no need for complicated build files, and PHP code can be
interwoven directly with HTML code making it very easy to
develop custom websites and web development frameworks.

Avoiding the limitations of type safety is designed to
increase flexibility and reuse - for example, we can concatenate
strings, integers or mixes of them using the same dot operator,
or we can assign an array to a variable that previously contained
a boolean value. During execution or on different execution
paths, a PHP variable may be assigned values of many different
types, for example a variable can first be assigned an integer,
and then a string or perhaps later an array.

For such type-changing assignments, in this paper we refer
to the type of a variable before it is changed as “type-before",
and the type after modification as “type-after". For example, in
the following code fragment we see that an array is assigned to
the variable $contact through the invocation of the function
str_split. The following statement assigns a string value
(using the dot operator) to the same variable.

$concat = str_split($concat,128);
$concat = ’load%5B%5D=’. implode(’

&load%5B%5D=’,$concat);

However, such powerful language features also have a down-
side, and often come at the cost of late error identification,
particularly in large codebases [5] PHP is no exception in this
respect.

The benefits of static type checking have been well
discussed in literature [25], [27], [34]. A recent empirical study
by Ray et al. evaluated the impact of programming language
choice on the quality of software. The results of the study
show that the quality of systems developed in statically type
languages is significantly better than those in dynamically type
languages. Though other studies show the negative impact of
static type languages on development time and productivity
[30], [18]. Despite the discussed benefits and empirical supports
for statically type languages, popularity of dynamic languages
are increasing [26], [6]. Meijer et al. elaborate the need
for a language that provides both safety and flexibility [23].
The desirability of having both a fast development pace and
the capability of early error detection recently motivated the
Facebook staff to develop the Hack programming language [1].

Hack can be viewed as PHP with the addition of static
typing, thus ensuring type safety. PHP code in the Facebook
codebase is converted to Hack using a set of custom code
modification tools [2]. However, the automated code conversion
may not have good coverage if the project uses certain dynamic
features, such as global, eval, Variable variables, and other
aspects of PHP that are not recognized in Hack. While one
may expect that due to its static typing Hack programs may
have better quality, fewer bugs and easier maintenance than
PHP programs, to the best of our knowledge there is as yet no
experimental evidence that this is the case. Thus, many PHP
application teams may not yet be convinced to convert their
programs to Hack, fearing that the overhead of the conversion
effort may not be worth it.

In light of this, we are interested in understanding to what
extent dynamic typing is actually used in PHP programs, and

for what purposes. Our intuition is that dynamic typing makes a
program more difficult to understand, and thus we suspect that
in production PHP programs, very few variables may actually
change type during execution. If this is indeed the case, then
the effort to convert a PHP application to Hack by eliminating
dynamic typing using source code refactoring may not actually
be very high. Our goal is to provide a practical approach for
identifying, classifying and reporting violations of type safety
in a PHP application, and, armed with this knowledge, to leave
the decision to the PHP developers on what action should be
taken.

We perform an automated hybrid static and dynamic analysis
of dynamic typing, complemented by manual refactoring and
validation.We rely on dynamic analysis to identify type changes
at run time using program instrumentation. We perform a static
analysis to identify the scope of the variables, and finally we
manually verify whether we can ensure type safety through
renaming by refactoring and repeating the dynamic analysis.
We apply the technique to four production open source PHP
applications: phpBB2, phpBB3, Drupal, and Wordpress. All
examples discussed are taken from systems we analyzed. The
main contributions of this paper lie in the empirical taxonomy of
type changes, the approach to automatically detect and classify
type changes, as well as in the empirical validation on four
production PHP applications.

Paper structure. Section II begins with a brief description
of types in PHP and our proposed classification of type changes.
Section III describes our approach to identifying and classifying
type changes in PHP assignment statements using a combination
of static and dynamic analysis of PHP code. Section IV reports
on our empirical study aimed at demonstrating the approach’s
feasibility and analyzing the results with respect to our three
research questions on four production PHP systems. Following a
discussion of related work in Section VI, Section VII concludes
the paper and outlines directions for future work.

II. BACKGROUND

The PHP language has a number of standard types, for
example strings (String), integers (Integer), floating-point
numbers (Double), and arrays of these. PHP is dynamically
typed, and thus it does not associate variables strictly with any
specific type. As a result, executed assignments to a variable can
cause it to take on multiple different types during the execution
of a program. Type conversion in PHP can be explicit (casting)
or implicit (coercing). The PHP manual [3] uses the term type
juggling for the implicit conversion of types. Type juggling is
automatically done when variables of different types are used as
operands of a mathematical or logical operation. For example,
in the code shown below, the variable $foo is a boolean
(through explicit casting). Variable $inc is a String since
a string value is assigned to it. However, variable $inc is
implicitly coerced to be an Integer with value one, thus
making $val an Integer.

$foo = (boolean) $bar;
$inc= "1";
$val= 2 + $inc;

We refer to a statement that changes the type of a variable
as a “type changing statement". All assignment statements in

PHP are potentially type changing, changing the type of the
variable on the left hand side to the type of the value on the
right. In this study we consider only variables and the type
changes due to assignments to them. Temporary type changes,
such as the implicit coercion of the value of variable $inc
from String to Integer in the example above, are ignored.
However, in the following code, the last assignment will be
marked as “type changing statement" that changes the type of
$inc from String to an Array, since the change persists
after the assignment.

$foo = (boolean) $bar;
$inc= "1";
$val= 2 + $inc;
$inc= array ();

We classify type changing statements across three dimensions:
(1) complexity (trivial versus non-trivial type changes), (2)
non-harmful versus potentially-harmful, and (3) according the
actual type change made, from type-before to type-after.

A. Trivial and Non-trivial Type Changes

Here the term “trivial" is meant to represent the effort
likely needed for a non-expert on the code to understand the
change between the relationship between the type-before and
the type-after of an assigned variable. Thus some type changes
are trivial, that is, by looking at the right hand side (RHS) of
the type changing statement we can know the type of left hand
(LHS) side without any other information. For example, in this
snippet from phpBB3, the variable $root_data is changed
from String to Array due to an explicit call to the array
constructor.

$root_data = array(’forum_id’ => 0);

Changes in type can also be due to a simple change in data
representation. For example, in this code from phpBB3, the
String value of variable $user_permissions is changed
to Array by calling the function explode, which splits a
given string value into an array based on a given delimiter.

$user_permissions = explode("\n",
$user_permissions);

The documentation for the function/method being called
on the RHS helps, if it exists and is up-to-date, to simplify the
task of understanding the after-type of the variable assigned.
Unfortunately, there are some type changes that are neither
explicit nor due to simple changes in data representation. For
example, in the following code fragment from Drupal, the
variable $display is changed from String to Array, with
no local indication of the type.

$display = field_get_display($instance,
$view_mode,$entity);

In this example, when analyzing the type of the RHS, neither
the documentation nor the implementation of the function is
helpful in identifying the type-after. For such cases, only the
developer of field_get_display or someone very familiar with
the code will be able to guess the type-after.

Fig. 1. Potentially-harmful vs. non-harmful labelling of type-changing assignments.

In a nutshell, this classification is based on the likely
difficulty or effort required for a new programmer to infer
the after-type of the variable from the code.

B. Non-harmful and Potentially-harmful Type Changes

One simple way to refactor a type change to make it type
safe is to simply rename the variable on the LHS of the
type changing statement. However, such a renaming requires
that all uses of the variable are consistently replaced with
the new name1. Unfortunately, such renaming is not always
straightforward. For example, one cannot simply rely on the
identity of variable names in different files; different files may
or may not intend to refer to the same variable. Understanding
the relationships between variable uses and definitions in PHP
requires that all file include relations are resolved, which may
not be possible without running the program, and even when
possible, doing it by hand can be a daunting task.

We have defined criteria to automatically classify type
changes into non-harmful and potentially-harmful based on
the scope of the type changing statements and their reaching
definition information. To this aim we have implemented
the flow-sensitive and context-insensitive reaching definition
algorithm proposed by Tonella et al. [32]. The idea underlying
the classification is based on how difficult it might be to remove
the type change using a local renaming of the LHS variable. The
idea is that non-harmful type changes can be locally renamed to
eliminate type changes easily by introducing a new variable as
the target of the assignment, while renaming potentially-harmful
ones would need to be done very carefully and with a more
global analysis of variable references. Figure 1 illustrates the
logic behind the decision process for assigning a type changing
statement to one of these two categories.

Predicate “is in local scope?": The predicate “is in local
scope?" is true if the variable is local to a function/method. Thus,
if the variable is declared to be global inside a function/method
through the use of keyword global, the predicate will evaluate
to false. PHP functions may also have “static" variables, which
do not lose their value when execution leaves the function.
In such cases the predicate will also evaluate to false, if the
type changing statement is the last statement in the function
to modify the variable, which means that the new value (and
hence the new type) of the variable will be visible to the next
execution of the function.

1To the best of our knowledge, open source editors of PHP do not support
automatic renaming.

Fig. 2. The type of $right changes from Integer to String on line 235.

Predicate “used before type is changed?": To evaluate the
result of this predicate, we rely on the reaching-definition
analysis. The predicate is true if the type changing statement is
inside a loop and there exists a statement in loop that satisfies
the following two conditions:

• The statement appears before the type changing statement.
• The statement uses the variable that is the LHS of the

type changing statement.

For example, in phpBB3 the type of variable $right is
changed from Integer to String on line 235 (Figure2).
Variable $right on LHS of line 235 reaches to line 222 and
227. Thus the type change statement on line 235 is classified
as potentially-harmful.

Predicate “used in other files?": Variables that are defined in
a PHP file can be used in other PHP files through the PHP file
inclusion mechanism. The reaching definition analysis enables
us to identify all statements that are possibly using a variable
whose type is changed. It must be noted that, at this stage,
we have not implemented a points-to or reference analysis -
thus our results are approximated: there may be cases where
a variable is passed by reference to a function and changed
inside the function. In such a case we assume that it is actually
changed at the call site. This predicate evaluates to true if the
variable on the LHS of a type change statement is used in a
statement in another PHP file.

C. Identifying Type-changing Statements

To find all type-changing statements, we instrument all
variable assignments in the application under study, logging the

Fig. 3. Type change identification and classification process.

type-before and the type-after for each executed assignment
in which the type changes. Of course, just because a type
does not change in the coverage tests running our dynamic
analysis, we cannot exclude the possibility that in some other
execution scenario it might change - this is a limitation intrinsic
to dynamic analysis. However, by covering all pages and links
in the application, we attempt to mitigate this possibility.

III. PROPOSED APPROACH AND
TOOL SUPPORT

Our approach to identifying and classifying type changes
uses a combination of static and dynamic analysis (Figure 3).

A. Dynamic Analysis

We use TXL [12] source transformation to add run-time
instrumentation to the PHP code of the systems under analysis
to detect and log the type-before and type-after of each type-
changing assignment. Type change is detected by inserting
code to query the type of the LHS variable before and after the
assignment using the PHP gettype function, and comparing
the type-before to the type-after. If the two differ, then a log
file entry is made for the change. By executing these checks as
part of the actual execution of the WEB application, we obtain
exact type change information.

Figure 4 shows an example code fragment from Drupal
after the instrumenting transformation. The TXL transformation
inserts statements before (lines 355-359) and after (lines 361-
371) each PHP assignment statement (line 360) to obtain the
variable’s type using the gettype PHP function. The string
value “NULL" is used to mark the case where the variable was
not previously assigned (line 358), so that first assignments are
not logged as type changes.

If the types of the variable before and after the assignment
are different (line 362-363) then we enter the change into the
type change log file with the name of the variable, the before-
type, the after-type, and the source line and file coordinates of
the assignment statement (lines 364-370).

B. Crawling the WEB Application

We use the Ruby-based open source tool Watir [4] to mimic
the way that a user interacts with the WEB site implemented by
the WEB application. Watir can perform all of the same actions
that a user does: it can open links, fill in forms, press buttons,
and so on. To thoroughly exercise and cover execution of the

Fig. 4. Code fragment instrumentation.

PHP code of each application, we implemented a custom Ruby
“spider" script for the application. Each spider script customizes
Watir to visit all of the pages, buttons, links and forms of
the WEB application’s default configuration, including at least
one registered user and one forum, post or document entry of
each kind supported by the application. Our spiders explore
interactions in all of the various user roles of the application,
such as administrator, registered user, and guest user. Coverage
is measured by analyzing the Watir log to ensure that every
PHP page of the application has been visited at least once.

C. Static Analysis

We use the Eclipse PDT parser to parse and build the
control flow graph (CFG) of the PHP application under study.
We first parse each PHP file and build a CFG graph for each
file. To build the CFG of the entire system, we link the file
level CFGs, resolving include relations and function/method
calls. To resolve call bindings, we first use a name heuristic: if
there exists only one declaration of a function/method of the
name being called, then we bind the invocation to this instance.
In cases where there are multiple functions/methods with the
same name, we rely on the Eclipse PDT to resolve the binding.

In PHP, file inclusion is done using the include statement,
which accepts an expression as argument. There are no
constraints on the include expression, which can contain
variables, calls to functions, and string operators. In other
words, often the file name path is dynamically computed and
built at run-time.

To avoid circular inclusions, PHP provides a number
of different include statements, include, include_once,
require and require_once. include and require
always include the file passed as parameter. The difference
is that require produces a compiler error upon failure.
include_once and require_once work similarly to
include and require, however do not include a file if
it has been already included, avoiding a multiple inclusion. We
use the approach proposed in our previous work [16] to resolve
file inclusions in PHP.

After the CFG graphs are connected by call invocations and
file inclusion, we perform the flow sensitive, context insensitive
reaching definition analysis proposed by Tonela et al. [32]
on the system-level CFG. We begin the propagation from the
first node of the CFG graph, which normally corresponds to
the home page of the application index.php, and traverse
the CFG graph, iterating until the flow information ceases to
change.

TABLE I. ANALYZED PHP SYSTEMS

System Revision PHP files classes functions/ Total LOC
methods

phpBB2 2.0.23 78 11 2,83 40,649
phpBB3 3.0.12 271 207 1,879 187,483
Drupal 7.26 275 99 3,322, 152,285

Wordpress 3.8 483 243 8,358 228,748

Using a combination of the logged type changes (dynamic
analysis), scope information for the type changed variables
(from the program’s Eclipse AST), and the flow propagation
information, we have enough information to classify the type
changes according to the categories of Section II.

IV. EMPIRICAL STUDY

The goal of this study is to use the approach described in
Section III, with the purpose of identifying type changes in
PHP application, and evaluating the effort needed to ensure
type safety. The context of the study consists of four PHP open
source applications: phpBB2-2.0.23, phpBB3-3.0.12, Drupal-
7.26, and Wordpres-3.8 (Table I).

A. Research Questions

The goal of this study is to address the following research
questions:

• RQ1: How frequently are variable types changed? The aim
of this research question is first to assess what variables’
types change in the PHP application, and how frequently.

• RQ2: What kinds of type changes are used? The goal
of this research question is to classify the observed type
changes in the three dimensions outlined in SectionII.
� RQ 2.1 Are these type changes trivial? As explained in

Section II, in many cases the type-after of a type change
is directly evident from the right hand side (RHS) of the
assignment, making it easier to understand. For example,
use of the dot operator in the main expression of the
RHS indicates that the new type of the LHS variable will
be String. The source code or the documentation of a
function/method being invoked on the RHS may enable
us to identify the type-after of the LHS as well. We
refer to assignment statements in which the type-after is
identifiable only by evaluating the RHS as "trivial" type
change statement. The purpose of this question is to
evaluate the code comprehension overhead of the type
change from the point of view of a new programmer
or maintainer of the code. We conjecture that many
type changes in PHP are of this kind, and perform a
qualitative analysis to answer to this research question.

� RQ 2.2 Are these type changes harmful? Based on the
decision process outlined in Section II (Figure 1), we
classify the observed type changes as either non-harmful
and potentially-harmful. The classification is based on
the scope of the variable on LHS of the assignment
statements and its uses. This research question addresses
the type changes from a risk of error point of view.

� RQ 2.3 What are the type changes? The goal of this
research question is to examine the observed set of
type changes in system under analysis in detail, and

TABLE II. PAGE COVERAGE.

System Total pages Total pages Percentage of
in default config covered page coverage

phpBB2 30 30 100%
phpBB3 13 13 100%
Drupal 4 4 100%
Wordpress 39 39 100%

compile them into a catalogue of before-after type pairs
for further analysis.

• RQ3: Can we ensure type safety? The goal of this
research question is to investigate the effort needed
to ensure type safety. We would like to know what
proportion of the observed type changes can be avoided
through simple renaming or lightweight refactoring of
the code. We manually apply renaming/refactoring where
possible, document the effort needed, and validate the
changes by retesting the application. Our conjecture is
that non-harmful type changes require much less effort in
renaming/refactoring to avoid type changes.

B. Case Studies

This section reports quantitative and qualitative results of the
analysis of four production WEB applications with respect to
the three research questions formulated above. All type changes,
and the classification are available for download on-line2.

Type change frequency: As it was explained in Section III,
for each of the four systems under study a Watir spider script
was created to simulate a WEB application session exploring
the WEB site in each user role, following all links and pressing
all buttons in the default configuration of the system with one
registered user and one forum, blog or document. In order to
evaluate coverage, we logged visits to PHP pages as part of
the spider. While we cannot insure that all of the PHP code
in the application is exercised by the spider script, we can be
sure that all PHP pages of the application have been visited.
Table II shows number of PHP pages visited for each system,
as well as the percentage of page coverage (100% in all cases).

In order to estimate the proportion of assignment statements
that are type changing, we need to count the number of
assignment statements in the WEB application source, and
the number of those that are observed to be type-changing at
run time when the application is thoroughly exercised. Table
III shows these statistics for the four systems under study.
The first row in the table is the total number of assignment
statements in the WEB applications PHP code. The second row
is the number of type-changing assignments executed during
the spider’s exercising of the entire web site, and the third
row is the unique number of assignment statements involved
in these changes. The percentage of assignment statements
observed to be type-changing is shown in the bottom row, row
3 divided by row 1.

It is important to note that while we can be sure of the
run-time coverage of all application pages, links and buttons,
and thus the code that implements them, due to data gathering
limitations we cannot be certain that all assignments have been
executed in our present implementation. Thus our percentages

2http://ser.soccerlab.polymtl.ca/ser-repos/public/tr-data/php-type-
changes.tar.gz

TABLE III. RQ1: PROPORTION OF TYPE-CHANGING ASSIGNMENTS IN
ANALYZED SYSTEMS

phpBB2 phpBB3 Drupal Wordpress
Total assignment stmts 4,830 13,655 7,261 18,982
Total run-time type changes 287 19,375 43,8074 263,617
Unique type changing stmts 35 103 63 177
Percentage 0.72% 0.80% 0.95% 0.92%

TABLE IV. RQ 2.1: TRIVIAL VS. NON-TRIVIAL TYPE CHANGES

phpBB2 phpBB3 Drupal Wordpress
Trivial 20 48 37 132
Non-trivial 15 55 26 45
Total 35 103 63 177

may be a slight under-estimate. However, a function coverage
test insures us that all assignments were at least potentially
executed by our Watir spider script.

Trivial and non-trivial type changes: Next we perform a
qualitative analysis of the observed type changes to evaluate
what proportion of them can be categorized as trivial. The
observed number of actual type changing statements is relatively
small (Table III), so we can perform this analysis by hand.

As explained in Section II, one can often determine the type-
after of a variable in an assignment from the form or content
of the RHS of the assignment. For example, if concatenate
dot operator is the main expression operator in the RHS, then
the type of variable will be String, or the source code or
documentation of the main function being called in the RHS
may tell us its type.

We manually examined the RHS of all assignment state-
ments that were observed to be type changing during the
execution of each program (Table III, row 3), to determine if
the type-after was easily determined from the statement. Table
IV shows the results of this analysis. With the exception of
phpBB3, we can see that for more than half of the observed
type-changing assignment statements, we can easily identify
the type-after of the variables from the source code.

The results in this table become even more interesting when
we take into account the scope of the variables (Table V). For
example, phpBB3 has the largest proportion of non-trivial type
changes (55 cases or 53%), but only 22 of such cases have
global scope, and for both Drupal and Wordpress, almost all
non-trivial type changes are to local variables. It is evident
that if there is a possible threat due to type changes, the likely
impact is more severe if the variable has global scope, so the
fact that most non-trivial type changes are local rather than
global is important.

Potentially-harmful and non-harmful type changes: As
outlined in Section III, we first used our automatic classifier to
classify the type changes as non-harmful (i.e., locally scoped,
and therefore easily renamed) or potentially-harmful (i.e., re-
quiring global analysis to rename), and then manually validated
the results. Table VI shows the result of this classification.

The relatively small number of cases allowed us to perform
a manual validation of every case, and thus to estimate the
precision and the recall of the automated classifications (see
Table VII and VIII). The manual validations were done using

TABLE V. RQ 2.1: LOCAL VS. GLOBAL NON-TRIVIAL TYPE CHANGES

System Non-trivial Local & non-trivial Global & non-trivial
phpBB2 15 3 12
phpBB3 55 33 22
Drupal 26 23 3
Wordpress 45 41 4

TABLE VI. RQ 2.2: POTENTIALLY-HARMFUL VS. NON-HARMFUL TYPE
CHANGES

phpBB2 phpBB3 Drupal Wordpress
Non-harmful 14 79 49 165
Potentially-harmful 21 24 14 12

manual code tracing by one of the authors, using an independent
second opinion in cases of doubt.

TABLE VII. RQ 2.2: PRECISION OF THE AUTOMATED ANALYSIS

phpBB2 phpBB3 Drupal Wordpress
Non-harmful 100% 95% 100% 99%
Potentially-harmful 67% 96% 78% 67%

TABLE VIII. RQ 2.2: RECALL OF THE AUTOMATED ANALYSIS

phpBB2 phpBB3 Drupal Wordpress
Non-harmful 67% 99% 94% 98%
Potentially-harmful 100% 85% 100% 89%

Unfortunately, sometimes theory and practice do not match:
sometimes a type change that theoretically is potentially-
harmful, when manually evaluated, is classified as non-harmful.
For this reason our automated analysis did not yield 100% pre-
cision. For example, in the code fragment in Figure 5, the type
of variable $weight is changed from Integer to Double
at line 3184 in file Drupal/includes/form.inc. This
type change is automatically classified as potentially-harmful
by the flow analysis.

However, when we examine the code closely, we can see that
variable $weight is used by two statements in the foreach
loop: 3184, and 3186. The statement at line 3184 is the one that
changes the type and also uses the variable. The statement at
line 3186 always receives a double value for variable $weight,
and thus there will never be a case where this statement uses
$weight with any type other than double. Thus, we can see
that this type change is non-harmful.

Another source of mis-classification by our automated
analysis is the lack of reference and alias analysis in our process.
If a reference to a variable is sent to a function/method, any
change to the type of variable is visible outside of the scope
of the function/method, and thus such type changes should be
classified as potentially-harmful.

Our classification relies heavily on reaching-definition
analysis. As explained in Section III, the propagation is done
over the include graph of the system. In some cases, we cannot
resolve the file being included since the path of file will only
be known only on run time. This means that the include graph
is not 100% complete. For those variables that are in the
global scope, this lack of a precise include graph may lead to
mis-classification. We therefore decided to use a conservative
approach and classify such cases as potentially-harmful. Thus
for some of the type changes that are automatically classified

Fig. 5. RQ 2.2: Example of a non-harmful type change that is mis-classified
by the automated analysis.

as potentially-harmful, we manually verified that there is no
way that such variables could reach to other files, and thus the
type change is non-harmful. This effect leads to the lack of
complete recall observed in Table VIII.

Detail of observed type changes: Table IX shows the result
of our detailed analysis of the type changes identified in the
analyzed systems. Entries in bold text indicate categories of type
changes observed in all four systems, whereas another entries
were observed in only some of the systems. It is important
to note that following PHP language specification we did
not differentiate arrays from dictionaries, stack, list, or other
collections.

Overall, 46% of the type changes from array ! string
represent the joining of array elements with a given suffix,
and 28% of the type changes from string ! array are due
to splitting the array content into strings based on a given
delimiter. In PHP any non-zero integer can be interpreted as
a true boolean value, and thus the change from boolean
! integer (or vice versa) does not negatively impact any
statement that uses a boolean (or integer, in the other case).
We did not observe any other recurring patterns corresponding
to the other type changes in the table. It is important to note
that the total numbers in Tables IV and IX are different for
phpBB3, Drupal and Wordpress. The reason is that a single
assignment statement may be executed multiple times during
a single execution of the application with different type-after
results. For example, the assignment from Wordpress shown
below was observed to change the type of variable $res from
boolean to array on one occasion, and from boolean
to object on another. Thus, the type changing statement is
counted once as a type-changing statement, but twice as two
different type changes.

$res = maybe_unserialize
(wp_remote_retrieve_body ($request));

Ensuring type safety: As an experiment in transitioning to
the type safety required by Hack, we attempted to manually
modify all observed type-changing assignments using renaming
and refactoring to avoid type changes, and documented our
effort based on the Likert scale as easy, medium or hard. The
renaming/refactoring was done by one of the authors, with

TABLE IX. RQ 2.3: OBSERVED TYPE CHANGES IN THE ANALYZED
SYSTEMS

From! to phpBB2 phpBB3 Drupal Wordpress
array!boolean 0 1 2 3
array !double 0 1 0 0
array !integer 0 0 1 4
array !NULL 0 0 6 0
array !object 0 0 1 6
array !string 5 9 8 21
boolean !array 3 9 5 24
boolean !integer 1 7 1 5
boolean !NULL 0 0 0 1
boolean !object 0 1 0 5
boolean !string 0 15 7 18
double !integer 0 0 1 1
double !string 0 0 1 1
integer !array 0 6 1 1
integer !boolean 2 3 0 0
integer !double 1 1 2 1
integer !NULL 0 0 1 1
integer !object 0 3 0 10
integer !string 9 22 6 13
object !array 0 1 1 4
object !boolean 0 2 0 0
object !integer 0 3 0 2
object !NULL 0 0 0 1
object !string 0 0 2 5
string !array 1 11 11 28
string !boolean 2 5 2 4
string !double 0 0 0 1
string !integer 11 8 3 17
string !NULL 0 1 5 5
string !object 0 0 0 11
Total 35 109 67 193

a second author verifying the renaming/refactoring and the
effort assigned. The resulting renamed/refactored code was
re-run using the Watir spider script to evaluate and validate
our changes.

The goal of renaming/refactoring was not to strive for an
elegant implementation, but instead to avoid the type change
using the most minimal, simplest change to the code. Table X
shows the result of renaming/refactoring for the systems. The
second column refers to the number of cases for which we
could avoid type change through renaming/refactoring.

TABLE X. RQ3: MANUAL REFACTORING TO AVOID TYPE CHANGES.

System Can avoid Cannot avoid Uncertain
phpBB2 24 6 5
phpBB3 76 14 13
Drupal 46 17 0
Wordpress 167 8 2
Total 313 45 20

The results of this experiment were mixed. For phpBB2,
we are able avoid type change by simple renaming/refactoring
in 68% of the cases. whereas for Wordpress we are able to
rename/refactor 94% of the cases. For both phpBB3 and Drupal,
about 73% of the type changes can be avoid through simple
renaming/refactoring. It is important to note that the uncertain
cases are those for which we could proceed if we had complete
knowledge about file inclusions. We also restricted ourselves to
very local, simple code modifications in rode to reduce the risk
of introducing new bugs into the system. We believe that a great
many more cases could be easily avoided if the refactoring
were done by the regular maintainers of the systems.

Fig. 6. RQ3: Example of loop-dependent type change.

Table XI shows the estimated effort required to avoid the
type changes we were able to eliminate using renaming/refac-
toring. About 85% of the refactorings were estimated to be
easy, and there is only one case which we labeled as hard.
This is a case where the type change statement is located in a
very long method (about 2,300 lines of code) where the entire
logic is implemented as a sequence of nested switch and if
statements. Thus the vast majority of changes seem to be easy.
This result was expected, since majority of the type changed
variables were observed to be local in scope and used in only
a few statements.

TABLE XI. RQ3: EFFORT FOR MANUAL RENAMING/REFACTORING.

System Can avoid Easy Medium Hard
phpBB2 24 15 9 0
phpBB3 76 56 19 1
Drupal 46 40 6 0
Wordpress 167 155 12 0
Total 313 266 46 1

To evaluate whether our manual refactorings are effective,
we re-instrumented the modified Wordpress code and once
again exercised the modified application using the Watir spider
script, crawling the modified WEB application as described in
Section III to find any remaining type changes.

Of the 167 cases we were able to rename/refactor, the vast
majority of the previously observed type changes had been
resolved, and the statements were no longer reported as type-
changing. However, in eight of the 167 cases, the refactored
statements were still reported as type-changing. When we
analyzed these cases, we observed that all of them were involved
in loop structures like the one shown in Figure 6.

In this example, from Wordpress, the type of variable
$transient is changed from String to Object on
line 451 of file /include/update.php. The variable
is initialized in each iteration of the for loop at line 450
and then the type-changed by the assignment on line 451.
In the refactoring to resolve this type change, we had re-
named the variable on the left hand side of line 451 to
$transient_LME. Unfortunately, in the refactored code
we observed that $transient_LME once changed from
Object to boolean, and then from boolean back to
Object. This is because in each iteration of loop the function
get_site_transient returns different type. The author’s
comments on the refactoring indicated that there was some
uncertainty about the effect of the loop on this change, and
that indeed turned out to be the problem.

Summary: In summary, we can answer each of our research
questions as follows:

• RQ1: For the four production PHP systems we analyzed,
less than 1% of the assignment statements were observed
to change types. It seems that despite the flexibility of
dynamic typing in PHP, in practice production developers
are relatively consistent in variable typing.

• RQ2: Overall we observed that more than half of the
type change statements we found were trivial, that is, the
result type of the assignment should be obvious to the
programmer from the source code. Moreover, majority of
the non-trivial type changes are local in scope and thus
the impact of the type change is limited and relatively
easy to resolve. The majority of the type changes we
observed were judged to be non-harmful, and relatively
simple changes from string ! array and integer
! string are the most frequent.

• RQ3: Our manual refactoring revealed that most non-
harmful type changes can be avoided relatively easily using
local renaming or refactoring. The result of re-running the
refactored instrumented code of one large system showed
that these simple renaming refactorings can be effective
in the vast majority of cases.

V. THREATS TO VALIDITY

Given the exploratory nature of the study, we mainly have
threats to construct and external validity.

Construct validity threats concern the relationship between
theory and observation. As we have explained in Section IV,
one imprecision that could have occurred in our analyses is
related to incomplete include graph. Thus we conservatively
classified type changes of variable at global scope potentially-
harmful in cases where such variables are used in other files.
Moreover, we did not take into account the references passed to
function/method while performing reaching-definition analysis.
When we manually verified the result, we found that there were
actually very few such cases in our subject systems.

While we validated execution coverage of the WEB appli-
cations at the page level, the lack of a statement-level measure
of application coverage may affect our estimates of the actual
proportion of assignments that are type-changing. Complete
coverage of assignment statements in a WEB application is very
difficult to insure, due to the large proportion of exception- and
event-driven code. While we have mitigated this threat using a
subsequent function coverage analysis, complete coverage of
assignment statements can not been guaranteed, and thus our
estimates may be slightly low.

External validity threats concern the generalizability of our
results. The effort associated with the renaming/refactoring task
is purely subjective i.e., programming skill, and familiarity with
the code can affect how one estimates the effort of refactoring.
To limit the impact of this uncertainty, the refactorings and
associated effort estimated by one of the authors was verified
by a second author. A more realistic measure can be only
provided by an experiment involving the actual developers of
the systems.

We have no way to be certain that the renaming refactorings
faithfully preserve the original behaviour. While we did not

observe any visible change in behaviour when running the
refactored code compared to the original, it is possible that
more thorough testing might uncover some such changes.

Our study was limited to four of the most popular medium-
to-large production open source PHP applications. As men-
tioned in SectionII, We only consider assignments to variables,
thus type changes that are results of deserialization of data
using JSON, or changes to the type of elements of arrays are
not considered in this study, and thus our observation is limited
to change of variables’ type only. However, if a variables that
holds data through JASON deserialization is reassigned we can
detect if its type is changed. While we expect that we would
see similar results for other PHP applications, more studies
would need to be conducted to verify such a conjecture.

VI. RELATED WORK

The focus of this paper is the use of dynamic and static
analysis to explore the use of dynamic types in production
PHP-based open source WEB applications. Relevant related
work covers a number of areas: PHP analysis, WEB application
reverse- and re-engineering, and type analysis for PHP and
other languages.

A. PHP Application Analysis

Given its dynamic nature, PHP analysis often uses a
mix of static and dynamic analysis. Nguyen et al. [24]
developed a tool, WebDyn, for dynamic refactoring of PHP
Web applications. They manually analyzed 2,664 revisions
of four open-source PHP-based Web applications, and found
that there exists an special form of refactoring that is specific
to dynamic Web applications. Next, they categorized these
refactorings (which they called output-oriented refactoring
operations) in five groups: 1) dynamicalization (e.g., replacing
inline HTML/Javascript code with a PHP fragment or function),
2) re-structuring server and client code, 3) renaming embedded
HTML/Javascript elements, 4) standardizing embedded HTML
code, and 5) refactoring for separation of concerns. They use
dynamic analysis coupled with symbolic execution to identify
variable declarations, references as well as dangling references.

Alalfi et al. [7] proposed an approach based on a com-
bination of static and dynamic information to analyze Web
applications, and suggested the use of coverage metrics [8] to
ensure accurate information. They applied this approach to the
security analysis of WEB applications.

We share with these methods the use of a combination of
static and dynamic information. Like Alalfi [8], we opted for
a lightweight approach using a TXL source transformation to
add instrumentation to the WEB application, complemented
with a static analysis. Our goal however is very different, as
we seek to quantify the use of dynamic typing and to develop
a refactoring strategy to remove dynamic types by renaming
and refactoring to static typing like that in Hack.

B. Web Application Reverse Engineering

While our overarching goal is clearly different, certain
commonality can be found with the reverse engineering of WEB
applications (WAs), in particular static and dynamic analysis.
The first significant contribution was given by Ricca and Tonella,

who developed the ReWeb tool to perform analyses on web
sites [28], [29]. In particular, Ricca and Tonella introduced a
graphical representation of the web site to allow for traditional
static flow analyses such as reachability, dominance, and data
flow analysis on WAs. The same authors also proposed to
enhance static analysis by using dynamic information [31].
Clearly, ReWeb does not need page instrumentation; on the
other hand, web server logs, do not allow fine-grained analyses
such as needed to detect of a variable is being assigned a
different types in two dfferent execution paths.

Di Lucca et al. [13], [14], [15] proposed an approach and
a tool to extract Conallen’s UML documentation, use cases
and business object from Web applications. Their approach
uses static analysis, however they pointed out that diagrams
can be refined using dynamic information. WARE performs
static analyses on WAs, stores the extracted information into
a database and then uses such an information for the reverse-
engineering of UML diagrams.

Architectural recovery was also the goal of the works
of Hassan [19] and Antoniol et al. [9]. Both teams reverse
engineered high level views of the WEB application. Our
analyses are at a much finer grain, as we need to track individual
variable type changes in different execution paths.

In this work we have partially reused the techniques
originally developed in [16], complemented by a specific
fine-grained analysis and instrumentation oriented to tracking
variable dynamic type changes.

C. Type Analysis

Type analysis has traditionally been applied to compiled or
interpreted statically typed programming languages such as C++
and Java. See for example [10], [21] for Java programming and
the IBM Technical report [11] for C++. Recently researchers
have investigated type analyses for weakly typed languages
such as JavaScript [20] and dynamically typed languages such
as Python [22]. To our knowledge PHP’s type system has not
been specifically explored so far, however, various kind of
taint analyses have been proposed to enforce WEP application
security constraints - see for example [33], [17].

Most recently, the Hack programming language has been
proposed as an alternative to PHP. Hack is a statically typed
version of PHP meant to improve PHP and foster higher quality,
safer application development.

Our goal is not to formalize or study the PHP typing system,
but rather to evaluate to what extent production PHP developers
actually use dynamic typing, and to what extent an application
using dynamic typing of variables can be refactored into an
equivalent program using static types.

VII. CONCLUSION

This paper investigates how and to what extent PHP
programmers use dynamic typing. Scripting languages such as
PHP, Python and JavaScript do not enforce type consistency;
variables change type dynamically as they are assigned different
values at run time. At a first glance this characteristic seems very
appealing, increasing flexibility and easing rapid development.
However, it can also make a program much more difficult to
understand and thus more bug-prone and difficult to maintain.

For this reason among others, recently Facebook has moved to
Hack, a statically typed variant of PHP.

The three research questions investigated in this paper
provide evidence that, for four production PHP WEB appli-
cations, (1) dynamic typing seems to be used in a relatively
limited number of instances (possibly less than 1% of all
assignments); (2) most uses of dynamic typing are relatively
simple and programmer determination of the type-after can
often be determined locally from the source code; and (3) in
the majority of cases it is possible to refactor to static typing
using local renaming in a relatively easy way.

However, we also found evidence of non-trivial dynamic
type changes and at least some cases where simple refactoring
can not easily remove the need for dynamic types. These cases
often involve library and user defined functions, and specifically
functions returning different types on different calls. Removing
the dynamic type in these cases would involve refactoring the
entire function or library, with possible side effects and a higher
cost.

Whether or not Hack and statically typed PHP will be a
commercial success remains to be seen. However, it is evident
that, at least for the systems we have analyzed (i.e., phpBB2,
phpBB3, Drupal and WordPress) dynamically typed variables
are relatively rarely used, and in theory these applications could
be ported to a statically typed language with relatively modest
effort. Indeed, given the low number of assignments involving
dynamic typing in these production applications, one may
wonder if dynamic typing is needed at all. Nevertheless, we did
find cases where it was very difficult to determine the relation
between types before and after a PHP assignment statement,
and in these difficult to understand cases, the transition to static
typing may be more challenging.

Future work will be devoted to refining the dynamic type
assignment classification and to providing developers with a
tool chain to (1) automatically detect and identify uses of
dynamic typing ; and (2) automatically refactor the code to
eliminate dynamic typing in the simplest cases. We believe
that the more complex cases will be better handled manually
by programmers, who can better gauge how and whether the
change will be worthwhile.

REFERENCES

[1] Hack. [Online]. Available: http://hacklang.org/
[2] Hhvm hack. [Online]. Available: http://docs.hhvm.com/manual/en/install.

hack.conversion.php
[3] Php manual. [Online]. Available: http://php.net/manual/en/types.

comparisons.php
[4] Watir. [Online]. Available: http://watir.com/
[5] (2014) Stack exchange. [Online]. Available:

http://arstechnica.com/information-technology/2014/06/
why-do-dynamic-languages-make-it-difficult-to-maintain-large-codebases/

[6] (2014) Tiob software. [Online]. Available: http://www.tiobe.com/index.
php/content/paperinfo/tpci/index.html

[7] M. H. Alalfi, J. R. Cordy, and T. R. Dean, “Wafa: Fine-grained dynamic
analysis of web applications,” in WSE, 2009, pp. 141–150.

[8] ——, “Automating coverage metrics for dynamic web applications,” in
CSMR, 2010, pp. 51–60.

[9] G. Antoniol, M. Di Penta, and M. Zazzara, “Understanding web
applications through dynamic analysis,” in the 12th IEEE International
Workshop on Program Comprehension. Bari, ITALY: IEEE CS Press,
June 24-26 2004, pp. 120–129.

[10] B. Bellamy, P. Avgustinov, O. de Moor, and D. Sereni, “Efficient local
type inference,” in Proceedings of the 23rd ACM SIGPLAN Conference
on Object-oriented Programming Systems Languages and Applications,
ser. OOPSLA ’08. New York, NY, USA: ACM, 2008, pp. 475–492.
[Online]. Available: http://doi.acm.org/10.1145/1449764.1449802

[11] P. R. Carini and H. Srinivasan, “Flow-sensitive type analysis for c++,”
RESEARCH REPORT RC 20267, IBM T. J. WATSON RESEARCH
CENTER, Tech. Rep., 1995.

[12] J. R. Cordy, “The TXL source transformation language,” Sci. Comput.
Program., vol. 61, no. 3, pp. 190–210, 2006.

[13] G. Di Lucca, A. Fasolino, F. Pace, P. Tramontana, and U. De Carlini,
“WARE: A tool for the reverse engineering of web applications,” in
Proceedings of the European Conference on Software Maintenance and
Reengineering, Budapest, Hungary, Mar 2002, pp. 241–250.

[14] G. Di Lucca, A. Fasolino, P. Tramontana, and U. De Carlini, “Abstracting
business level UML diagrams from web applications,” Amsterdam, The
Netherlands, Oct 2003, pp. 12–19.

[15] ——, “Recovering a business object model from web applications,”
Dallas, TX, USA, Nov 2003, pp. 348–353.

[16] L. M. Eshkevari, G. Antoniol, J. R. Cordy, and M. D. Penta, “Identifying
and locating interference issues in php applications: the case of
wordpress,” in ICPC, 2014, pp. 157–167.

[17] W. Halfond, A. Orso, and P. Manolios, “Wasp: Protecting web ap-
plications using positive tainting and syntax-aware evaluation,” IEEE
Transactions on Software Engineering (TSE), vol. 34, no. 1, pp. 65–81,
2008.

[18] S. Hanenberg, “An experiment about static and dynamic type systems:
Doubts about the positive impact of static type systems on development
time,” in Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications (OOPSLA),
2010.

[19] A. E. Hassan and R. C. Holt, “Architecture recovery of web applications,”
in Proceedings of the 22rd International Conference on Software
Engineering, ICSE 2002, 19-25 May 2002, Orlando, Florida, USA.
ACM, 2002, pp. 349–359.

[20] S. H. Jensen, A. Møller, and P. Thiemann, “Type analysis for javascript,”
in Proceedings of the 16th International Symposium on Static Analysis,
ser. SAS ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 238–255.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-03237-0_17

[21] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “The Soot framework
for Java program analysis: a retrospective,” in Cetus Users and Compiler
Infrastructure Workshop, Galveston Island, TX, October 2011.

[22] E. Maia, N. Moreira, and R. Reis, “A static type inference for python,”
Proc. of DYLA, 2012.

[23] E. Meijer and P. Drayton, “Static typing where possible, dynamic typing
when needed,” in Workshop on Revival of Dynamic Languages, 2005.

[24] H. A. Nguyen, H. V. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Output-
oriented refactoring in php-based dynamic web applications,” in ICSM,
2013, pp. 150–159.

[25] B. O’Sullivan, J. Goerzen, and D. Stewart, Real World Haskell, 1st ed.
O’Reilly Media, Inc., 2008.

[26] L. D. Paulson, “Developers shift to dynamic programming languages,”
IEEE Computer, vol. 40, no. 2, pp. 12–15, 2007.

[27] B. C. Pierce, Types and Programming Languages. Cambridge, MA,
USA: MIT Press, 2002.

[28] F. Ricca and P. Tonella, “Analysis and testing of web applications,” in
Proceedings of the International Conference on Software Engineering.
Toronto, ON, Canada: IEEE CS Press, May 2001, pp. 25–34.

[29] ——, “Understanding and restructuring web sites with ReWeb,” IEEE
Multimedia, vol. 8, no. 2, pp. 40–51, Apr-Jun 2001.

[30] A. Stuchlik and S. Hanenberg, “Static vs. dynamic type systems:
An empirical study about the relationship between type casts and
development time,” SIGPLAN Notices, vol. 47, no. 2, pp. 97–106, 2011.

[31] P. Tonella and F. Ricca, “Dynamic model extraction and statistical
analysis of web applications,” Montréal, QC, Canada, Oct 2002, pp.
43–52.

[32] P. Tonella, G. Antoniol, R. Fiutem, and E. Merlo, “Variable-precision
reaching definitions analysis,” Journal of Software Maintenance, vol. 11,
no. 2, pp. 117–142, 1999.

[33] F. Yu, M. Alkhalaf, and T. Bultan, “Patching vulnerabilities with
sanitization synthesis,” in ICSE, 2011, pp. 251–260.

[34] A. Zeller, Why Programs Fail: A Guide to Systematic Debugging. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005.

