
Abstract

Metaprogramming is the process of specifying
generic software source templates from which
classes of software components, or parts thereof,
can be automatically instantiated to produce new
software components. Metaprograms are
specified in an annotated by-example style
accessible to ordinary programmers of the source
language. Annotations are in the form of Prolog-
like predicates that specify the conditions under
which different parts of the source template are to
be instantiated. Instantiation of a source
component is done by specifying facts about the
new application in a database, from which the
appropriate instance of the metaprogram is
automatically inferred using Prolog-style
deduction.

This paper descr ibes a prac t ica l
metaprogramming system being developed as
part of the ITRC Software Life Cycle Technology
project, which utilizes source transformation to
implement all phases of the metaprogramming
process. Metaprograms are automatically
transformed into TXL (Tree Transformation
Language) source transformation tasks that
automatically implement the instantiation process
using TXL. Examples are shown of the use of
metaprogramming in automatically deriving C
language glue routines that allow Prolog
programs to access the GL graphics library.

 The IBM contact for this paper is Arthur Ryman, Centre for
Advanced Studies, IBM Canada Ltd., 81/894/895/TOR, 895 Don
Mills Road, North York, Ontario M3C 1W3

1 Background

The potential advantages of metaprogramming,
the process of writing programs whose purpose is
to generate new source programs, have been
described many times in the software reuse
literature [Levy 86] [Basset 87] [Cleaveland 88].
In its simplest form, parameterized macros and
conditional compilation, metaprogramming is
used to enhance productivity in virtually every
software project. The stronger form of
metaprogramming, deriving large parts of a
system's source code directly from the system's
design, has not yet been widely accepted,
although it offers the potential of even greater
gains in productivity and reliability of software
products. This has been partly because until
recently software system designs were not
typically stated using formal languages, and
hence were difficult to process automatically;
partly because of a lack of a general approach to
metaprogramming; and partly because of the
large learning curve associated with source
manipulation tools that had the potential to help
solve the problem.

The first of these problems, the lack of a formal
encoding of software design, is rapidly becoming
a problem of the past as more and more systems
are designed using formal design tools such as
VDM [Jones 86], Z [Spivey 88], and GraphLog
[Consens, Mendelzon & Ryman 91] to aid in
understanding properties of the design.

1

 Proc. CASCON '92, IBM 1992 Centre for Advanced Studies Conference, Toronto, November 1992

Practical Metaprogramming

James R. Cordy

Medha Shukla

ITRC Software Technology Laboratory
Department of Computing and Information Science

Queen's University
Kingston, Canada K7L 3N6

Telephone: (613) 545 6054 Email: cordy@qucis.queensu.ca

The second problem, lack of a general approach,
is largely solved by the recent availability of
practical term rewriting systems such as REFINE
[Kotik & Markosian 90], Gentle [Schröer 89]
[Vollmer 91] and TXL [Cordy, Halpern &
Promislow 88, 91]. The third problem, lack of a
metaprogramming notation that is at once
powerful, general, and accessible to ordinary
programmers, is still largely unsolved.

1.1 An Example Problem

Recognizing that the time was ripe for solving the
metaprogramming notation problem in an
accessible and practical way, Arthur Ryman
posed the problem as a concrete challenge at the
24th meeting of IFIP Working Group 2.4 in 1990
[Ryman 90]. The problem was posed using an
example: assume that the entire interface design
of a small (about 200 entry procedures) software
system, the Silicon Graphics Inc. GL graphics
library, is encoded as a knowledge base of Prolog
facts (Figure 1). Using a by-example style
accessible to programmers of the C and Prolog
programming languages, specify metaprograms
to automatically generate the source code for the
glue necessary to make GL available to Prolog
programmers.

Running these metaprograms should yield four
programming "artifacts": a set of Prolog external
predicate declarations for the GL library routines;
a set of C external routine declarations for the C
glue routines to attach the GL library routines to
Prolog; the set of C glue routines themselves;
and a C entry point array to map Prolog

function (zbuffer).
returns (zbuffer, int).

function (color).
parameter (color, index, int, in).

function (winopen).
parameter (winopen,name,"char*”,in).
returns (winopen, gid, int).

Figure 1. Partial Prolog Database for the GL
Library Interface (from [Ryman 90]).

predicates to the corresponding C glue routines
(Figure 2).

Ryman exhibited examples of what he considered
to be ideal metaprograms for this task (Figure 3).
The examples exhibited two critical properties: (1)
the metaprograms should use the target source
language directly by example in order to be
writable by ordinary programmers of the
language; (2) the metafeatures added to the
source language should be as simple and
unobtrusive as possible, while allowing great
expressiveness and power.

1.2 Existing Tools

Many existing tools can be adapted to attack the
by-example metaprogramming task, although
none can yet meet all the criteria perfectly.

Many powerful preprocessor systems are
described in the literature, and some of them, for
example AWK [Aho, Weinberger and Kernighan
79], are powerful enough to handle the generation
of the various artifacts from a Prolog database.
The difficulty in using these as metaprogramming
notations is that: firstly, learning and writing of
AWK and similar processor programs is a difficult
and error-prone process far removed from the
simple specifications envisaged by Ryman;
secondly, AWK programs are certainly not in the
by-example style; and thirdly, AWK deals only
with text-level patterns, making metaprograms
that manipulate whole program parts difficult to
write.

Prolog [Kowalski 74] can be used to program
metaprograms for some languages, including
Prolog itself. The search paradigm of Prolog can
automatically search the database for facts
required to generate instances of the
metaprogram, and because Prolog deals with a
term space, it does not share the text-only
limitations of AWK. However, Prolog has a
limited range of syntax that can be conveniently
dealt with (certainly it cannot handle C syntax
directly as terms) and metaprograms cannot be
encoded in a by-example style.

REFINE [Kotik & Markosian 90] and Gentle
[Schröer 89] [Vollmer 91] are program transform-

2

external C routine declarations for C glue
routines

extern int mpro_zbuffer();
extern void mpro_color();
extern gid mpro_winopen();
 . . .

C glue routines

int mpro_zbuffer(p)
struct {

Boolean *b;
} *p;

{
Boolean b;
b = (Boolean) *p -> b;
zbuffer(b);
return(0);

}
. . .

C entry point array

struct
{
 char name[];
 int (*addr)();
} func[] =

{
{"arc", mpro_arc},
{"arcf", mpro_arcf},

. . .
{"zclear", mpro_zclear},
{"", 0}

};

external Prolog predicate decl’ns

external(gl_arc/5,
"c$/ARC(+f,+f,+f,+n,+n)$/").

external(gl_arcf/5,
"c$/ARCF(+f,+f,+f,+n,+n)$/").

 . . .
external(gl_zclear/0,"c$/ZCLEAR$/").

Figure 2. Portions of the Required Source Art-
ifacts of the Metaprograms for the Prolog
GL Library Interface (from [Ryman 90]).

The entire set of required artifacts includes
approximately 200 routines in each form.

struct
{

char name[];
int (*addr);

} func[] =
{

{"X", Y}, function (F),
 upper_lower (X,F),
 concat("mpro_",F,Y).

{"", 0}
}

Figure 3. Example Metaprogram to Generate an
Entry Point Array for the GL Library
Interface (from [Ryman 90]).

The left-hand side is a literal example of the C
code template for the result; the right-hand side
(in italics) specifies the pattern of database facts
necessary to instantiate the lines on the left. In
this simple case, the line {"X",Y}, is to be
instantiated once for every function in the
database.

ation systems based on compiler technology.
Each of these systems uses a grammar for the
language to be manipulated and a set of
transformations to apply to the parse tree. Either
of them can be used to implement metaprograms
by encoding them as transformation functions to
be applied to the database parse tree to transform
it into a parse tree for the required results. These
systems have the advantage that metaprograms
can easily manipulate high-level language
concepts directly as subtrees, so very complex
metaprograms can be written. The disadvantages
of these systems are the weakness of their LALR
or LL parsing methods, which makes it a tedious
and difficult job to create a grammar that can
handle both the target language and the database;
the necessity of understanding the details of
LALR or LL parsing technology in order to use the
tools; and the necessity of programming the
search of the database parse tree by hand, using a
specialized transformation function notation that
must be mastered before metaprograms can be
written.

3

TXL [Cordy, Halpern & Promislow 88, 91] is a
program transformation system based on Prolog-
like transformation rules. Like REFINE and
Gentle, TXL uses a context-free grammar for the
language to be manipulated. However, unlike
the compiler technology-based tools, TXL uses a
fully general context free parser that allows the
user's manual reference grammar for the target
language to be used more or less directly, without
conversion to meet LALR or LL grammar
restrictions. This avoids the difficulties in
creating a grammar, and allows programmers to
use the familiar terms of their language user's
guide to refer to target language concepts. Like
Prolog, TXL can automatically search the
database for facts that trigger generation of
instances of the metaprogram. TXL
metaprograms must however be written in a
specialized TXL rule notation which is not
directly by-example and takes time to master (see
example, Figure 4).

While none of these systems directly support by-
example metaprogramming, the last three,
REFINE, Gentle and TXL, certainly have
transformation engines capable of performing the
instantiation task. In the next section, we explore
the possibility of implementing by-example
metaprogramming using the TXL transformation
engine.

2 µ* : A Family of Metalanguages

µ* (pronounced "mew-star") is a family of by-
example metaprogramming languages that share
a common metanotation and implementation.
The philosophy of the family is exactly the ideal:
the metaprogramming language for each target
language consists of the language itself,
augmented with meta-annotations specifying
conditions on the database. For example, µC, the
metalanguage for C, consists of C program
syntax, optionally annotated with meta-
annotations. The syntax of meta-annotations is
the same across all target languages. In each case,
the syntax of the basic metalanguage is the syntax
of the language itself, and the syntax of the meta-
annotations is the syntax of µ *. The target
language can be any programming or
specification language with a formal syntax.

function createCEParray
replace [repeat PrologFact_or_C]

DataBase [repeat PrologFact_or_C]
construct EmptyEParray

[list initializer]
% empty

construct Null [initializer]
{"", 0}

by
struct

{
char name[];

 int (*addr);
} func[] =

{
EmptyEParray

[addEntry each DataBase]
[, Null]

};
end function

function addEntry FS [PrologFact_or_C]
deconstruct FS

'function (F [id]).
RPS [repeat parameterSpec]
ORS [opt returnsSpec]
OFS [opt failsSpec]

construct MPRO [id]
'mpro_

construct SF [stringlit]
""

construct NewEntry [initializer]
{ SF [" F] , MPRO [concatId F] }

replace [list initializer]
EPlist [list initializer]

by
EPlist [, NewEntry]

end function

Figure 4. TXL rules for the example
metaprogram of Figure 3.

2.1 By-Example Metaprogram-
ming

In µ*, every program written in a target language
is a metaprogram unconditionally generating
itself. Thus every C program is automatically a

4

µC program, and every Prolog program is a
µProlog program. Syntactically contained
program fragments (for example, declarations,
statements, and so on) are also in general
metaprograms for themselves.

2.2 Notation

The addition of meta-annotations to a
metaprogram attaches the metaprogram to the
database and makes generation of the annotated
parts conditional on the facts in the database. A
difficulty in Ryman's suggested metanotation is
the problem of specifying the exact section of
source to be affected by an annotation. When the
annotated section is only one line long, as in
Figure 3, there is no problem, but when it is more
extensive, there can be an ambiguity. µ * uses
explicit bracketing of the affected area by
enclosing it in backslashes, followed by the meta-
annotation and a double backslash to mark its
end, as shown in Figure 5. The backslash is the
only symbol reserved by µ*; when used with
target languages where an unadorned backslash
already has meaning, it can be replaced with any
other single symbol.

Because in many cases the intended role of the
affected area in the target source is ambiguous
(particularly when parts are intentionally
underspecified, see 2.4 Refinement and Nested
Metaprograms), the role must be given explicitly
following the bracketed area, as shown in Figure
5. The role is the name of the intended part of
speech in the target language reference syntax
(that is, the common name of the entity in the
target language, for example statement or
declaration in C) enclosed in square brackets [].

2.3 Generative Metaprograms

The µ* annotation language provides two basic
operations: when , which includes a section of
target source conditionally on the provability of a
predicate on the database, and each , which
generates one copy of the section of target source
for every solution to a predicate on the database
(Figure 6). These two operations can be nested to
give complex combinations of conditional
generation.

const char *strsignal(int n)
{

static char buf[sizeof("Signal ") + 1 +
INT_DIGITS];

\ if (n >= 0 && n < NSIG &&
sys_siglist[n] != 0)

return sys_siglist[n];
\ [statement]

when listing
\\

 sprintf(buf, "Signal %d", n);
 return buf;
}

Figure 5. Trivial Example µC Metaprogram.

The if statement enclosed in backslashes is
conditionally included in instances of the
metaprogram only if listing is a fact in the
database. The annotation [statement] describes
the role of the optional section in the program.

The predicate following when or each can be one
of the following:

a. a simple Prolog predicate
(e.g. parameter(F,P,T))

b. predicate and predicate

c. predicate or predicate

d. not predicate

The database is searched for solutions to each
annotation predicate. When a solution is found,
the metavariables in the predicate are bound to
the terms found in the solution in the database.
The metavariables can then be instantiated in the
target source generated for that solution.
Repeated instances of a metavariable in a
predicate specify unification in the usual Prolog
way, so the predicate function(F[id]) and
returns(F,int) specifies only those identifiers
that are functions that return the type int .

Since solutions to the predicates are used in the
generated target source, they have the same
ambiguity of role that source sections can have,
and so they are also required to be labelled with

5

their syntactic role in the target language. So, for
e x a m p l e , t h e P r o l o g p r e d i c a t e
parameter(F,P,T) must appear as
parameter(F[id],P[id],T[type]) in a
µC annotation, where [id] specifies the role of
C identifier, and [type] the role of C type.
The second and subsequent uses of the same
metavariable need not be labelled because their
role is already specified.

Figure 6 shows an example using these features to
specify a µC metaprogram to generate the
external C routine declarations artifact of the GL
example. Note that the 'mpro_' prefix is
intentionally not yet appended to the generated
routine names in this solution in order to
demonstrate metaprogram refinement in the next
example.

2.4 Refinement and Nested
Metaprograms

When programmers write code templates, they
often use a pseudo-code style in which
descriptive identifiers take the place of sections to
be filled in later, as shown in Figure 7. µ *
provides this same feature by allowing
metavariable identifiers to take the place of

\ extern FType F (); \ [declaration*]
each function (F [id])

and returns (F, FType [type])
\\

Figure 6. Example µC Metaprogram to Generate
the External C Routine Declarations Artifact
of the GL Example.

The interpretation is that a sequence of
declarations is to be generated, one for each
solution to the predicate in the database.
The predicate specifies that we want each
identifier which is both a function
identifier and returns some type (i.e., is not
void). The second reference to F is not
labelled with a role because it already has
a role ([id], C identifier) specified in its
first use.

any part of a target source fragment enclosed in
backslashes, and by allowing later refinement of
the role and source text of the metavariable, either
as part of the solution to a predicate, or by using a
where clause.

A where clause has the following form:

where ident
\
 source
\ [role]

predicate
\\

The ident is the name of the metavariable and role
is its part of speech in the target language. The
final \\ is required only when the where clause is
embedded in another source fragment.

The where clause is a nested metaprogram that
generates a target source fragment and binds it to
a metavariable for use in other parts of the
metaprogram, for example, the main source text.
The backslash-bracketed source fragment part of a
where clause is optional when there is a predicate.
For example, the following where specifies a search
of the database for a solution to the predicate
returns(F,FType) where F is an already
bound metavariable:

where FType [type]
returns (F,Ftype)

A where clause can also use each in its predicate
to generate source fragments from the entire set of
solutions to the predicate. For example, the
following where clause binds Funcs to a sequence
of all the function identifiers in the database.

where Funcs
\ F \ [id*]

each function (F [id])

Figure 7 shows a more sophisticated version of the
µC metaprogram for the external C routine
declarations artifact of the GL database. In this
version, metaprogram refinement and nested
metaprograms are used to generate a version of
the external declarations that are annotated with C
comments giving the expected parameter types of
the glue routines .

Figure 8 compares the outputs of the two versions.

6

3 Implementation of µ* Using TXL

µ* is being implemented in prototype using the
TXL tree transformation engine [Cordy, Halpern
& Promislow 88, 91] by translating µ L
metaprograms for each target language L to
corresponding TXL metaprograms. The TXL
metaprogram is then combined with reference
grammars for the target language L and Prolog to
create a TXL program that implements the
instantiation of the µL metaprogram from a
Prolog database, as shown in Figure 9. The
translation of µL metaprograms to corresponding
TXL metaprograms is also achieved using a
source transformation specified and implemented
in TXL. A similar approach could be used to
implement µ* using REFINE or Gentle.

4 Experience with µ*

µ* is still in the developmental stages, and thus
far has been prototyped only to the extent of
supporting µC for the purpose of implementing
the metaprograms of the GL example. µ C
metaprograms to derive all of the required source
artifacts from the GL database have been written
and run as described in Section 3 using hand
translation to TXL. All four of them produce
correct and complete C output in a pleasing form
directly from the original Prolog database for the
GL interface. As shown in Figure 10, µ C
metaprograms can become very sophisticated
indeed, although the basic paradigm of using an
example C code template for the desired result
remains, and µC metaprograms are easily read by
C programmers.

The major difference in µ * from Ryman's "ideal"
metaprograms is the use of explicit syntactic roles
for metavariables, and the use of nested
metaprograms to increase expressive power.
While explicit roles necessitate some knowledge
of target language syntax on the part of the
programmer, the use of the user's guide reference
syntax for the target language rather than a
compiler-oriented LALR or LL grammar makes
this relatively painless. In addition, the added
redundancy of roles for metavariables increases
precision in the specification of metaprograms
and greatly decreases the chances of error, and
the manipulation of large sections of code is

\ extern FType MproF (ParameterComment);
\ [declaration*]

each function (F [id])
 where MproF [id]

'mpro_ [concat F]
 where FType [type]

returns (F,Ftype) or 'void
 where ParameterComment [comment]

/* \ ParmType ParmName; \
[declaration*]

each parameter (F,InOut[id],
 ParmType[type],ParmName[id])

 \\
*/

\\

Figure 7. Refined Example µC Metaprogram to
Generate the External C Routine
Declarations Artifact of the GL Example.

This version uses where clauses to refine the
result using nested metaprograms, and improves
over the simple version of Figure 6 in that it
correctly renames the functions starting with
'mpro_' and inserts a comment showing the C
parameter declarations of the functions'
parameters.

output of the metaprogram of Figure 6

extern int zbuffer();
extern gid winopen();

output of the metaprogram of Figure 7

extern int mpro_zbuffer(/* */);
extern void mpro_color(/*int index;*/);
extern gid mpro_winopen(/*char* name;*/);

Figure 8. Comparison of the Output of the µC
Metaprograms in Figures 6 and 7 given the
Database of Figure 1.

Note that in addition to not giving the parameter
types in the result, the simple metaprogram of
Figure 6 actually had a bug in that its search
predicate did not find functions in the database
with no explicitly specified return type. Hence
the 'color' function is missing from its output.

7

easier and more convenient using syntactic
handles than it could be in a text-based
implementation.

The automatic implementation of the general µ *
processor using TXL is complete and is currently
in the testing stages [Shukla 92]. In addition to
the original goal of automatically deriving code
sections from design databases, there are plans to
use metaprogramming as a code reuse technique.
By annotating existing source modules to turn
them into generic versions and instantiating them
using a database of facts about new applications,
we can use metaprogramming to implement
retroactive reuse in the style originally proposed
by Baker [Baker 88]. No doubt experience with
the technique with other languages and
applications will improve and refine our

knowledge of metaprogramming and its practical
uses in software development and reuse.

5 Acknowledgements

This work is supported by the Information
Technology Research Centre as part of the
Software Life Cycle Technology project (a joint
project of Queen's University and the University
of Toronto in association with the Advanced
Software Design Technology project of the Centre
for Advanced Studies, IBM Canada Limited) and
in part by the Natural Sciences and Engineering
Research Council of Canada as part of the
Programming Language Technology project at
Queen's University.

8

 __

µ* Grammar µ* → TXL
TXL Rules

XL Metaprogram
TXL Rules

1)
L Reference

Grammar

 µL
Metaprogram

Prolog
 Grammar

TXL

2)

Prolog
Database

Instantiated
L Program

(3)

µL Prototype System

Figure 9. Prototype Implementation of µ* Using TXL.

A TXL source transformation is used to ranslate µL metaprograms to TXL
metaprograms for target language L (1). The result is combined with standard
reference grammars for L and Prolog to give a complete TXL program (2),
which is then run with a Prolog database as input. The database is transformed
by the TXL program to a target language L instantiation of the original µL
metaprogram (3). The entire process is very efficient, running in the order of
seconds on practical examples on an RS6000 workstation.

__

\ int MproF (p);
struct {

ParameterPointerFields
ResultPointerField
DummyField

} *p;
{

ParameterDeclarations
ResultDeclaration
InputParameterBindings
ResultAssignment
OutputParameterBindings
FailCondition

}
\ [declaration*]

each function (F [id])

 where MproF [id]
'mpro_ [concat F]

 where ParameterPointerFields
\ ParmType *ParmName; \

[declaration*]
each parameter (F, ParmType [type],

ParmName [id], InOut [id])

 where ResultPointerField
\ ResultType *ResultName; \

[declaration]
returns (F, ResultType [type],

ResultName [id])

 where DummyField
\ int *dummy; \ [declaration]
not returns (F, ResultType [type],

ResultName [id])
and not parameter (F,

 ParmType [type],
ParmName [id], InOut [id])

 where ParameterDeclarations
\ ParmType ParmName; \

[declaration*]
each parameter (F, ParmType [type],

ParmName [id], InOut [id])

 where ResultDeclaration
\ ResultType ResultName; \

[declaration]
returns (F, ResultType [type],

ResultName [id])

 where InputParameterBindings
\ ParmName = (ParmType) *p ->

ParmName; \ [statement*]
each parameter (F, ParmType [type],

ParmName [id], in)

 where ResultAssignment
\ ResultName = F (Parameters); \

[statement]
returns (F, ResultType [type],

ResultName [id])

 where Parameters
\ ParmName \ [id,]
each parameter (F,

ParmType [type],
 ParmName [id],InOut [id])

 where OutputParameterBindings
\ (ParmType) *p -> ParmName =

ParmName; \ [statement*]
each parameter (F, ParmType [type],

ParmName [id], out)

 where FailCondition
\ return Condition; \ [statement]
fail (F, Condition [expression])

\\

Figure 10. Complete µC Metaprogram to
Generate the C Glue Routines Artifact of the
GL example.

References

[Aho, Weinberger and Kernighan 79]
Al Aho, Peter Weinberger, and Brian
Kernighan, AWK - a pattern scanning and
processing language. Software Practice and
Experience 9 (1979).

[Baker 88] Thomas D.J. Baker,
Retroactive reusability of existing code.
M.Sc. thesis, Department of Computing and
Information Science, Queen's University
(1988).

[Basset 87] Paul G. Basset,
Frame-based software engineering.
IEEE Software 4(4) (1987): 9-16.

[Cleaveland 88] J.Craig Cleaveland,
Building application generators.
IEEE Software 5(4) (1988): 25-33.

 [Consens, Mendelzon & Ryman 91]
Mariano Consens, Alberto Mendelzon, and
Arthur Ryman, Visualizing and querying
software structures. Proc. 1991 CAS
Conference (1991): 17-35.

9

[Cordy, Halpern & Promislow 88]
 James R. Cordy, Charles D. Halpern, and Eric
Promislow, TXL: a rapid prototyping system
for programming language dialects.
Proc. IEEE 1988 Int. Conf. on Computer
Languages (1988): 280-285.

[Cordy, Halpern & Promislow 91]
 James R. Cordy, Charles D. Halpern-Hamu,
and Eric Promislow, TXL: a rapid prototyping
system for programming language dialects.
Computer Languages 16(1) (1991): 97-107.

[Jones 86] C.B. Jones,
Systematic Software Development Using
VDM. Prentice-Hall International (1986).

[Kotik & Markosian 90]
 Gordon B. Kotik and Lawrence Z. Markosian,
Program transformation: the key to
automating software maintenance and re-
engineering. IEEE Trans. Software Eng. 16(9)
(1990): 1024-1043.

[Kowalski 74] R. Kowalski
Predicate logic as a programming language.
Proc. IFIP 74 Congress (1974): 569-574.

[Levy 86] L.S. Levy,
A metaprogramming method and its
economic justification.
IEEE Trans. Software Eng. 12(2) (1986): 100-111.

[Ryman 90] Arthur Ryman,
Requirements for a metaprogramming
language. Presentation at the 24th meeting
of IFIP Working Group 2.4, Kingston,
Canada (1990).

[Schröer 89] F.W. Schröer,
Klauselbasierte übersetzerbeschreibungen
(Clause-based compiler specification).
Studienpapiere der GMD Forschungsstelle
an der Universität Karlsruhe, Karlsruhe,
Germany (1989).

[Shukla 92] Medha Shukla,
 A practical metaprogramming language and
its implementation. M.Sc. thesis,
Department of Computing and Information
Science, Queen's University (February 1993).

[Spivey 88] J.M. Spivey,
Introducing Z: A Specification Language and
its Formal Semantics. Cambridge University
Press (1988).

[Vollmer 91] Jürgen Vollmer,
Experiences with Gentle: efficient compiler
construction based on logic programming.
Proc. 3rd International Symposium on
Programming Language Implementation and
Logic Programming (PLILP 91), Springer
Verlag Lecture Notes in Computer Science 528
(1991): 425-426.

10

