
Identifying Clones 
By using ICA to map our source matrix into a 
reduced vector space, with axes that correspond to 
some mathematically derived and independent 
feature of the data, we can then use the results to 
see how close each method is to each other one. 
LSI itself uses SVD to transform the original 
document-term matrix into a decomposition of 
matrices used to identify relationships between the 
source data. We can use the earlier definition of 
ICA as x = As to do something similar.  If the rows 
and columns of x are documents and tokens, and 
the rows and columns of s are signals and tokens, 
we can generate a new document value matrix DV 
using the following equation: 

DV = xsT 

The logic for this comes from the fact that ICA has 
done the work of figuring out which terms are 
semantically close. By taking the product of our 
source matrix with raw token availability and our 
derived signal-token matrix, the relationship 
between methods becomes apparent. 

Ordering Code Blocks by Similarity 
The meaning of these results is as follows. By 
applying ICA to the original method-token matrix 
generated from our input source code, we can 
derive a matrix DV that represents the strength of 
each document in a new vector space. The rows of 
DV can be plotted as points in this vector space, 
and the Euclidean distance between any two points 
can be interpreted as a measure of their similarity, 
since each axis in this new space corresponds to 
the strength of some statistically independent 
concept. In this way we get an ordered list of 
related documents spanning the entire range of the 
document set. 

Each score is the Euclidean distance between the 
points in three-dimensional space. By plotting in 
three dimensions, we get an immediate sense of 
the placement of the points relative to each other. 
As ICA enforces a strong statistical bound on the 
axes, we expect to see points that are quite distinct 
from one another, and demonstrated by the 
significantly different vector orientations. 
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Software Clones 
Reuse of software code fragments by copy/
paste/edit is a common software development 
practice that leads to a large number of similar 
code segments, or code clones, in software 
systems.  Code clones can cause problems for 
software maintenance and evolution, making 
them a popular topic in software 
comprehension. 

Our approach 
We introduce a technique for applying 
Independent Component Analysis to vector 
space representations of software code 
fragments such as methods or blocks. The 
distance between these points can be 
determined, and used as a measure of the 
similarity between the original source code 
fragments they represent. It can be reasoned 
that if the initial matrix representation contains 
enough information about the syntactic structure 
of the source code, the vector space 
representation will be sufficient to predict the 
similarity of fragments to one another, and can 
provide the likelihood that the code is a clone. 

Using a technique like ICA appears to work well 
at identifying similar methods in source code, 
without any required built-in knowledge about 
program language or syntax. By mapping the 
methods to vectors using a method-token matrix 
and applying ICA to extract the statistically 
independent components that correspond to the 
original dataset, we can use a distance metric to 
determine how similar the original methods are 
to each other. Further, this gives us a way to 
estimate the possibility that these methods 
might be clones of one another. 

Conclusion  

Introduction 

Method Summary  
Step 1 
Construct a method-token matrix using the non-
unique tokens found in our source code. 

Step 2 
Reduce the matrix dimensionality using SVD. 

Step 3 
Apply ICA to our reduced matrix, save the results. 

Step 4 
Generate a new matrix based on ICA’s valuation of 
the token relevance in order to identify the points in 
the new vector space that correspond to our input. 

Step 5 
Calculate the nearest neighbour scores of each 
method using the previous matrix. 

s1 = My dog has fleas. 
s2 = That dog has fleas. 
s3 = My ukelele has fleas. 
s4 = My team won the football game. 
s5 = That dog ate all the turkey. 

non-unique = {dog, fleas, has, my, that, the} 

Our input matrix will necessarily be a 5x6 
matrix, with the five rows representing the input 
documents s1 through s5, and the six columns 
representing the non-unique tokens. 

After the matrix has been processed using ICA, 
we generate the document value matrix using 
DV = xsT. The figure below shows how the 
points map when plotted as vectors. 

An Ordered List of Similar Methods 
This technique can provide an estimate on the 
likelihood that code blocks are clones, relative 
to the rest of the source, with great certainty. 

Example 

Vector Space Analysis of Software Clones 

Explanation of Method 

Background 
Vector space 
An n-dimensional space in which 
representations of the code blocks we analyse 
are stored. We start with a matrix generated 
from the input source code, where each row 
corresponds to a single code block, and each 
column corresponds to the presence of a token 
in that code. For example, we expect to see a 1 
at position Mij if method i in our source contains 
token j in an ordered list of tokens that span the 
corpus. 

Independent Component Analysis 
ICA is a blind signal separation technique that 
separates a set of input signals into statistically 
independent components. The primary 
difference between ICA and Latent Semantic 
Indexing (LSI) is that instead of focusing on 
signals that are simply decorrelated, ICA 
extracts signals that are mutually independent 
of one another. This is a stronger bound, and 
when used in a domain like program 
comprehension, can ensure a stronger 
difference between the extracted signals, and a 
correspondingly stronger similarity between 
fragments with similar signal profiles. 

ICA is described by the equation x = As, and 
factors an original data matrix x into a 
transformation, or mixing matrix, referred to as 
A, and a source signal matrix s, where the 
extracted independent signals are stored. 

static unsigned long source_load (int cpu, int type) { 
    struct rq *rq = cpu_rq (cpu); 
    unsigned long total = weighted_cpuload (cpu); 
    if (type == 0) return total; 
    return min (rq->cpu_load[type - 1], total); 
} 
static unsigned long target_load (int cpu, int type) { 
    struct rq *rq = cpu_rq (cpu); 
    unsigned long total = weighted_cpuload (cpu); 
    if (type == 0) return total; 
    return max (rq->cpu_load[type - 1], total); 
} 

static int __init kallsyms_init (void) { 
    struct proc_dir_entry *entry; 
    entry = create_proc_entry ("kallsyms", 0444, NULL); 
    if (entry) entry->proc_fops = &kallsyms_operations; 
    return 0; 
} 
static int __init ioresources_init (void) { 
    struct proc_dir_entry *entry; 
    entry = create_proc_entry ("ioports", 0, NULL); 
    if (entry) entry->proc_fops = &proc_ioports_operations; 
    entry = create_proc_entry ("iomem", 0, NULL); 
    if (entry) entry->proc_fops = &proc_iomem_operations; 
    return 0; 
} 
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