
Analyzing Web Service Similarity
Using Contextual Clones

Douglas Martin
School of Computing, Queenʼs University

Kingston, Ontario, Canada

doug@cs.queensu.ca

James R. Cordy
School of Computing, Queenʼs University

Kingston, Ontario, Canada

cordy@cs.queensu.ca

ABSTRACT
There are several tools and techniques developed over the past
decade for detecting duplicated code in software. However, there
exists a class of languages for which clone detection is ill-suited.
We discovered one of these languages when we attempted to use
clone detection to find similar web service operations in service
descriptions written in the Web Service Description Language
(WSDL). WSDL is structured in such a way that identifying units
for comparison becomes a challenge. WSDL service descriptions
contain specifications of one or more operations that are divided
into pieces and intermingled throughout the description. In this
paper, we describe a method of reorganizing them in order to
leverage clone detection technology to identify similar services.
We introduce the idea of contextual clones – clones that can only
be found by augmenting code fragments with related information
referenced by the fragment to give it context. We demonstrate this
idea for WSDL and propose other languages and situations for
which contextual clones may be of interest.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement]:
Restructuring, reverse engineering, and reengineering; D.2.5
[Testing and Debugging]: Testing tools

General Terms
Measurement, Experimentation

Keywords
Clone detection techniques, Web services, WSDL

1. INTRODUCTION
The web is rapidly moving toward a service-oriented architecture.
Many web applications today provide APIs to call their services
that can be used to create new applications and compose new and
more complex services. One way they do this is using Web
Service Description Language (WSDL) [2] to specify how to
invoke the operations that the service provides, and make them

available for other applications to use. Tagging similar
descriptions is an important part of both service discovery and
identification of alternative services when a service experiences
downtime. Due to the rapid growth of the Web, manual tagging is
impractical and the infrastructure of the future will require
automation of this task. While there has been previous work in
detecting similarities in WSDL [7, 16, 17], in our work we instead
propose to leverage clone detection techniques, which provide a
mature and scalable means to discover similarities. However, the
scattered syntax and semantics of WSDL service descriptions
makes it difficult to identify appropriate units of comparison, and
simple clone detection on WSDL operation descriptions does not
provide any useful answers.

The WSDL description of a web service contains specifications of
one or more operations that the service provides. At the heart of
the service description is the <portTypes> element, which
contains a list of operations and the inputs, outputs and faults
handled by each. However, the input and output elements rarely
provide any valuable information by themselves (in most cases,
their names are the same as the operation name with “Request” or
“Response” appended to the end). Their purpose is to reference
other elements of the WSDL description that provide type
information and describe the parameters the operation expects and
what can be expected in return.

This scattered referential form makes it difficult for a clone
detector to identify appropriate units (potential clones) for
comparison. Comparing entire WSDL descriptions doesn’t allow
us to identify similarity at the operation level; if two services
share a similar operation but the remainder of the services is
different enough, a clone detector may ignore it, yielding a low
recall level. On the other hand, if we compare at the operation
description level, we ignore the type and parameter information
described elsewhere in the service description, yielding a high
level of false positives.

To illustrate this, consider the two GetStock operations taken from
two different service descriptions, shown in Figure 1. Looking at
these operations, we might conclude that they are clones; in fact,
we would probably agree that these are exact clones. However, by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IWSC'11, May 23, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0588-4/11/05... $10.00.

<operation name="GetStock" >
 <input message="tns:GetStockRequest" />
 <output message="tns:GetStockResponse" />
</operation>

<operation name="GetStock" >
 <input message="tns:GetStockRequest" />
 <output message="tns:GetStockResponse" />
</operation>

Figure 1. Two GetStock operations.

looking at the rest of the service descriptions in which they are
embedded – or contextualizing the operations – we see that the
use of the word “stock” has two completely different meanings in
the two services. The first service uses “stock” to mean inventory,
while the second uses “stock” to mean a financial stock on the
stock market. Thus ignoring contextual information can lead us to
falsely identify operations as clones.

In this paper, we introduce the idea of contextual clones – those
that can only be identified by augmenting code fragments
(potential clones) with referenced contextual information, and
show how we have used them to obtain more meaningful and
useful results from clone detection on WSDL service descriptions.
Contextual clones are clones found by consolidating de-localized
code into unified fragments more appropriate as potential clones
for a clone detector. This helps avoid false positive situations like
the one above, but can also uncover new clones that we may never
have found otherwise. In the remainder of this paper, we discuss
how to contextualize WSDL code fragments in Section 2, and
Section 3 explains how we have used them to find similar
operations in WSDL service descriptions. Section 4 presents some
possible future applications of contextual clones, and Section 5
gives a brief overview of related work and how it differs from our
approach.

2. CONTEXTUALIZING CODE
FRAGMENTS
In this section, we describe how we can contextualize code
fragments for comparison. Specifically, we describe how we
contextualize WSDL operations, and why it is necessary.

2.1 Contextual Clones
Before we go further, let us formally define what we mean by a
contextual clone. Contextualized code is created by expanding
parts of a code fragment to include information referenced
elsewhere; giving meaning to something that may be relatively
meaningless otherwise. These newly expanded fragments are used
as potential clones and given to a clone detector. The clones found
in this way are called contextual clones.

Definition 1: Contextualized Code. Contextualized code is a
code fragment that has been modified or expanded to
include information referenced elsewhere.

Definition 2: Contextual Clone. A contextual clone is a code
clone found by comparing contextualized code fragments as
potential clones.

Contextual clones are rarely the result of copying and pasting, but
rather indicate higher level relationships between fragments.

2.2 Contextualizing WSDL Operations
In our initial attempts to use clone detection to find similarities in
WSDL descriptions of web services [10], we quickly discovered
that, as an XML-based language, it was not organized in such a
way that we could easily extract operation descriptions for
comparison as potential clones.

The description of an operation in a WSDL document is divided
into many pieces. It begins in the <portTypes> section where

<definitions name="HotelReservationService"
 targetNamespace="http://myhotel.com/service.wsdl">

 <types>
 <schema targetNamespace="http://myhotel.com/service.xsd"
 xmlns="http://www.w3.org/2000/10/XMLSchema">
 <complexType name="Room">
 <sequence>
 <element name="roomID" type="xsd:int"/>
 <element name="numBeds" type="xsd:int"/>
 </sequence>
 </complexType>
 <complexType name="Payment">
 <sequence>
 <element name="ccNumber" type="xsd:int"/>
 <element name="cardHolder" type="xsd:string"/>
 <element name="expiryDate" type="xsd:date"/>
 </sequence>
 </complexType>
 <element name="GetAvailableRoomsRequest">
 <complexType>
 <sequence/>
 </complexType>
 </element>
 <element name="GetAvailableRoomsResponse">
 <complexType>
 <sequence>
 <element name="room" type="Room“
 minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 </complexType>
 </element>
 <element name="ReserveRoomRequest">
 <complexType>
 <sequence>
 <element name="payment" type="Payment"/>
 <element name="room" type="Room"/>
 </sequence>
 </complexType>
 </element>
 <element name="ReserveRoomResponse">
 <complexType>
 <sequence />
 </complexType>
 </element>
 <element name="RoomNotAvailableException">
 <complexType>
 <sequence />
 </complexType>
 </element>
 </schema>
 </types>
 <message name="GetAvailableRoomsRequest">
 <part name="body" element="GetAvailableRoomsRequest"/>
 </message>
 <message name="GetAvailableRoomsResponse">
 <part name="body" element="GetAvailableRoomsResponse"/>
 </message>
 <message name="ReserveRoomRequest">
 <part name="body" element="ReserveRoomRequest"/>
 </message>
 <message name="ReserveRoomResponse">
 <part name="body" element="ReserveRoomResponse"/>
 </message>
 <message name="RoomNotAvailableException">
 <part name="body" element="RoomNotAvailableException"/>
 </message>
 <portType name="HotelReservationServicePortType">
 <operation name="GetAvailableRooms">
 <input message="GetAvailableRoomsRequest"/>
 <output message="GetAvailableRoomsResponse"/>
 </operation>
 <operation name="ReserveRoom">
 <input message="ReserveRoomRequest"/>
 <output message="ReserveRoomResponse"/>
 <fault message="RoomNotAvailableException"/>
 </operation>

Figure 2. The pieces of the ReserveRoom operation from a
hotel reservation service description are highlighted.

operations are listed in their own <operation> element. Each of
these elements contain a number of <input>, <output> or
<fault> tags that correspond to a <message> element defined
somewhere else in the description. These in turn contain <part>
elements that may refer to other remote elements in the <types>
section. The elements in the <types> section can also contain
elements that have other types associated with them, which can in
turn contain more elements, and so on. The result is that a number
of different operation descriptions may be split into remote pieces
that are intermingled in the same description. Figure 2 shows an
example WSDL service description of a simple hotel reservation
service with the ReserveRoom operation highlighted and its parts
traced through the file.

In attempting to use clone detection to uncover similarity among
services, the problem we faced was what to use as code
fragments. We could use the entire service description, but that
would not provide the granularity to compare services at the
operation level. It would also mean that two services with a single
similar operation might be ignored if the remaining operations
were different enough. To achieve a finer level of granularity, we
could use the <operation> elements in the <portTypes>
section. The problem with this is that, while it gives us the name
of the operation, it ignores all of the associated parameter

information from the <types> section. This difficulty led us to
develop the idea of contextual clones.

To implement contextual clone detection, we used TXL [3], a
source transformation language, to generate contextualized
potential clones for comparison. Beginning with a WSDL
grammar, we created a set of transformation rules that turn WSDL
service descriptions into a set of localized, reorganized operation
descriptions that can then be used as potential clones. Beginning
with the <operation> elements and working its way down the
hierarchy recursively, the transformation copies elements inside
the elements that reference them. The result is a set of self-
contained operation descriptions that not only provide context to
the original operations, but also give them structure and make
them easier to read and understand. The contextualized fragment
is then wrapped in XML <source> tags that give the name of the
file from which it was taken and the beginning and end lines of
the original operation description so that it can be traced back.
Figure 3 shows an example of a contextualized WSDL operation
for the ReserveRoom example operation from the hotel reservation
service description in Figure 2.

3. DETECTING CONTEXTUAL CLONES
Once we have a complete set of contextualized code fragments,
we can use them as potential clones to identify contextual clones
using any off-the-shelf clone detector. For our experiment, we
chose the NiCad clone detector [13], which uses an efficient and
scalable hybrid parsing and text comparison technique based on
the longest common subsequence (LCS) algorithm to identify
“near-miss” clones, those fragments that are very similar but
perhaps not identical. NiCad uses a plugin architecture that
allowed us to add support for WSDL and contextual clones as a
language plugin that NiCad treated as simply another language
parser / extractor.

3.1 Contextual Clones in WSDL
It is important to clarify at this point that the operation “clones”
we find in WSDL, even the exact ones, may not indicate actual
identical web service operations. Instead, they indicate that the
operations process and produce the same type of data, which tells
us that they are related in some way. Even if they appear to be
exactly the same, there is no way to tell for sure whether they do
the same thing. This is because WSDL is a description language,
not a programming language, and does not give us access to the
server side implementation code for operations, but rather
describes how they can be invoked and combined.

Unfortunately it is difficult to get access to server side code for
web services, mainly because most of it is proprietary. But in any
case, including it in our comparisons would defeat the point of
using WSDL. Also, our goal is the ability to identify similar
services and operations to be able to tag and match them
appropriately, not necessarily to find identical operations.

3.2 Detecting Contextual Clones in WSDL
We experimented with contextual clones in WSDL using two sets
of web service descriptions (some of which are proprietary and
cannot be reproduced here). Set 1 consists of more than 200 web
services containing over 1,100 operations, many of which are very

<source file="HotelReservation.wsdl" startline="81" endline="85">

 <operation name="ReserveRoom" >
 <input message="ReserveRoomRequest">

 <message name="ReserveRoomRequest">
 <part name="body" element=" ReserveRoomRequest">

 <element name="ReserveRoomRequest">
 <element name="payment" type="Payment“/>
 <element name="ccNumber" type="int"/>
 <element name="cardHolder" type="string"/>
 <element name="expiryDate" type="date"/>
 </element>

 <element name="room" type="Room">
 <element name="roomID" type="int"/>
 <element name="numBeds" type="int"/>
 <element name="isSmoking" type="boolean"/>
 </element>
 </element>

 </part>
 </message>

 </input>
 <output message="ReserveRoomResponse">

 <message name="ReserveRoomResponse">
 <part name="body" element="ReserveRoomResponse">

 <element name="ReserveRoomResponse"/>

 </part>
 </message>

 </output>
 <fault message="RoomNotAvailableException">

 <message name="RoomNotAvailableException">
 <part name="body" element="RoomNotAvailableException">

 <element name="RoomNotAvailableException"/>

 </part>
 </message>

 </fault>
 </operation>

</source>

Figure 3. The contextualized code fragment for the
ReserveRoom operation of the simple hotel reservation service
description in Figure 1.

similar or duplicates. Set 2 consists of more than 500 services
containing over 7,500 operations from a wide variety of domains,
obtained using the web services search engine at Seekda [18], the
world’s largest repository of public web services.

Using NiCad, we analyzed the clones in each set. The limit on the
minimum clone size had to be decreased from the default 5 to 3
lines since the smallest non-contextualized operations in WSDL
can be as small as 3 lines (opening and closing operation tags and
at least one input/output/fault tag inside).

For each set, we compared the results from NiCad at various near-
miss difference thresholds on the set of contextualized operations
against the set of original non-contextualized operations (i.e. the
operation elements in the <portTypes> element). The results are
summarized in Figure 4. The first table shows the number of code
clones found (the number of fragments for which there exists at
least one clone), while the second shows the number of clone
classes (the number of groups of clones). Looking at the tables,
we see that Set 1 had a much larger proportion of clones than Set
2, which was expected because there were a large number of
duplicated WSDL descriptions in it.

We can observe a number of other interesting things in the tables
as well. First, the number of clones almost always decreases
when we consider contextualized clones, which shows that
contextualized clones allow us to filter out false positives found
by using only non-contextualized operations. When we look more
closely at these cases, we find that many non-contextualized
operations that appear to be clones actually turn out to be very
different when their parameters are expanded.

For example, let’s consider the eailer example of the GetStock
operations. Figure 5 shows the two operations before and after
contextualization. At first glance (before contextualization), they

would appear to be the same operation, and if we use standard
clone detection on these fragments, they would be considered
exact clones. However, if we expand the <input> and <output>
tags to include the other elements to which they refer, we see that
they are actually from two very different domains; one refers to
“stock” as in “inventory”, wheras the other refers to “stock” as in
a financial stock. Depending on the difference threshold used,
these may not be considered clones at all, let alone exact clones.

The second, and most important, thing we notice is that we can
also find clones that we wouldn’t have found otherwise. Take, for
example, the set of operations in Figure 6. All of these operations

Non-Contextualized:
<operation name="GetStock" >
 <input message="tns:GetStockRequest" />
 <output message="tns:GetStockResponse" />
</operation>

Contextualized:
<operation name="GetStock" >
 <input message="tns:GetStockRequest">
 <message name="GetStockRequest">
 <part name="parameters" element="tns:GetStockRequest">
 <element name="GetStockRequest">
 <element name="InventoryNumber" type="xsd:int" />
 </element>
 </part>
 </message>
 </input>
 <output message="tns:GetStockResponse">
 <message name="GetStockResponse">
 <part name="parameters" element="tns:GetStockResponse">
 <element name=“Stock”>
 <element name=“Supplier” type=“xsd:string”/>
 <element name=“Warehouse” type=“xsd:string”/>
 <element name=“OnHand” type=“xsd:string”/>
 <element name=“OnOrder” type=“xsd:string”/>
 <element name=“Demand” type=“xsd:string”/>
 </element>
 </part>
 </message>
 </output>
</operation>

Non-Contextualized:
<operation name="GetStock" >
 <input message="tns:GetStockRequest" />
 <output message="tns:GetStockResponse" />
</operation>

Contextualized:
<operation name="GetStock" >
 <input message="tns:GetStockRequest">
 <message name="GetStockRequest">
 <part name="parameters" element="tns:GetStockRequest">
 <element name="GetStockRequest">
 <element name="symbol" type="xsd:string" />
 </element>
 </part>
 </message>
 </input>
 <output message="tns:GetStockResponse">
 <message name="GetStockResponse">
 <part name="parameters"
element="tns:GetStockResponse">
 <element name=“Stock”>
 <element name=“date” type=“xsd:string”/>
 <element name=“open” type=“xsd:float”/>
 <element name=“high” type=“xsd:float”/>
 <element name=“low” type=“xsd:float”/>
 <element name=“close” type=“xsd:float”/>
 <element name=“volume” type=“xsd:float”/>
 </element>
 </part>
 </message>
 </output>
</operation>

 Figure 5. Two GetStock operations appear to be exact clones when non-contextualized, but are actually from different domains.

a)

b)

Figure 4. The results of NiCad near-miss clone analysis of the
contextualized operations of two different sets of web services.
(a) shows the number of code (operation) clones found, and
(b) shows the number of clone classes.

relate to charting, but the only indication that they may be related
is the word “chart” in their names (except for the last one). A
clone detector might not identify these as clones at all, because
their operation and message names are different and, except for
the common WSDL syntax, they share nothing. However, when
contextualized (not shown here), we quickly see that they share
very similar data types and elements, with only a few changes
between them.

4. FUTURE WORK
Thus far, we have described our approach to finding similar web
service operations, but have ignored the original goal of tagging
them. In our continuing research, we are exploring the use of
domain ontologies to infer appropriate service tags for the
contextual clones we find in WSDL service descriptions.

In the course of this research, we have also come to believe that
the notion of contextual clones could have uses in other

languages, specifically in other domain-specific XML-based
languages. We are particularly interested in exploring the use of
them to find clones in models represented in XML-based textual
exchange representations. For example, XMI, the exchange
language for UML class diagrams, seems to be a likely candidate.

5. RELATED WORK
There are many tools and techniques to identify code clones [14],
but while many different normalizations have been used in clone
detection, to our knowledge no one has modified source code in
this way before searching for clones. Other work on clone
detection for the Web has either been focused on finding clones in
static web pages [5, 6, 11], server-side scripts [12] or client-side
scripts [1, 9] rather than web services.

Clone detection for web services may be new, but a number of
people have used other techniques to find similarities among
service operations.

Dong et al. [7] developed a web service search engine called
Woogle that gives the user the ability to perform a similarity
search. Once a user finds a web service that is close to meeting
their needs, they may search for services that are similar to it, take
similar inputs, or compose well with the given service. At the
heart of this search is a clustering algorithm that groups the
service’s parameters into semantically similar concepts. This
clustering algorithm uses the heuristic that parameters that occur
together often tend to express the same concepts.

Syeda-Mahmood et al. [17] have explored the use of domain-
independent and domain-specific ontologies when comparing
service descriptions. Specifically, they looked at large company
mergers or acquisitions where each company has its own set of
web services that do similar things, but use different terminology.
They used a number of techniques to aid in the search. First, they
used word tokenization to separate multi-term parameter names
(e.g. PartNumber) into its individual terms (e.g. PartNumber
becomes “Part” and “Number”). Then, they used part-of-speech
tagging and filtering to identify noun phrases and adjectives.
Next, they expanded abbreviations (e.g. Cust becomes Customer).
Finally, they used a synonym search with a thesaurus like
WordNet to find synonyms for each word and assigned a
similarity score based on how close the words were. They then
use a matching algorithm to produce a ranked list of matching
services and tested it using a domain-independent ontology, a
domain-specific ontology, and none at all. What they found was
that using a domain-specific ontology improved precision over a
domain-independent ontology.

Stroulia et al. [16] developed a suite of methods designed to aid
developers in the search for a suitable web service operation.
They implemented 3 methods for this. First, when only a textual
description of a service is available, they use a vector-space model
to match the description with the text inside the service’s
<documentation> tags. A variation of this method uses
WordNet to find synonyms (words with similar meaning),
hypernyms (word parent), hyponyms (word children), and sibling
senses (e.g. am, are, is) for the textual descriptions and apply
scores based on how close they match. Second, when a stub of a
web service is available and a structurally similar service is
desired, they do structure matching. In this method, they compare
data types, messages and operations of all pair-wise combinations
from the source and target services. Finally, when a stub of a web

Figure 6. A cluster of contextual clones related to charting
operations.

<wsdl:operation name="GetRealChartCustom">
 <wsdl:input message="tns:GetRealChartCustomSoapIn"/>
 <wsdl:output message="tns:GetRealChartCustomSoapOut"/>
</wsdl:operation>

<wsdl:operation name="GetLastSaleChartCustom">
 <wsdl:input message="tns:GetLastSaleChartCustomSoapIn"/>
 <wsdl:output message="tns:GetLastSaleChartCustomSoapOut"/>
</wsdl:operation>

<wsdl:operation name="DrawHistoricalChartCustom">
 <wsdl:input message="tns:DrawHistoricalChartCustomSoapIn"/>
 <wsdl:output message="tns:DrawHistoricalChartCustomSoapOut"/>
</wsdl:operation>

<wsdl:operation name="DrawIntraDayChartCustom">
 <wsdl:input message="tns:DrawIntraDayChartCustomSoapIn"/>
 <wsdl:output message="tns:DrawIntraDayChartCustomSoapOut"/>
</wsdl:operation>

<wsdl:operation name="GetDelayedChartCustom">
 <wsdl:input message="tns:GetDelayedChartCustomSoapIn"/>
 <wsdl:output message="tns:GetDelayedChartCustomSoapOut"/>
</wsdl:operation>

<wsdl:operation name="GetTopicChartCustom">
 <wsdl:input message="tns:GetTopicChartCustomSoapIn" />
 <wsdl:output message="tns:GetTopicChartCustomSoapOut" />
</wsdl:operation>

<wsdl:operation name="GetTopicBinaryChartCustom">
 <wsdl:input message="tns:GetTopicBinaryChartCustomSoapIn"/>
 <wsdl:output message="tns:GetTopicBinaryChartCustomSoapOut"/>
</wsdl:operation>

<wsdl:operation name="DrawRateChartCustom">
 <wsdl:input message="tns:DrawRateChartCustomSoapIn"/>
 <wsdl:output message="tns:DrawRateChartCustomSoapOut"/>
</wsdl:operation>

<wsdl:operation name="DrawRateChartCustom">
 <wsdl:input message="tns:DrawRateChartCustomSoapIn"/>
 <wsdl:output message="tns:DrawRateChartCustomSoapOut"/>
</wsdl:operation>

<wsdl:operation name="DrawYieldCurveCustom">
 <wsdl:input message="tns:DrawYieldCurveCustomSoapIn"/>
 <wsdl:output message="tns:DrawYieldCurveCustomSoapOut" />
</wsdl:operation>

service is available and a semantically similar service is desired,
they do semantic structure matching. This method is an extension
of the structure matching described above except instead of
looking for compatible type mappings to find a syntactically
similar service, they look for semantically compatible mappings
to try to find a semantically similar service. This suite of methods
solves the problem of service discovery based on different stages
in a development process.

There has been research into finding clones in models as well.
Girschick [8] used a difference algorithm to detect changes in
UML class diagrams, and Störrle [15] used a query-based
approach to detect similarities in UML models. There has also
been work done using a graph-based approach with
MatLab/Simulink models [4]. None of these approaches, however,
uses a standard text-based code clone detection technique like
NiCad.

6. CONCLUSION
As the web continues to grow and web applications get more
sophisticated, an efficient and automatic method for discovering
new services becomes more important. Clone detection is a
mature field that can be leveraged to assist this problem, and we
believe we have successfully shown that it can be with some
modifications to the WSDL descriptions.

The great thing about our approach is that it can be used by any
number of tools to detect similarities. New tools can even be
created that are specifically designed to take advantage of
contextualization or web services.

7. ACKNOWLEDGMENTS
This work was made possible by an IBM Center for Advanced
Studies (CAS) Fellowship and Faculty Award, and is supported in
part by the Natural Sciences and Engineering Research Council of
Canada (NSERC).

8. REFERENCES
[1] Calefato, F., Lanubile, F. and Mallardo, T. 2004. Function

Clone Detection in Web Applications: A Semiautomated
Approach. Journal of Web Engineering 3,1, 3-21.

[2] Christensen, E., Curbera, F., Meredith, G. and Weerawarana,
S. 2001. Web Services Description Language (WSDL) 1.1.
World Wide Web Consortium (W3C). Available at:
http://www.w3.org/TR/wsdl.

[3] Cordy, J.R. 2006. The TXL Source Transformation
Language. Science of Computer Programming. 61,3, 190-
210.

[4] Deissenboeck, F., Hummel, B., Juergens, E., Schätz, B.,
Wagner, S., Girard, J.F., Teuchert, S. 2008. Clone Detection
in Automotive Model-Based Development. In Proceedings
of the 30th International conference on Software
Engineering (ICSE '08), Leipzig, Germany, May 2008, 603-
612.

[5] Di Lucca, G. A., Di Penta, M., Fasilio, A. R., and Granato, P.
2001. Clone analysis in the web era: An approach to identify
cloned web pages. In Proceedings of 7th IEEE Workshop on

Empirical Studies of Software Maintenance, Florence, Italy,
November 2001, 107-113.

[6] Di Lucca, G.A., Di Penta, M., Fasolino, A.R. 2002. An
approach to identify duplicated web pages. In Proceedings of
26th COMPSAC International Computer Software and
Applications Conference, Oxford, England, August 2002,
481-486.

[7] Dong, X., Halevy, A., Madhaven, J., Nemes, E. and Zhang,
J. 2004. Similarity Search for Web Services. In Proceedings
of the 30th VLDB Conference, Toronto, Canada, August
2004, 372-383.

[8] Girschick, M. 2006. Difference Detection and Visualization
in UML Class Diagrams. Technical Report TUD-CS-2006-5.
TU Darmstadt.

[9] Lanubile, F. and Mallardo, T. 2003. Finding Function Clones
inWeb Applications. In Proceedings of the 7th European
Conference on Software Maintenance and Reengineering
(CSMR‘03), Benevento, Italy, March 2003, 379-386.

[10] Martin, D. and Cordy, J. R. 2010. Towards Web Services
Tagging by Similarity Detection. In The Smart Internet
Current Research and Future Applications, M. Chignell, J.
Cordy, J. Ng, Y. Yesha Eds. Springer, New York, NY, USA,
216-233.

[11] Rajapakse, D. C., and Jarzabek, S. 2005. An Investigation of
Cloning in Web Applications. In Proceedings of the 5th Intl
Conference on Web Engineering (ICWE'05), Sydney,
Australia , July 2005, 252-262.

[12] Rajapakse, D.C. and Jarzabek, S. 2007. Using Server Pages
to Unify Clones in Web Applications: A Trade-Off Analysis.
In Proceedings of the 29th international conference on
Software Engineering (ICSE '07), Minneapolis, MN, USA,
May 2007, 116-126.

[13] Roy, C.K. and Cordy, J.R. 2008. NICAD: Accurate
Detection of Near-Miss Intentional Clones Using Flexible
Pretty-Printing and Code Normalization. In Proceedings of
the 16th IEEE International Conference on Program
Comprehension (ICPC 2008), Amsterdam, The Netherlands,
June 2008, 172-181.

[14] Roy, C.K., Cordy, J.R. and Koschke, R. 2009. Comparison
and Evaluation of Code Clone Detection Techniques and
Tools: A Qualitative Approach. Science of Computer
Programming. 74,7, 470-495.

[15] Störrle, H. 2010. Towards clone detection in UML domain
models. In Proceedings of the 4th European Conference on
Software Architecture: Companion Volume (ECSA '10), C.
Cuesta Ed. ACM, New York, NY, USA, pp. 285-293.

[16] Stroulia, E. and Wang, Y. 2005. Structural and Semantic
Matching for Assessing Web Service Similarity.
International Journal of Cooperative Information Systems
14,4, 407-437.

[17] Syeda-Mahmood, T., Shah, G., Akkiraju, R., Ivan, A. and
Goodwin, R. 2005. Searching Service Repositories by
Combining Semantic and Ontological Matching. In
Proceedings of the 3rd International Conference on Web
Services (ICWS 2005), Orlando, FL, USA, July 2005, 13-20.

[18] Seekda, 2009. Web Services Search Engine.
http://webservices.seekda.com/.

