
Abstract 

Increasingly focus in the software comprehension 
community is shifting from representing the results of analysis in 
the graph and database domain to reflecting insights directly 
into source.  The obvious modern representation for this 
reflection is XML markup.  In the simplest case, XML markup of 
the abstract syntax tree itself can be represented in source, 
although the result is wordy, overly detailed and cumbersome to 
deal with.  A more realistic solution is to use island or multi-
weight parsing to mark up the AST in only those sections of 
source of interest to the current task.

In this paper we outline a method for extending and 
generalizing the partial markup idea to minimize source markup 
not only by marking only sections, but by selectively marking up 
the source with only a subset of the AST nodes relevant to each 
particular task as well.  By exploiting agile parsing, this idea is 
further extended to allow for task-directed selective markup as a 
natural extension of selective syntactic markup.

1. Introduction

Attachment to source is increasingly one of the most 
important problems in program comprehension [1,2,3].  If real 
programmers are to take action based on the inferences and 
insights made possible by design recovery and analysis, the 
results of these insights must be presented in a way that attaches 
them to the source code itself.  Moreover, as program 
comprehension technology matures, the possibility of 
automating appropriate reprogramming of source becomes a 
more and more tantalizing.

Both of these observations imply that representation of 
design information, including structure, semantics and business 
knowledge, need to be somehow attached directly to source.  
XML [4] provides an industry standard source markup 
technology that has the potential to provide us with an 
appropriate bridge.  Using a partial XML markup of the parse 
tree in source code, McArthur [3] has demonstrated some of this 
potential. In this paper we extend and generalize the partial 

markup idea to minimize and focus source markup by 
selectively marking up in the source only those AST nodes that 
are relevant to each particular task.  By exploiting the ideas of 
agile parsing, we generalize this idea to contextually and 
semantically sensitive selective partial AST markup as well.

2. Agile Parsing

Agile parsing [5,6] refers to the ability to use a customized 
version of the input language grammar for each particular 
analysis and transformation task.  Based on a standard "base 
grammar" for the input language, agile parsing provides the 
ability to "override" nonterminal definitions on a per-task basis 
to modify the parse to yield an AST that makes the source 
analysis or transformation more efficient and convenient.

Although in theory different parsers can be generated for 
each task using traditional parser generator technology, agile 
parsing is most conveniently supported using an interpretive 
parser that supports execution time grammar definition and 
modification such as that provided by TXL [7,8].  Because 
TXL's parser interprets grammars directly at analysis and 
transformation execution time, it easily supports agile parsing.

The TXL language provides several features designed to 
support agile parsing. Each TXL program begins with a "base 
grammar" for the input language, a standard general purpose 
grammar typically based on the language’s standard reference 
grammar. The basic agile parsing feature is the nonterminal 
"override", which allows a given nonterminal of the base 
grammar to be replaced with a definition more appropriate to the 
task at hand.  Overrides are written in TXL using the "redefine" 
statement [Figure 1(a)].  The semantics of an override is that the 
effective grammar for the tool is the original base grammar with 
the definition of the overridden nonterminal replaced by given 
redefinition, yielding a different custom AST intended to make 
the task easier.

More sophisticated overrides can use extensions of the 
existing nonterminal form by referring to it using the the "..." 
notation [Figure 1(b)].  In a TXL redefine, "..." refers to the 
definition of the overridden nonterminal form before it was 
extended by the redefine.  The "..." can be used in a post-
extension, in which additional alternatives for the nonterminal 
are added after the originals by the redefine, or as a pre-
extension, in which additional grammatical forms come first and 
take precedence over the original forms.  Extension overrides 
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often exploit TXL's ordered ambiguity resolution.  New forms 
introduced by the redefine can ambiguously overlap existing 
forms, with the semantics that forms are tried in the order 
specified in the effective definition, with first forms taking 
precedence over later forms, yielding a well-defined 
deterministic parse.

Other features of TXL supporting agile parsing include 
general nonterminal polymorphism ( [any] ), nonterminal type 
query ( [typeof] ), programmed syntactic AST extraction ( [^] ) 
and transformation-time reparsing of transformed elements ( 
[reparse] ).  Grammar reflection (modifying the grammar on-
the-fly as the result of transformation or analysis) is theoretically 
possible and supported by the TXL engine but not yet directly 
available in TXL.

3. An XML-based TXL

FreeTXL [9] is a new implementation of the TXL language 
based on XML from the ground up. Because FreeTXL uses 
XML directly to represent parse trees, full XML markup of the 
AST in source is a simple flag and need not be programmed.  
For example, the result of the –Dparse (“¨Dump parse”) flag in 
FreeTXL is a version of the input source fully XML-marked 
with the input parse [Figure 2].

Similarly, because the result of every FreeTXL 
transformation is a new parse tree internally represented using 
XML, the parse tree of the result of a TXL transformation can 
also be directly yielded using the –Dfinal (“Dump final parse”) 
flag, which yields a version of the transformed output source 
that is fully XML-marked with the output parse of the source.

However, while for some purposes it may be useful, a fully 

include “Cpp.Grammar”
   
redefine function_definition 
   [function_header] 
   [opt exception_specification] 
   [function_body]
end redefine

define function_header
   [opt decl_specifiers] 
   [function_declarator]
   [opt ctor_initializer]
end define

(a) Replacing a nonterminal in TXL.  
 
The redefine statement gives a new definition for the redefined 
nonterminal which replaces the original in the base grammar 
to yield a different parse.  In this case, the new nonterminal 
[function_header] is introduced to capture the entire header 
line of C++ functions in one piece.

include “Java.Grammar”
   
redefine expression
     ...
  |  [xmltag] [expression] [xmlendtag] 
end redefine

redefine method_call
     [jdbc_call]
  |  ...
end redefine

(b) Extending a nonterminal in TXL.
 
The “...” notation in a redefine statement  refers to the 
original syntactic forms of the redefined nonterminal in order 
to allow extension of the nonterminal to other forms.  In cases 
of ambiguity, the order of alternatives determines the parse.  If 
the “...” appears first in an extension, then the old forms are 
preferred.  If it appears last, then the new forms take 
precedence, as with [jdbc_call] above.

Figure 1.  Basic TXL Support for Agile Parsing.

TXL 10.2d (18.9.02) (c)1988-2002 Queen's 
University at Kingston
Compiling Txl/cpp.Txl ... 
Parsing Examples/groff.cpp ...
        
----- Input Parse Tree -----
<program>
 <declaration_list><repeat_declaration>
   <declaration>
    <preprocessor>
     <literal text="#include"/>
     <literal text="<"/>
     <filename>
      <file_identifier><id text="stdio"/>
      </file_identifier>
      <repeat_dot_slash_identifier>
       <dot_slash_identifier>
        <opt_'.><lit_'.><literal text="."/>
        </lit_'.></opt_'.>
        <opt_'/><empty/></opt_'/>
        <file_identifier><id text="h"/>
        </file_identifier>
       </dot_slash_identifier>
       <repeat_dot_slash_identifier>
        <empty/>
        <empty/>
       </repeat_dot_slash_identifier>
      </repeat_dot_slash_identifier>
     </filename>
     <literal text=">"/>
    </preprocessor>
   </declaration>
   <repeat_declaration>
    <declaration>
     <preprocessor>
      <literal text="#include"/>
      <literal text="<"/>
      <filename>
       <file_identifier><id text="string"/>
       </file_identifier>

Figure 2.  Example output of the –Dparse FreeTXL flag for 
the first line and a half of a C++ program.



XML-marked source parse is a huge and not very practical 
source representation [2].  More interesting is the question of 
how to minimize the XML-markup to focus on only those AST 
nodes that are relevant to the next task we have in mind  [3].  
For example, if we are interested in the call structure of the 
program, only those nodes representing method declarations and 
method calls may be appropriate.

4. Programmed AST Markup

If we are to gain control of AST markup in TXL, we must 
first address the issue in the programmed side of the language, 
not in the debugging dumps of the FreeTXL processor.  
Basically, we need to code a TXL transformation that transforms 
an input program to its own XML-marked up source AST.  In 

order to do this, we can make use of the agile parsing [5,6] 
features of the language to define a generic set of XML markup 
syntactic forms [Figure 3(a)].  We can then write a simple 
polymorphic rule to visit every node in the input AST, query its 
node type and then use polymorphic transformation to replace it 
by its own XML-marked up form [Figure 3(b)].  

This is actually trickier than it sounds, which is why the rule 
set in Figure 3 is not quite as simple as one might expect.  
Because TXL rules continue transforming to a fixed point, it is 
necessary to limit the scope of the visit rule to avoid looking 
inside already marked-up nodes ( “skipping [xml_node]” ), 
otherwise the transformation would never halt.  However, by 
skipping marked-up nodes, the rule never visits any internal 
nodes.  This is corrected using a recursive rule invocation in the 
XML markup function itself ( “[toXml Node]” ) to explicitly 

% Visit each node in the parse of the input
rule toXml SameNode [any]
    % Do not mark up already marked up nodes!
    skipping [xmlnode]
    % Otherwise visit every parse tree node 
    replace $ [any]
        Node [any]
    % Don't recursively re-visit a node
    deconstruct not Node
        SameNode
    by
        Node [tagWithType]
end rule

% Mark a parse tree node with its type in XML 
function tagWithType
    replace [any]
        Node [any]
    % Get the type of the node
    construct Type [id]
        _ [typeof Node]
    % Construct an XML markup of it, and 
    % recursively visit its children
    construct Xml [xmlnode]

<Type> Node [toXml Node] </Type>
    % Make it generic so we can replace it
    deconstruct * [any] Xml
        XmlNode [any]
    by
        XmlNode
end function

(b) Transformation rules of the parse tree markup program
 
The [toXml] rule visits every parse tree node, skipping those we 
have already marked.  The [tagWithType] function constructs 
the XML markup of the node with its type name, and recursively 
invokes [toXml] to tag inner nodes.

% TXL generic transform of input program 
% into XML parse tree

% This line is the ONLY language dependency
% in this program!
include "Cpp.Grm"

% Polymorphic XML markup grammar
define xmlnode
    [xmltag] [any] [endxmltag]
end define

define xmltag
    < [id] >
end define

define endxmltag
    </ [id] >
end define

% Main rule to get us started
function main
    % Need a generic null node to seed markup
    construct Null [id]  _

    deconstruct * [any] Null
        NullNode [any]

    % XML markup the whole program
    replace [program]
        P [program]
    by
        P [toXml NullNode]
end function

(a) Grammatical forms and main function of the generic XML 
parse tree markup program  
 
The base grammar is that of the input language, in this case 
C++.  The [xmlnode] definition is the root of a separate 
polymorphic grammar that allows markup of any nonterminal.

Figure 3.  Generic TXL program to mark up input source with its own AST as XML tags.



visit the subnodes of each node we mark up.  The result is a 
simple, language-independent generic XML AST markup 
program that yields XML output isomorphic to FreeTXL’s  
parse tree dump (although not as pretty). The difference is that 
now that we have control of the markup program, we can use it 
as a basis for exploring refinements of AST source markup.

5. Island Parsing

One approach to focussing AST markup can be at least 
partly addressed using Moonen’s "island parsing" technique [10] 
to mark up with XML only those "islands" in the source that are 
relevant to the task at hand. This technique vastly reduces the 

size of the marked up source by avoiding markup of most of it.  
Using agile parsing, island parsing can be coded directly in TXL 
[Figure 4].  The main nonterminal of the base grammar ( 
[program] ) is overridden using a redefine to say that the input 
consists of the "islands", nonterminals of interest selected from 
the nonterminal set of the base grammar, and the "water", 
uninterpreted sequences of input text that lie between.  TXL 
transformation and analysis rules can then be applied to only the 
islands, with the water being skipped.

In particular, if the desired output is simply XML-marked up 
islands with no markup elsewhere, we can simply add the island 
grammar overrides to our AST markup program, and then 
change the main rule to invoke [toXml] on islands only [Figure 
4].  The result is output that is fully marked up in the islands but 
unmarked elsewhere.

Agile parsing allows each tool to use its own definition of a 
different island grammar appropriate to its task, all based on the 
same base grammar.  Because the base grammar itself is never 
changed, no grammar maintenance problems are introduced by 
these variants, and there is no need to maintain a set of 
alternative but similar grammars.  

Complex multi-level island and lake structures can easily be 
encoded by introducing other nonterminals from the base 
grammar as first alternatives for uninterpreted elements in the 
definitions for "water". Because first forms take precedence in 
the parse, these embedded islands will always be recognized by 
the parser rather than being discarded as "water".

It should be pointed out that in TXL there is no need to use 
island parsing to mark up islands.  The same effect can be 
achieved using no grammar overrides at all simply by removing 
the island overrides and targeting the main rule shown in Figure 
4 to [expression] rather than [island].  This technique has the 
added benefit that only contextually valid [expression]s will be 
marked up, rather than simply any sequence of input items that 
happens to look like one.  Moreover, because TXL can parse 
valid input just as fast as it can slough lexemes, there is no 
efficiency penalty to doing things this way.  However, this 
method ignores the robust parsing benefits of island parsing and 
thus may not be suitable in all cases.

6. Selective AST Markup

Given the heavyweight XML representation of full AST's, 
even island markup of AST’s only reduces the problem, it does 
not solve it.  McArthur [3] has suggested that this can be 
addressed using partial AST markup.  By gaining control over 
marked up sections using the “unparsed” notion, McArthur’s 
method yields XML markup that is significantly more focussed 
and lightweight.  Ideally, we should have a partial markup that 
has only those AST nonterminals of interest to each particular 
task marked up with XML, for example simply [expression] but 
not [factor], [term], [primary], [reference], and so on that it 
derives, and not [statement, [method], [class] and so on that 
derive it.  In this way our output can be minimally marked up to 
exactly suit the task at hand.

Selective markup of syntactic forms using agile parsing in 
TXL uses a technique similar to the island markup technique 
described in the previous section.  Beginning with our original 

% This line is the ONLY language dependency
% in this program!
include "Cpp.Grm"

% Island grammar for C++ expressions only
redefine program
    [repeat island_or_water]
end redefine

define island_or_water
    [island] | [water]
end define

define island
    [expression]
end define

define water
    [token] | [key]
end define

% Main rule to get us started
rule main
    % Need a generic null node to seed markup
    construct Null [id]  _

    deconstruct * [any] Null
        NullNode [any]

    % XML markup all islands only
    skipping [xmlnode]
    replace $ [island]
        I [island]
    by
        I [toXml NullNode]
end rule

Figure 4.  Modifications to the generic XML parse tree markup 
program to island parse expressions only.
 
The base grammar is still C++, but an agile parsing override 
changes the main nonterminal [program] to parse [expression] 
islands only, sloughing off everything else as raw lexemes.  The 
main rule is then modified to target islands rather than the 
whole input.  The rest of the TXL program remains unchanged.



generic markup program of Figure 3, first a set of nonterminal 
names to be marked is specified as a sequence of identifiers 
[Figure 5].  The XML markup rule [toXML] is then modified to 
look specifically for nodes whose type name matches one of 
these interesting nonterminal names.  As each is found, it is 
marked with XML.  The result is a version of the input with only  
those nonterminal nodes marked with XML tags [Figure 6].

This selective markup technique marks precisely those parts 
of the source we are interested in while completely avoiding the 
overhead of full XML markup.  The result is a lightweight, 
efficient marked-up source highlighting only those AST nodes 
we are really interested in.  

7. Refining Markup to Task Using Agile Parsing

However, using agile parsing we can do even better.  Using 
grammar overrides, we can actually modify the grammar to use 
a different parse more convenient for our task.  By exploiting 
TXL's ordered ambiguity resolution, we are free to add grammar 

overrides that specify very precisely the exact form of the items 
we are interested in for a particular task.  For example, if we are 
interested only in method calls to the Java JDBC library, why 
mark up all method calls? 

Figure 7 shows a version of the selective markup program in 
which the Java language base grammar has been modified to 
parse JDBC method calls in preference to general method calls. 
Because the overriding redefine gives the JDBC forms as the 
first alternative, the parser will always find these first and parse 
each particular method call as general method call only if it 
cannot be parsed as a JDBC call.

This is a very simplified demonstration of a much more 
powerful technique.  By exploiting the ordered ambiguity of 
TXL's agile parser, we can focus the selective markup very 
precisely in this way.  Any structure whose characteristics can 
be described using context free form can be selectively marked 
with XML using this method, without any modification to the 
language base grammar or the parser.

8. Semantically Refining Markup Using
    Transformation Rules

Of course, XML markup need not be the first or only thing 
that a TXL program does. By exploiting ambiguity in the 
grammar, we can also focus the markup by writing analysis 
rules that change the nonterminal type of a subtree based on its 
contextual or semantic properties.  For example, if we want to 
identify only those JDBC calls that are embedded in a particular 
class or that reference a particular host variable, we can write a 
TXL rule to find such instances and change their nonterminal 
type, and then focus the XML selective markup rules to mark up 
exactly those instances based on the changed nonterminal type.

Figure 8 shows an example of this technique.  In this case 
we are interested only in those JDBC calls that are conditional - 
that is, those that are guarded by an if or while statement.  The 
grammar overrides in this case allow two separate and 
ambiguously identical alternatives for JDBC calls - [jdbc_call]  
and [guarded_jdbc_call].  Because [jdbc_call] is given as the 
first alternative, the parser will always parse any JDBC calls in 
the input source as [jdbc_call], and never as 
[guarded_jdbc_call].  However, because both alternatives are 
allowed, TXL will consider parse trees using either to be well-
formed, allowing transformation rules to introduce 
[guarded_jdbc_call]s in place of [jdbc_call]s in the parse.

The rule [identifyGuardedJdbcCalls] does exactly that.  
Taking advantage of agile parsing to identify 
[guarded_statement]s, the rule changes the type of any 
[jdbc_call]s embedded in them to [guarded_jdbc_call].  Once 
this is done, the selective AST markup can be targeted to 
[guarded_jdbc_call] to introduce the XML markup of every 
guarded call to JDBC in the source output.

While this example is a simple and contrived contextual 
analysis, it does serve to demonstrate the general technique.  The 
result of any source analysis that can be coded in TXL, no 
matter how complex, can be reflected into output source as a 
selective AST markup using this paradigm.

% The interesting nonterminals for the task - 
% this line goes at the beginning of the main 
% rule to make it easy to change
export InterestingTypes [repeat id]
    ‘expression ‘function_declarator

% Mark a parse tree node with its type in XML
% - but only if it’s an interesting node 
function tagWithType
    replace [any]
        Node [any]
    % Get the type of the node
    construct Type [id]
        _ [typeof Node]
    % Check it’s one of our interesting ones
    import InterestingTypes
    deconstruct * [id] InterestingTypes
        Type 
    % Construct an XML markup of it, and 
    % recursively visit its children
    construct Xml [xmlnode]

<Type> Node [toXml Node] </Type>
    % Make it generic so we can replace it
    deconstruct * [any] Xml
        XmlNode [any]
    by
        XmlNode
end function

Figure 5.  Modifications to the generic XML parse tree markup 
program to selectively mark up [expression] and 
[function_declarator] only.
 
The list of interesting nonterminals for the task is given by the 
global InterestingTypes list.  The [toXml] markup function then 
simply checks that each node is in the interesting set before 
marking it up with XML.



9. Practicality, Performance and Scalability

Three questions of practicality arise concerning the 
techniques outlined in this paper.  The first is the question of 
applicability to other languages.  Although we have only used 
C++ and Java in the examples in this paper, the only dependence 
on source language is the base grammar and our use of it in 
analysis rules.  The technique itself is language independent, and 
the TXL program of Figure 3 will work exactly as is for any 
other language simply by replacing the include statement for the 
base grammar with an include for the base grammar of any other 
language.

The second issue is the question of output size.  If selective 
markup is to be a practical technique, the resulting marked up 
XML documents must be minimally larger than the original 
source.  This measure is certainly met by the selective AST 
markup technique.  The fully XML marked up AST of the 800 
line standard open source groff.cpp program is 1.07 Mb, or 55 
times larger than the original 19 kb source code.  By island 
marking the AST’s of only the expressions in the program as 
shown in Figure 4 we still get 307 kb or 15 times the original.  
However, by selectively marking up only the [expression] and 
[function_declarator] nonterminals as shown in Figure 5, the 
result is only 30.4 kb or 1.57 times the original source size.

The third and possibly most important issue is the question 
of efficiency and scalability.  One of the reasons for the TXL 
maxim “let the parser do the work” is the speed of the TXL 
parser.  On an 800 MHz PowerPC, the FreeTXL parser takes 
0.16 seconds of CPU time to parse and pretty print the 800 line 
standard open source groff.cpp program, and 0.97 seconds to 
dump its 2.5 Mb XML parse tree.  The programmed generic 
XML source-to-parse tree transform of Figure 3 takes 2.44 
seconds to do the same thing using source transformation rules.  

void <function_declarator>possible_command::build_argv()</function_declarator>
{
    int len=args.length();
    int argc=1;
    char*p=0;
    if(<expression>len>0</expression>){
        <expression>p=&args[<expression>0</expression>]</expression>;
        for(int i=0;<expression>i<len</expression>;<expression>i++</expression>)
            if(<expression>p[<expression>i</expression>]=='\0'</expression>)
                <expression>argc++</expression>;
    }
    <expression>argv=new char*[<expression>argc+1</expression>]</expression>;
    <expression>argv[<expression>0</expression>]=name</expression>;
    for(int i=1;<expression>i<argc</expression>;<expression>i++</expression>){
        <expression>argv[<expression>i</expression>]=p</expression>;
        <expression>p=strchr(p,'\0')+1</expression>;
    }
    <expression>argv[<expression>argc</expression>]=0</expression>;
}

Figure 6. Extract from example output of the selective AST markup program of Figure 5.

% Use the same markup program with Java
include "Java.Grm"

% Use parser to identify JDBC calls
% (simplified for demonstration purposes)
redefine method_call
       [jdbc_call]
    |  ...
end redefine

define jdbc_call
    [jdbc_name] [arguments]
end define

define jdbc_name
    ‘createStatement | ‘prepareStatement
  | ‘executeUpdate | ‘executeQuery | ‘getRow
end define

% This time the only interesting things are 
% JDBC calls - this line goes in the main rule
export InterestingTypes [repeat id]
    ‘jdbc_call

Figure 7.  Modifications to the selective generic XML parse 
tree markup program using agile parsing to identify and 
selectively mark up [jdbc_call] only.
 
The base grammar in this case is Java.  The Java base 
grammar has been overridden to prefer parsing method calls 
as [jdbc_call] when the name of the called method is one of the 
standard JDBC operations.  The selective [tagWithType] rule 
remains as in Figure 5 and the rest of the TXL program is 
unchanged.



The island parsing version of Figure 4 takes 0.94 seconds to 
mark up expression islands only, or 1.27 seconds if expression 
islands are marked using the standard full parse instead.  The 
generic selective markup program of Figure 5 takes 0.52 
seconds to selectively mark up expressions and function 
declarators as shown in Figure 6.  

Experiments show that performance of all of these programs 
is linear in the length of the input source.  For example, the 
selective markup that took 0.52 seconds to process the 800 lines 
of groff.cpp takes 5.39 seconds to mark up a similar 8,000 line 
C++ program that is 10 times larger, and 55.09 seconds to 
process an 80,000 line C++ program that is 100 times larger.

10. Conclusion

Structural markup of source code using XML is a powerful 
and permanent representation with a wide range of uses in 
software analysis systems.  While full markup of AST nodes in 
source is useful, it is too large and cumbersome to be practical 
and efficient for large scale tasks.  McArthur [3] has 
demonstrated that partial markup may be the solution to these 
limitations.

In this paper we have shown how we can generalize and 
focus the idea of partial markup using agile parsing.  By making 
possible selective markup of only the nonterminals of interest, 

% Use the same markup program with Java
include "Java.Grm"

% Use parser to identify JDBC calls
% (simplified for demonstration purposes)
redefine method_call
       [jdbc_call]
    |  [guarded_jdbc_call]
    |  ...
end redefine

define jdbc_call
    [jdbc_name] [arguments]
end define

define guarded_jdbc_call
    [jdbc_name] [arguments]
end define

define jdbc_name
    ‘createStatement | ‘prepareStatement
  | ‘executeUpdate | ‘executeQuery | ‘getRow
end define

% Use parser to identify guarded statements
redefine if_statement
    'if '( [expression] ')
        [guarded_statement]
    [opt else_clause]
end redefine

redefine else_clause
    'else
        [guarded_statement]
end redefine

redefine while_statement
    'while '( [expression] ')
        [guarded_statement]
end redefine

define guarded_statement
    [statement]
end define

% This time interesting things are guarded 
% JDBC calls - this line goes in the main rule
export InterestingTypes [repeat id]
    ‘jdbc_call

% Visit each guarded statement
rule identifyGuardedJdbcCalls
    replace $ [guarded_statement]

GS [guarded_statement]
    by
        GS [retypeJdbcCalls]
end rule

% Retype all embedded [jdbc_call] nodes 
% to [guarded_jdbc_call]
rule retypeJdbcCalls
    replace [method_call]
        JDBC [jdbc_call]
    deconstruct JDBC 
        Name [jdbc_name] Args [arguments]
    construct GJDBC [guarded_jdbc_call]
        Name Args
    by
        GJDBC
end rule

Figure 8.  Modifications to the selective generic XML parse tree markup program using agile parsing to semantically 
selectively mark up [guarded_jdbc_call]s only.
 
The Java base grammar has been overridden to prefer parsing method calls as [jdbc_call] when the name of the called method is one 
of the standard JDBC operations.  The ambiguously identical [guarded_jdbc_call] type is used as an indicator for the result of the 
analysis done by the [identifyGuardedJdbcCalls] rule.   Identification of guarded contexts is done using agile parsing to override the 
definitions of [if_statement], [else_clause] and [while_statement] to use [guarded_statement] in place of [statement].  To complete 
the program, the selective [tagWithType] rule remains as in Figure 5, the main rule is modified to invoke [identifyGuardedJdbcCalls] 
before [toXml], and the rest of the TXL program is unchanged.



agile parsing allows for precise refinement of XML markup to 
the task, without the need for any redundant tags.  By exploiting 
ambiguity, we can use transformation rules to introduce 
semantics into the markup, allowing for a lightweight but 
effective XML source representation of the results of complex 
and interesting software analyses.  Measurements show that the 
technique is efficient, practical and scalable to industrially-sized 
source programs.

In this paper we have intentionally elided a number of minor 
technical details in order to keep examples small and maintain 
focus.  For example, the output markup shown in Figure 6 is 
technically invalid XML because we have not shown the rules to 
perform the lexical translation of < and > to &lt; and &gt; 
which must be a part of any real XML markup transformation.  
We have also not shown the necessary formatting cues for pretty 
printing of the XML output.  These details do not affect the 
applicability or performance of the techniques described.
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