
Reverse Engineering Co-maintenance Relationships
Using Conceptual Analysis of Source Code

Scott Grant James R. Cordy David B. Skillicorn

Queen’s University, Kingston, Canada
{scott, cordy, skill}@cs.queensu.ca

Abstract—In this work, we explore the relationship between
topic models and co-maintenance history by introducing a visu-
alization that compares conceptual cohesion within changelists.
We explain how this view of the project history can give insight
about the semantic architecture of the code, and we identify
a number of patterns that characterize particular kinds of
maintenance tasks. We examine the relationship between co-
maintenance history and concept location, and visualize the
distribution of changes across concepts to show how these
techniques can be used to predict co-maintenance of source
code methods.

I. INTRODUCTION

Concept location is the act of identifying the set of
source code fragments in a software system that implement a
particular concept. Concepts intentionally have a very loose
definition in program comprehension, to allow for a wide
and subjective interpretation of the relationships between
code fragments. In topic modelling, the definition of a topic
is also intentionally vague. Concept models are not generally
designed to directly relate to the human-oriented notion of
concepts. They identify correlations based solely on the
occurrence of terms in the documents, and it is assumed
that these correlations will agree with our expectations.

This paper uses a visualization to explore the relation-
ship between topic models and co-maintenance history, in
an attempt to identify a human-oriented link between the
concepts found by topic models and software code. We work
at the changelist granularity to show that code fragments that
are modified together often share a conceptual relationship
as discovered by concept location techniques such as Latent
Semantic Indexing and Latent Dirichlet Allocation.

II. BACKGROUND

A topic model is a statistical model used to identify a
set of latent topics in a data set. The fundamental premise
behind a topic model is that there is some correlation
between the tokens in the data set that can be explained by
a mathematical relationship between them, and that these
relationships can be extracted as topics. One example of
a topic model is Latent Dirichlet Allocation (LDA) [2], a
generative model that assumes the data set was derived from
a prior topic distribution over the data. In general terms,
LDA assumes the existence of a number of topics that can
be used to relate elements of the data set to one another.
If two pieces of data are strongly related to the same topic,
they are likely to be very similar to one another. We would

like to understand the nature of the similarity to make better
use of topics during software development and maintenance.

The set of documents used in the concept models consists
of the complete set of source code methods in the package.
Each of these source code fragments has some degree of
membership in each of the topics found by the concept
model. In each of these models, we identify the largest value
in the set of numbers that describe membership in the topics,
and use that as the most significant concept for a document.

III. METHOD

In our visualizations in this paper, we examined three
different systems: the Apache httpd webserver written in
C, the Django web framework, written in Python, and the
Hadoop distributed computing project, written in Java. In
each case we used either Subversion or Git repository logs
to extract checkins. To generate Latent Dirichlet Allocation
models we used either Mallet [7] or GibbsLDA++ [8], and to
generate Latent Semantic Indexing models we used Matlab.

Our custom tool to generate these visualizations relies
on two pieces of data. First, a snapshot of the project is
taken and a model is generated from the extracted functions.
A parser extracts all of the functions from the package,
strips out comments, and splits apart the camel-case and
underscore-separated compound tokens to give a larger set of
meaningful words. Next, the full revision history is extracted
from the source code repository logs. From these logs,
all of the changelists that modify a source code function
are identified. As we traverse back in the project, some
functions are moved, renamed, or modified, and we attempt
to associate as many of them as possible. For each of
the changelists with meaningful code fragment changes, we
generate a row of data in the visualization. We take the list
of modified code fragments, identify the related concepts
for each of the fragments, and plot the row based on those
results. If there are many code fragments from the same
concept, larger circles are drawn, and vice versa.

Each visualization is generated as an interactive HTML
page, based on the input from a source code repository and
a secondary source such as a topic model. The rows of the
display are the list of relevant changelists over the history of
the project, starting at the oldest, and progressing forward
towards the newest revisions at the bottom. Each column in
the display corresponds to one of the concepts described by
the model. The circles of varying size and colour in each row



Legend
1 concept change
2 concept changes
3 concept changes
4 concept changes
5 or more changes

Figure 1. A full view of the visualization for approximately 35 consecutive changelists in httpd’s history. Each blue square on the left defines a horizontal
row corresponding to a changelist. Each column corresponds to a concept, and each coloured circle represents some number of modified code fragments
from that concept. The size and colour of each circle shows how many code fragments from that concept were modified in this particular changelist.

are an indication that some code fragments were modified in
that changelist. The horizontal location of the circle indicates
the concept in which the modifications were made.

Figure 1 shows a demonstration of this visualization. We
plot a portion of the change history for the Apache httpd
webserver using an LDA model with 100 topics. Each row in
the table corresponds to a changelist, with the oldest changes
at the top of the table, and the most recent at the bottom. The
circles are colour-coded and sized to indicate the number of
code fragments they represent. In this demonstration, we
use the largest red circles to indicate five or more code
fragments that are associated with a concept, ranging down
to a single small grey circle for one code fragment. Detailed
information can be obtained by hovering the mouse over
elements on the screen. The blue squares on the left side
are changelist indicators, and hovering over one will give
the revision id, author, date of revision, size of revision, and
the checkin message. Hovering over any of the coloured
circles will list the functions modified in that changelist that
are associated with a shared concept.

In general, the results are quite sparse. Although there are
many changelists with a small number of functions owned
by different concepts, it appears that many of the larger
changes are, for the most part, owned by some concepts
that describe the modified area. This seems to indicate a
correlation between co-maintenance history and conceptual
clustering. If we had instead discovered a relatively small
amount of conceptual clustering within changelists, it would
be an indication that concepts did not capture a human-
oriented perspective of revision history.

IV. PATTERNS

In our analysis of systems, we identified a number of
patterns that appear regularly. In this section we classify and
show by example how these patterns are found, and discuss
why they appear and how they correspond to particular
maintenance activities.

Vertical columns of circles indicate related source code
methods in the traditional topic modelling sense, where
two code fragments found in the same concept are likely
to be highly conceptually related to one another. We have
observed many instances of feature development that appear
as coloured vertical bands, and believe this is an easy way
to examine the history of a project with visual cues about
where and when certain features were implemented.

Horizontal rows of circles indicate larger system-wide
changes, or modifications that necessarily cut across con-
cepts. The justifications for aspect-oriented programming are
also appropriate here, and in the case of feature development,
large vertical bands followed by shallow horizontal ones
indicate feature development followed by implementation.

A. Feature Development

Iterative and incremental development is a common soft-
ware development practice [5]. When combined with source
code versioning systems, the addition of a new feature is
often characterized by a long series of related changelists.
When viewed in this visualization, a sequence of related
changelists often shows up as a vertical column of coloured
circles. This indicates a series of modifications to source
code methods that are conceptually related in the topic



Figure 2. A view of feature development, characterized by a long vertical band of related changes, as seen in the center of the diagram. This set of
changes involved an overhaul of mod include’s filter parser. Shortly after the feature was implemented, a large change spanning many concepts was added.
This new changelist was a system-wide move from the old feature to the new one.

Figure 3. A subset of the visualization showing an example of a commit
followed by patches. This pattern is seen throughout the code, and indicates
a single larger checkin, followed by small optimizations or bug fixes. This
example, starting from the orange circle on the right (revision 984188)
added a feature to mod proxy that improved communication. The next five
checkins fixed comments and code, added some additional checks, and
refactored code slightly.

model, and is a good demonstration that topic models like
LSI or LDA are capturing co-maintenance relationships.

In Figure 2, the upper-most changelist (revision 101036)
is described as the start of a major overhaul of mod include’s
filter parser. A set of consecutive changes introduces a code
wrapper, removes old code, refines the API, and improves
the efficiency and cleanliness of the code. Interestingly,
shortly after the vertical feature implementation line, a hor-
izontal pattern can be seen (revision 101154) that switches
to the new API. This large change necessarily touches many
concepts, and is described in the actual changelist as ”switch
to APR 1.0 API”. After a long run of feature changes, a
larger aspect-like change was submitted to implement the
feature in the code, and so the entire feature addition and
move to the new system can be seen in the visualization.

If we return to Figure 1, the view of the system also gives
at least one example of a feature in development. The long
run of vertical red, green, and orange dots in the upper left
is described in the changelists as a series of modifications to
the apr send functionality (revision 88625), and the related
code changes that go with it. The long vertical run on the
bottom right corner, and the associated modifications found
in other concepts, are described as a significant modification
to the FTP proxy code (revisions 88721 and forward).

B. Commit, Patch

In our visualization, and in our review of the changelist
history, it is common to find instances of a single large
conceptual change followed by several smaller ones. Figure
3 provides an example with two instances of larger checkins
followed by a series of smaller revisions. Examples like this
often show up visually as a larger green, orange, or red
circle, followed by a trail of grey circles. This pattern is seen
throughout the code, and indicates a single larger checkin,
followed by a sequence of small optimizations or bug fixes.

In the history represented by Figure 3, a modification was
made to mod proxy that improved communication handling
(large red circle). The next five checkins fixed comments
and code, added some additional checks, and refactored code
slightly. Other examples include data structure modifications
that require additional fixes after submission, or feature
propagations that can’t be made in a single large submission.

This type of modification is often seen as a subset of
the feature development pattern from Section IV-A, where
incremental changes are made, tested, and patched. In fact,
it may be that this pattern is just a specialized version of
feature development at a much smaller scale.

C. Co-maintained Concepts

One surprising artifact of our visualization was the rel-
atively low frequency of co-maintained concepts. More
specifically, it is much more common to find changes that
are either localized to a single topic, or spread out across
many topics. It is very rare to find a changelist with a large
number of method modifications that are evenly distributed
across two or three concepts. Instead, changes with a large
number of method modifications are usually concentrated in
a single concept (possibly with some sparse distribution in
other concepts), or widely spread out like an aspect.

We had considered the possibility that large pairs of
parallel vertical columns would emerge, indicating a strong
relationship between two concepts. This does show up from



Figure 4. An example of aspect development. These three changelists, starting with revision 95149, made a modification to the behaviour of several related
logging functions. These functions are found throughout the code, and as a result, we see a very wide range of concepts affected by the modification.

Figure 5. An example of a global change. These two changelists (revisions 332305 and 332306) involved a global removal of tabbed whitespace in favour
of spaces. Another similar changelist (revision 88019) renamed various functions.

Figure 6. A subset of the visualization showing an example of co-
maintained concepts. In this example, the developers were working with
some communication code dealing with a proxy worker pool (revision
104557 and onward). A number of code cleanup submissions were made,
along with some data structure changes. The largest vertical line along the
right side of the diagram is made up of modifications to the actual worker
pool code (ap proxy get balancer, ap proxy get worker, and so on), and
other vertical lines include proxy connection code and socket functions.

time to time, as in Figure 6, but it is much more frequent
to see changes isolated to a single concept, or distributed
across a wide range of concepts. In Figure 6, it appears that
the development of a new feature that is closely tied to old
functionality in some way, such as the addition of a proxy
worker pool in httpd instead of a single worker, may result
in a distinct concept. Occasionally such pairs or groups of
vertical runs will occur, but it is rare. It seems that developers
much more commonly work on either a single conceptual
area or on a cross-cutting one when making single checkins.

D. Aspects

Aspect-Oriented Programming is a paradigm that explic-
itly attempts to capture the notion of cross-cutting concepts
(or business concerns) as separate aspects. In this context, a

changelist that modifies an aspect might be seen as one that
modifies code fragments across a wide range of concepts.

Figure 4 shows one example of aspect development
with a fairly wide distribution across topics. In the figure,
three changelists (revisions 95149, 95150, and 95151) are
made to modify the behaviour of the ap log error and
ap log prerror logging functions. These functions are dis-
tributed throughout the code, and as a result, we see a
very wide range of concepts affected by the modification.
Logging is a classic example of a cross-cutting concern, and
from our observations, aspects cross topics as well.

Other research has also suggested that aspects may be
latent topics with high scattering entropy [1], which may
suggest that true source code aspects would fall under a
single topic. Although we have observed no clear example
of this yet, it is a compelling idea.

E. Global Changes

Larger system-wide changes often appear as wide hori-
zontal bars that modify many concepts. These are usually not
indicative of feature or concept changes, but instead relate to
system wide syntax changes or large renamings. In httpd, we
only find a small number of instances of these large changes.
Each one deals with a superficial system-wide modification,
such as the removal of tabbed spacing, and holds relatively
little value from a maintenance standpoint.

Figure 5 shows an example of a large global change.
It stands out very clearly in the visualization, and ends
up affecting nearly all of the concepts discovered by the
model. From our observations, these global changes have
no meaningful functional impact, even though they are the
most distinct visual features in the display.

V. MODEL COMPARISON

In Figure 7, two images of the same approximately thirty
changelists are presented as seen in our visualization for LSI
(above) and LDA (below). Each model was generated using
100 topics, and the same snapshot of the code was used to
generate each model.

When we looked at the average cluster size for models
generated on our data sets, on average, LDA achieved a
higher number of code fragments per cluster than LSI. For
example, in httpd, the average cluster size across the entire
code history using LDA was 1.76, compared to an average
cluster size using LSI of 1.35.



Figure 7. Two visualizations of a historical subset of the same software system, modelled with Latent Semantic Indexing with 100 topics (above) and
Latent Dirichlet Allocation (below).

There are many reasons why LSI may be less effective
at clustering based on co-maintenance in this example. The
ideal number of topics to capture co-maintenance relation-
ships may (and probably does) vary between LSI and LDA.
However, we experimented with a range of topic counts for
each system, and were unable to obtain better clusters using
LSI when compared with LDA.

VI. RELATED AND FUTURE WORK

Techniques that aid in the visualization of code clones
share many similarities with our technique. In Livieri et
al. [6], a thorough examination of code clones over large
projects is undertaken. In the study, a colourized heatmap
is provided for code clone coverage, with scatterplots for
easier review. Göde and Koschke [4] have also devised some
very clever visualizations to show the evolution of clones
and clone groups over time. Our own visualization came
about from a related demonstration by Cordy for the use of
structural scatterplots in observing source code clones [3].

The majority of our research work using this visualization
has centered on the relationship between co-maintenance
history and the topics identified by Latent Dirichlet Allo-
cation. We wanted to demonstrate that code fragments that
were maintained together were likely to be conceptually
related to one another. The maintenance patterns we have
observed are also very interesting, and we plan to do more
research to identify what other patterns may exist, and what
the known patterns actually tell us about the kinds of changes
occurring in the source code.

VII. CONCLUSIONS

We have introduced a visualization designed to explore the
clustering of features over the changelist history of a project.

With the visualization, we observed a relationship between
topic models and co-maintenance history by identifying and
cataloguing patterns that characterize a number of particular
kinds of maintenance.

ACKNOWLEDGEMENTS

This work is supported by the Natural Sciences and
Engineering Research Council of Canada, by the Ontario
Graduate Scholarship Program, and by an IBM Center for
Advanced Studies Fellowship.

REFERENCES

[1] P. F. Baldi, C. V. Lopes, E. J. Linstead, and S. K. Bajracharya,
“A theory of aspects as latent topics,” in Proc. OOPSLA ’08,
2008, pp. 543–562.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet
allocation,” J. Mach. Learn. Res., vol. 3, pp. 993–1022, 2003.

[3] J. R. Cordy, “Exploring large-scale system similarity using
incremental clone detection and live scatterplots,” in Proc.
ICPC ’11, June 2011, pp. 151–160.

[4] N. Göde and R. Koschke, “Studying clone evolution using
incremental clone detection,” J. Softw. Maint. and Evol.: Res.
and Practice, 2011 (to appear).

[5] C. Larman and V. Basili, “Iterative and incremental develop-
ments. a brief history,” Computer, vol. 36, no. 6, pp. 47 – 56,
June 2003.

[6] S. Livieri, Y. Higo, M. Matushita, and K. Inoue, “Very-large
scale code clone analysis and visualization of open source
programs using distributed CCFinder: D-CCFinder,” in Proc.
ICSE ’07, 2007, pp. 106–115.

[7] A. K. McCallum, “MALLET: A Machine Learning for Lan-
guage Toolkit,” http://mallet.cs.umass.edu, 2002.

[8] X.-H. Phan and C.-T. Nguyen, “GibbsLDA++, A C/C++
Implementation of Latent Dirichlet Allocation (LDA) using
Gibbs Sampling for Parameter Estimation and Inference,”
http://gibbslda.sourceforge.net.


