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Abstract

The optimal number of latent topics required to model
the most accurate latent substructure for a source code cor-
pus is an open question in source code analysis. Most esti-
mates about the number of latent topics that exist in a soft-
ware corpus are based on the assumption that the data is
similar to natural language, but there is little empirical evi-
dence to support this. In order to help determine the appro-
priate number of topics needed to accurately represent the
source code, we generate a series of Latent Dirichlet Allo-
cation models with varying topic counts. We use a heuristic
to evaluate the ability of the model to identify related source
code blocks, and demonstrate the consequences of choosing
too few or too many latent topics.

1. Introduction

Concept and feature location techniques are designed to
extract related subsets of program code in order to aid pro-
gram comprehension. These location techniques whether
supervised or not seek to identify related blocks of code,
and aim to ease the difficult process of making sense of large
code bases. This can remove a great deal of overhead when
trying to understand a set of code, and can even work to
prevent related methods from going unnoticed when devel-
oping an understanding of unfamiliar source code. The ini-
tial roots of concept and feature location can be traced back
to program comprehension theories [8, 9, 28]. These early
works attempted to determine how a programmer developed
the comprehension necessary to debug, modify, or docu-
ment code. From these, Biggerstaff identified the concept
assignment problem [3, 4], and described it as the problem
of discovering individual human-oriented concepts and as-
signing them to their implementation-oriented counterparts
for a given a program.

One of the common questions asked by program com-
prehension relates to the number of concepts that most ap-

propriately describes a set of source code. Statistical tests
can demonstrate the amount of loss that occurs when ap-
proximating document sets by reducing the number of di-
mensions used to describe the data. Standard topic count
metrics like the square root of the document size, or even
the magic number 300, have all been proposed and used as
accepted values [17]. While it is true that these are com-
mon in natural language analysis, it has not been defini-
tively shown that source code and natural language text are
similar enough to warrant the use of the same values. It is
not clear whether or not source code analysis will require
more or fewer topics for similar document set sizes. Having
a way to verify results can demonstrate the relationship be-
tween natural language and source code, and how they map
down to conceptual models.

In this paper, we use Latent Dirichlet Allocation (LDA)
[5] as a statistical model to infer an appropriate number of
latent topics needed to optimize the topic distributions over
a set of source code methods. LDA is a generative statistical
model that postulates a latent set of topics threaded through
a set of documents. It assumes these documents have been
generated due to the probability distribution over these top-
ics, and that the words in the documents themselves are gen-
erated probabilistically in a similar manner. We segment a
source code package into its individual methods, treat each
method as a document, and generate successive LDA mod-
els with different values for the constant number of latent
topics. Our metric is a simple heuristic based on location
in the source code package structure that gives a quick and
reasonable estimate about whether or not a pair of methods
are conceptually related to one another.

The main contributions of this paper are:

• A method for demonstrating an estimate of the optimal
number of latent topics in source code. The idea be-
hind discovering latent topics is to find a substructure
that associates the existing methods in a realistic way.
Too few topics leads to over-generalization, and the
inaccurate association of code blocks to one another



that are actually unrelated. Too many topics may fail
to bring related sets of code together, and reduce the
system to nothing better than a system with the same
number of topics as there are methods.

• A rough guideline for estimating good latent topic
counts in source code based on experimental results. It
is possible to run an analysis before an experiment on
each set of source code, but a goal would be to provide
a reasonable way of estimating the number of topics re-
quired to describe the system without this testing. We
perform our analysis over several code packages, and
attempt to estimate the actual optimal number of topic
counts found by experimentation. Again, we define the
optimal number of topics as the topic count that best
identifies pairwise relationships between conceptually
related documents.

• Verification and comparison of previous estimates for
the latent topic counts in source code. Some work has
been done in this area already [16, 23], but it has un-
fortunately not provided many solid conclusions aside
from a subjective evaluation. We demonstrate the va-
lidity of our results through a set of heuristics designed
to give a reasonable estimate of the strength of each
topic size in describing the conceptual substructure of
the data.

This research can be used by the source code analysis
and concept location communities to improve existing ex-
periments, to evaluate the data garnered from existing re-
sults, and to choose appropriate topic counts for new exper-
iments. A similar approach to examining the ideal latent
topic count in natural language was taken by Kontostathis
[15], but comparatively little analysis has been made in the
software concept location community [1]. With this experi-
ment, we hope to identify appropriate topic count values for
source code data, allowing for more confident conclusions
about program comprehension.

To clarify some terminology, we define some of the
terms used in this paper. In concept location, the latent top-
ics uncovered by information retrieval techniques are often
considered concepts, and we use the terms concept and la-
tent topic interchangeably. Also, information retrieval mod-
els discuss the relationships between documents in a corpus
of text. For our purposes, the documents are source code
methods, and the corpus of text is the total source code of
the application. We also use those terms interchangeably,
and any reference to a document can be considered to re-
fer to a source code method. Information retrieval methods
consider the terms used in documents, and for our purposes,
terms are tokens. We consider the optimal number of con-
cepts to be the one that best relates the documents to one
another through the latent substructure of the model. If a

certain topic value for the model gives the highest probabil-
ity that two conceptually related documents are related in
the model, and other topic values tend to give worse results
overall, the original topic value is optimal.

2. Background

A latent variable model specifies the distribution of a set
of random variables in which some additional variables are
assumed to exist and be unobservable. The observable vari-
ables are referred to as manifest variables, and have been
directly measured in some way. The unobservable variables
are called latent variables, and are inferred somehow from
the manifest variables. Latent variable models differ from
traditional statistical models only in the sense that in addi-
tion to the observed data, we assume some hidden substruc-
ture to be present [2].

In the social sciences, latent variables are used to repre-
sent highly abstract concepts like intelligence, social class,
power, and expectations. Economics uses the theory of
latent variables aggressively, and considers concepts like
quality of life, morale, and happiness as theoretical values
that are hidden inside real data [6]. The analysis of source
code and program documentation has been looking at latent
variables for over a decade, and although there have been
promising results, no real specific latent variables have been
consistently identified. The reason for this absence is the
difficulty in characterising a latent variable; coming up with
an appropriate description for a concept that is strictly based
on the presence or absence of tokens may be too vague, and
the subtleties of the concept may be overlooked. For ex-
ample, a concept that arises with the presence of the term
“memory” may be initially judged as a set of memory man-
agement methods, but this interpretation is difficult to prove
without a full audit of the results.

Latent variable models are primarily used for two main
reasons. First, models derived from a large set of data may
be too big to process in any meaningful way. Using a la-
tent variable model to extract latent variables as new com-
ponents can act as a dimensionality reduction technique,
which can transform a large matrix into a smaller close rep-
resentation of the data. Many of these latent models can
even provide a value for the accuracy maintained in the
new representation. For example, in the Singular Value De-
composition used in Latent Semantic Indexing, the singu-
lar values of the diagonal Σ matrix correspond to the im-
portance of each dimension in describing the original data
set. Second, extracting the latent variables can help to de-
tect structure in the relationships between the manifest vari-
ables. Identifying correlations in this way can demonstrate
information about the original data that may not have been
immediately clear.

The fundamental premise behind a latent variable model



Figure 1. Converting a term-document matrix
into a set of topics and related methods. We
begin with a matrix or probabilistic represen-
tation of the original document set, abstract-
ing away the actual tokens, and only consid-
ering the presence or absence of tokens. Af-
ter a latent model is derived from this data,
the collection of topics can be examined, and
the most relevant documents for each topic
can be identified.

is that there is some covariation observed among the man-
ifest variables that can be explained by a mathematical re-
lationship between them, and that these relationships can
be extracted as latent variables. Figure 1 provides a brief
overview of the process of moving from a term-document
matrix into the desired topic list with related methods.

From a source code corpus (generally segmented into
methods, but any source code block is acceptable), we
can generate a term-document matrix M in which the rows
relate to individual terms or tokens in the code, and the
columns correspond to the segmented source methods. The
value in position Mij indicates the importance or presence
of the ith term in document j. This term-document matrix
is taken as input into a latent variable model, which identi-
fies statistical relationships in the data. These relationships
are often treated as latent concepts that relate relevant doc-
uments to one another. Additional techniques exist to de-
termine which documents are most relevant given a latent
variable, and the most relevant documents may be treated
as the best fitting documents for a given concept. If, for ex-
ample, it happened that a concept was extracted relating to
the methods of the code dealing with the logging subsystem,
we would expect the best fitting documents for that topic to
all be fundamentally related to logging in some way.

Latent Dirichlet Allocation [5] is a generative statistical
model of a document set in which a set of latent topics are
assumed to determine the distribution of documents and to-
kens. It expands on other latent models like Latent Semantic
Indexing by resting the model on a sounder statistical foun-
dation, and making assumptions about the probability dis-
tributions that appear to provide more accurate conclusions.
It is important to reiterate that although we use LDA as a la-

tent model in this experiment, and the specific topic counts
are tied to the performance of this particular model, any la-
tent topic model can be substituted with this technique, and
can be expected to provide similar results.

The motivation for this research stems from our earlier
work using latent models to uncover relationships in source
code. We examined Independent Component Analysis [10]
as a way to identify latent substructure in source code, and
attempted to demonstrate how it could be used as a way
to identify related blocks of information [13, 14]. We also
used latent models to identify clones, and showed that some
variance in the syntactic data can be resolved through the
latent semantic information identified by these models [12].
Although these results have been very promising, we were
always curious as to how to choose the number of latent
concepts that would best fit the data. Our attempts to test
different values often led to subjective evaluations, or an
inability to discover if one value was better than the others,
and so we resolved to attempt to identify the appropriate
topic count value for each source code corpus.

3. Approach

3.1. Overview

The goal of this research is to identify a method for ob-
taining an estimate of the optimal number of latent topics
for source code analysis. Previous research has relied on
determining whether or not these latent topic models were
able to identify relationships in source code documents, but
did not focus on the number of topics that best represents
the data. We present two metrics that can be used as heuris-
tics to estimate relationships in documents, and then com-
bine the two, in order to use the size of the intersection of
the document sets from the two heuristics as an estimate
to which we can compare an LDA model’s performance in
concept location for a given topic count.

In the first heuristic, we use the vector space model [27]
as a way of identifying related documents. If a document
is represented by a vector of size k in a model with k latent
topics, the most conceptually relevant documents to it are its
nearest neighbours by cosine distance in the vector space. In
the second heuristic, we identify a heuristic based on source
code locality, and justify its use as a metric for conceptual
relevance. We explain how the two metrics are combined
to produce two scores on the overall ability of the model
to represent the conceptual relationships in the source code,
and iteratively increase the topic count in order to identify
the optimal number of latent topics for a given source code
corpus.

In the vector space model, each document is modelled as
a vector in some high dimensional space, with each axis of
the dimensional space representing some aspect of the fre-



quency of a term. Some information about the original set is
lost, including the ordering of the documents, and the order-
ing of terms within each document. However, this mapping
from documents to vectors allows for a new way to quantify
the similarity between each other.

3.2. The Vector Space Neighbours

In order to accurately estimate the conceptual relation-
ships obtained by the topic distributions over documents,
we treat each document topic distribution as a vector, and
use the cosine distance between two vectors as a measure
of their conceptual similarity. Our vector space representa-
tion uses the topic distribution over each document, and so
each document in a model with k topics is represented by a
vector of k real numbers ranging from 0 to 1.

The most common way of determining how related two
documents are when using the vector space model is by tak-
ing the cosine similarity between the vectors that represent
the documents. Cosine similarity takes the cosine of the an-
gle between the vectors, and results in a value between -1
and 1. A value of 1 indicates that the vectors represent two
documents that are completely conceptually similar, and a
value of -1 indicates two completely dissimilar documents.
If we are interested in finding the distance between two doc-
uments d1 and d2, where the angle between them is repre-
sented by θ, we can use the following equation:

cos θ =
d1 · d2

|d1||d2|
(1)

For the purposes of this experiment, we consider docu-
ment A to be conceptually related to document B if doc-
ument A is one of the n nearest neighbours to document
B. Our value for n is a variable measured in this experi-
ment, and is discussed in further detail later; generally, n is
a small number relative to the size of the document set. It
is important to note that the fact that this relationship is not
commutative, and if document A is conceptually related to
document B, it is not necessarily true that document B is
related to document A. This is best considered in the case
of outlier methods like main(), who must by definition have
some nearest neighbours, even if they are very far away in
the vector space. We use main() as an outlier example due
to the fact that it often makes calls to a large set of concep-
tually dissimilar helper methods, but does not rank highly
in any particular conceptual topic itself.

Heuristic 1: A method is likely to be conceptually re-
lated to its nearest neighbours in the vector space represen-
tation of the source code methods.

We justify heuristic 1 by noting that this has been an
assumption in latent variable models since the inception
of the Vector Space Model [27], and has continued on in

Figure 2. Heuristic 1: A method is likely to
be conceptually related to its nearest neigh-
bours in the vector space representation of
the source code methods. Vectors a and b are
more likely to be conceptually related than
a and c or b and c, as they lie very close to-
gether in the vector space.

/my_code/foo/bar/file_a.c
/my_code/foo/bar/file_b.c
...
/my_code/bash/file_c.c

Figure 3. Heuristic 2: Two methods are likely
to be conceptually related if they are found
in the same file or folder. The source code
files file a.c and file b.c are more likely to be
conceptually related than file a.c and file c.c
or file b.c and file c.c, as they lie very close
together in the package structure.

the concept location and program comprehension commu-
nity [20, 21]. In practice, the nearest neighbour and cluster-
ing approaches are a common way to find related artifacts
in a set, and we follow this approach. The basic premise
of these models is to identify relationships between docu-
ments, and the vector space representation allows a way to
determine how related the documents are in the conceptual
space represented by the new basis.

3.3. The Package Structure Heuristic

Our second metric for automatically predicting concep-
tual similarity involves co-location in the source code struc-
ture. In the first case, we assume that a method is relevant



For k in the range of topic counts to evaluate:
Generate an LDA model Mk with k topics
For each document d in Mk:

Get the m nearest neighbours by cosine distance
Calculate the number of documents in m that lie in the same file/folder
Call this the overall nearest neighbour score for Mk

For each topic t in Mk:
Get the n documents that have the highest probability of belonging to this topic
Calculate the number of conceptually related documents for each document in n
Call the sum of these relationships the overall topic score for Mk

Figure 4. Pseudocode for our process.

if it is contained in the same source code file as the source
method. We assume that developers structure code in a rela-
tively ordered way, and that in general, conceptually related
methods will be found together. In the second case, we
expand that assumption, and assume that one source code
method is relevant to another if it is contained in the same
directory. Depending on the particular structure and size of
the code, we use one of these metrics as the second heuris-
tic.

Heuristic 2: Two methods are likely to be conceptually
related if they are found in the same file or folder.

We justify heuristic 2 by two methods. First, in our
earlier research in using IR methods as a way to locate
clones [12], the results pointed to a correlation between
clones and concepts. While it is not true that all clones are
conceptually related, they are more likely to be conceptu-
ally related than not. Second, Roy & Cordy have analyzed
the proximity of clones to one another in a range of open
source applications and languages [26], and have observed
that in most cases the majority of clones are found in the
same source file or folder. It should be noted however that
while most systems exhibit this effect, it does not hold for
all applications and languages. In particular, in their re-
cent work on cloning in Python, clones were observed to
be more distributed across the application structure than in
other languages [25]. Even in the worst case where clones
can be fairly distributed across the application, the justifi-
cation only needs to rely on the fact that clones are more
likely to be found near one another in the package structure
than two random source code fragments.

3.4. Combining the Results

With the information outlined previously, we have out-
lined two unsupervised heuristics for determining whether
or not a document is conceptually related to another docu-
ment. We combine the two, in order to allow for an unsu-
pervised method for evaluating the ability of a latent model
to describe the latent relationships that we would like to un-
cover in the document set. First, we choose a starting value,

called k, for the number of latent topics we want to fit to the
data. We then generate an LDA model with k latent topics,
and examine the topic distributions for each document; the
document’s distribution over topics is its vector space rep-
resentation. It is important to note that the k parameter is
one value in a range of options that we want to test against.
For example, we may choose k in [25, 50, 75, 100] for one
system, to identify which of the four topic values fits the
data best.

For each document, the n nearest neighbours are deter-
mined using the cosine distance. The number of documents
in the nearest neighbours that are conceptually related using
the code proximity heuristic is taken as a document score,
and the average score over all documents is the overall near-
est neighbour score for the latent model with k topics.

For each topic, the m documents with the highest prob-
ability of fitting this topic are identified, and these can be
considered the documents that best represent the informa-
tion uncovered by this latent topic. For each of the m doc-
uments that best match a topic, we determine how many of
the other m documents are conceptually related using the
code proximity heuristic, and take the sum of the scores as
the overall topic score for the latent model with k topics.

These two results provide us with a way to estimate the
evaluation of a topic model with respect to its ability to un-
cover the latent topics giving the best way of identifying
conceptually related documents. The overall nearest neigh-
bour score for the latent model describes how well the near-
est neighbours of a document in the vector space relate con-
ceptually. The overall topic score for the latent model de-
scribes how well the topics in the model are able to match
up related sets of documents together with one another.

3.5. Implementation

We present experimental results comparing the nearest-
neighbour scores of our models for varying topic counts.
The Python script for our experimental framework
is available from http://research.cs.queensu.
ca/home/scott/scam10/, and the LDA implementa-
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Figure 5. PostgreSQL overall topic scores. A
clear peak emerges around 75 to 125 topics,
suggesting that the optimal number of latent
topics would sit in this range.

tion we have used is the freely available GibbsLDA++ pack-
age [24]. The only parameter we sought to modify in Gibb-
sLDA++ was the topic count, and so the tool was run using
the defaults for variables like the α and β hyperparameters.

Each source code package was segmented into individ-
ual methods without comments using TXL [11], and tok-
enized into lower-case strings. This new data was used as
input for GibbsLDA++ on each successive run. Our Python
script was used to handle automating successive runs of la-
tent topic sizes and calculating the overall scores for each
model.

For each value k in the range of latent topic counts we
wish to consider, we take the following action. We gener-
ate an LDA model of the data given the requirement that
it limit the model to k latent topics. Each document has
its vector space nearest neighbours calculated for a set of
m values, and the average number of documents that pass
both heuristics over the entire corpus is saved off. We used
m = 5, 10, 25, 50 to see if varying the number of nearest
neighbours affected the final evaluation of the model. This
means that if 4 of the 5 nearest neighbours in the vector
space were also found in the same folder in the package
file structure, the document in question received a score of
80% for m = 5. For each topic in the model, the top m can-
didates that had the highest likelihood of being generated
from that particular topic were examined. Again, we used
the same set of values for m, in order to evaluate the model
scope over larger numbers of documents. The number of
conceptually related documents were calculated in each set
of m documents for each topic, and the average was taken
as the overall topic score for the model with k latent topics.
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Figure 6. PostgreSQL overall nearest neigh-
bour scores. An estimate on the amount of
original accuracy retained with lower topic
counts can be plotted.

An overview of the process in pseudocode is provided in
Figure 4.

The overall topic score for a model is the clearest way to
demonstrate the optimal number of topics for a source code
corpus. When plotting the score for models that have vari-
ous values of k, a clear peak emerges, identifying the spot
in which topics contain the greatest number of methods that
are co-located in the source code. Figure 5 shows an exam-
ple plot for the PostgreSQL source code corpus. The maxi-
mum values are found somewhere around 75 to 125 topics,
after which the overall topic score begins to plummet, and
the topics lose their conceptual coherence.

The overall nearest neighbour score for a model demon-
strates the amount of abstraction that occurs when a model
with k topics is produced from the data. Figure 6 shows
an example plot for the PostgreSQL source code corpus.
Lower or higher values are not as important as evaluation
scores for the entire model, but rather this number acts as a
way to visualize the “smoothing” effect of a latent variable
model when considering the information loss conceded by
dimensionality reduction.

It is important to note that the asymptote of the overall
nearest neighbour score graph is effectively the overall near-
est neighbour score for a model with document vectors left
in their original term-document matrix form. As the num-
ber of latent topics grows, the vectors lose the “smoothing”
effect, and approach the original form. By comparing the
peak of the overall topic score with the corresponding over-
all nearest neighbour score, we can show that the source
code retains approximately 80% to 90% of the original in-
formation.



4. Results

4.1. Overview

Figure 7 provides a summary of our results when testing
several source code packages. Each source code corpus is
listed by name and description. The number of individual
tokens in the corpus is provided, and the number of meth-
ods, given as documents, is listed to provide an idea of the
size of the data set. The topic peak indicates the point at
which the overall topic score reaches a plateau, and where
heuristic 2 would suggest that the latent model best captures
the relationships between the documents. Adding more top-
ics after this point decreases the ability of the latent model
to extract the latent relationships, and similarly, too few top-
ics blurs the data too strongly.

4.2. Evaluation

A significant number of the source code datasets that we
reviewed showed a clear peak in the overall topic count.
The peak varied in magnitude and location, but when it was
present, it appeared to be an indication on the topic count
that best represented the number of latent topics necessary
to optimize the second heuristic.

What can be observed from Figure 7 and Figure 8 is that
the optimal number of topics is often slightly less than the
typical default of 300 dimensions for source code packages
of ten thousand methods or less. The data hints at a log-
arithmic growth in the number of latent topics as the doc-
ument count increases. As noted earlier, the topic counts
also seem to be relevant to the language, and it is not nec-
essarily true that code written in C would require the same
number of topics in its optimal model as code written in
Python or C#. It is not clear whether or not a clear formula
can be derived from this sample set, but in our experiments,
for source code in a given language, the topic peaks did not
diverge from one another too strongly.

There is a very real concern in assuming the co-location
of source code that must be addressed. Our heuristics as-
sume a structure that allows for enough nearest neighbours
to register in the files and folders of the program structure.
With smaller systems, and with methodologies like aspect-
oriented programming, our heuristics do not accurately in-
terpret the cross-cutting concepts found in the code. Small
systems suffer noticeably, and in Figure 8, a set of sys-
tems that did not provide clear peaks in the overall topic
scores are presented. A sample of this data can be visual-
ized in Figure 9, in which no clear peak emerges. In lieu
of this information, we can still analyse the overall nearest
neighbour score for the point at which things begin to sta-
bilize, and from this, we can make some estimates on how
well the model detects the latent substructure. For exam-

ple, if we know that in our other examples, the overall topic
score peak was often found just before the point at which
the overall nearest neighbour stabilizing point was reached,
we can claim that the ideal topic count for this latent topic
model should not exceed this stabilizing point. Our heuris-
tic claim is strengthened by recent work in the clone de-
tection community, demonstrating a clear relationship be-
tween proximity in the package structure and the likelihood
of clones [25]. Using this information along with our obser-
vation that clones often share similar semantic information,
and are frequently identified as semantically related in la-
tent models [12], we believe that heuristic 2 is a reasonable
metric.

Given that heuristic 2 does not work for all source code
packages, it should be noted that this overall technique of
comparing the vector space nearest neighbours with any
other metric is a feasible way to estimate the overall topic
score.

The fact that we use source code locality in heuristic
2 is not binding to the overall method of combining ap-
proaches in order to identify the overall topic peak. It is
simply a means to estimating conceptual relationships be-
tween source code methods in an unsupervised way. All
that our method requires in order to identify such a peak is
a heuristic that is correlated to the actual conceptual simi-
larity observed in the code. Given this correlation, a source
code package large enough to support a latent topic model
will see the heuristic identify enough true positive and neg-
ative results to identify the overall topic peak. As an exam-
ple, consider a heuristic in which two source code methods
are treated as conceptually similar if they have shared a ver-
sion control change list. There will undoubtedly be a large
number of false positives with this heuristic, and it is not
guaranteed to be comprehensive over the entire source code
base. If it is true that it captures some of the conceptual
similarities in the code, it could be used as a replacement
for heuristic 2, and could therefore be used to evaluate the
performance of a latent topic model.

4.3. Summary of Results

We have presented a method for estimating the optimal
number of topics in a latent model by using two heuristics.
In many cases, this method identifies a clear peak in the
overall topic score, and can be posited to predict the ideal
number of latent topics needed to extract a hidden substruc-
ture that related documents to one another.

The optimal topic counts for small to medium sized
source code packages appears to lie slightly below the stan-
dard count of 300. More importantly perhaps, the optimal
topic counts tend to be achieved when the data is smoothed
out to remove approximately 10% to 20% of the original
raw information. This smoothing effect is related to the



Corpus Location Tokens Methods Topic Peak
cook (C) http://miller.emu.id.au/pmiller/software/cook/ 3992 1362 75-100
httpd (C) http://httpd.apache.org/ 20488 5758 125

linuxkernel (C) http://www.linux.org/ kernel directory, v2.6.24.2 12379 3964 100
postgresql (C) http://www.postgresql.org/ 16700 4689 75-125

snns (C) http://www.ra.cs.uni-tuebingen.de/SNNS/ 9625 2213 75-100
db4o (C#) http://www.db4o.com/ v7.4 13658 13855 200-225
linq (C#) http://msdn.microsoft.com/en-us/netframework/aa904594.aspx 1993 638 100-125
nant (C#) http://nant.sourceforge.net/ v0.86 beta 1 6133 2383 150-175

rssbandit (C#) http://www.rssbandit.org/ v1.5.0.17 10871 4587 150-200
django (Python) http://www.djangoproject.com/ 14160 7084 275

Figure 7. Source code results where a clear overall topic score peak emerges.

Corpus Location Tokens Methods Topic Peak
abyss (C) http://abyss.sourceforge.net/ 641 148 10-15
bison (C) http://www.gnu.org/software/bison/ 2024 315 20-25
gzip (C) http://www.gzip.org/ v1.2.4 940 117 5-10

weltab (C) http://www.bauhaus-stuttgart.de/clones/ 736 123 10-15
wget (C) http://www.gnu.org/software/wget/ 1520 219 20-25

castle (C#) http://www.castleproject.org/ 14779 9530 175-225
jhotdraw (Java) http://www.jhotdraw.org/ 3133 2536 100-200

Figure 8. Stabilization of overall nearest neighbour scores where no overall topic score peak
emerges.

noise reduction that occurs when the least relevant latent
topics are stripped from the data set, and the primary rela-
tionships are retained [22].

5. Related Work

The original paper describing the use of Latent Seman-
tic Indexing (LSI) in program comprehension was tremen-
dously influential, and led to a great deal of further re-
search in the area. Maletic, Valluri, and Marcus [20, 21]
began exploring LSI’s potential in software by performing a
handful of clustering and classification experiments against
source code and documentation, and sought to determine
LSI’s ability to cluster groups of related code together. The
early tests were promising, and suggested that even without
a grammar or solutions to the problems of polysemy and
synonymy, LSI could be used to support some aspects of
the program understanding process.

The decision about how many dimensions to retain when
performing a singular value decomposition has been fairly
subjective. Many authors propose somewhere in the range
of 200 to 300 dimensions [20, 21], and a recent study
demonstrated “islands of stability” around 300 to 500 di-
mensions for documents sets in the millions, with degrad-

ing performance outside of that range [7]. Kuhn et al. sug-
gest using a value of (m× n)0.2, and suggest that a smaller
number of dimensions is warranted as the number of docu-
ments in their data set is smaller than most natural language
corpora [16]. The results in this study and in the research
provided above seem to suggest that this equation may be
slightly below the optimal number of latent topics needed
to identify the latent substructure in source code, although
they treat classes as documents where we use methods.

The first application of LDA to source code was in
2007, when Linstead et al. began to use LDA to visu-
alize the emergence of topics over several versions of a
project [18, 19]. Shortly afterwards, in 2008, Maskeri et
al. demonstrated its application to the extraction of business
topics from source code [23]. Preliminary results indicated
that some valid clustering was occurring, that topics were
being identified, and interestingly that the number of topics
for a large scale software system like Linux appeared to be
just under 300.

Although LDA is relatively new, it is among the biggest
topics researched in the data mining community with re-
spect to document classification and conceptual analysis. A
corresponding lack of interest in older techniques like LSI
seems to indicate that newer approaches are producing bet-
ter results, and are garnering more attention due to their suc-
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Figure 9. JHotDraw Overall Topic Scores.
In the cases where no overall topic score
emerges, the results are often a simple flat
plot. It is important to note that in our sam-
ple data set, the overall nearest neighbour
score plots always resembled Figure 6, even
in the cases where no peak emerged. This in-
dicates the loss of information as the number
of topics decreases.

cesses. The concept location community would certainly
benefit from further study of these techniques.

6. Threats to Validity

The use of heuristics as an evaluation method is inher-
ently problematic, and may draw criticism. That said, there
is no good set of data to evaluate the conceptual relevance
scores. Concept location has lacked an unsupervised way
of giving empirical evidence for the results, and we believe
that the use of heuristics like this is a valid first step towards
the verification of these methods. Certainly there may be
better heuristics that provide more accurate results, and new
datasets can be created. We discuss our continuing research
towards producing data in this vein in the future work sec-
tion of this paper.

Our approach also relies heavily on the ability of LDA
to model the data appropriately, and in the topic distribution
as a way of describing documents. The latent topic counts
given in this research may not be directly applicable to all
information retrieval techniques, and care should be taken
when using other methods such as Latent Semantic Index-
ing or Independent Component Analysis. We do not believe
that the numbers should be taken at face value, and instead
point to the method as a way of evaluating performance in

experiments using source code as a document corpus. The
evaluation method described in this paper can be used with
other latent class models, and may assist other researchers
when setting up experiments.

7. Conclusions and Future Work

By using a pair of reasonable heuristics together with
one another, and varying the number of latent topics ex-
tracted from a statistical model, we have demonstrated a
way to determine a good estimate for the best number of
concepts needed to describe a source code corpus. Our ex-
periment used Latent Dirichlet Allocation, but our exper-
imental method is model-independent, and would be well
suited to future experiments with other techniques like La-
tent Semantic Indexing. By incrementing the number of
topics and testing the relevance of methods associated with
each topic, we show a clear peak in the ability of the model
to identify related groups of code.

A clear point that seems to arise is that the number of
topics used when modelling source code in a latent topic
model must be carefully considered. In our example with
the PostgreSQL code, choosing 200 topics instead of 100
may result in a model that only identifies a fraction of the
desirable latent substructure. The choice of the number of
latent topics for the model may be more important than pre-
viously considered, and choosing arbitrary values may sac-
rifice a significant amount of accuracy.

The value of retaining comments during the preprocess-
ing and partitioning stage is unclear. Our process currently
strips all comments from the source code before it is seg-
mented into documents, and while this is a fairly common
process in concept location, the exact value of comments is
not known. We plan to perform additional tests to see how
this affects our overall topic scores.

In order for us to reliably gauge the effectiveness of our
own concept location techniques against the results of other
methods, we need better data. That data does not exist now,
and current evaluation techniques are not provably effec-
tive, although reasonable heuristics provide good estimates.
With the aid of researchers in the area, along with a range
of interested parties with some coding experience, we be-
lieve that a set of pairwise relevance comparisons can be
collected, in order to generate test data to verify the results
being collected from existing IR techniques. We have au-
thored a tool to collect information about how users inter-
pret conceptual similarity, and are generating a data set to
use for evaluating results.
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