
Application of Model Comparison Techniques
to Model Transformation Testing

Matthew Stephan and James R. Cordy
Queen’s University, Kingston, Ontario, Canada

fstephan, cordyg@cs.queensu.ca

Keywords: Model Transformations, Model Comparison, Model Transformation Quality Assurance, Model Transforma-
tion Testing, Metamodel Comparison.

Abstract: In this paper, we discuss model-to-model comparison techniques that can be used to assist with model-to-
model transformation testing. Using an existing real-world model transformation, we illustrate and qualita-
tively evaluate the comparison techniques, highlighting the associated strengths and weaknesses of each in the
context of transformation testing.

1 INTRODUCTION

Although the area of model transformation testing
(MTT) is relatively new, there already is a consen-
sus that model comparison (MC) is a key and funda-
mental component of it (Baudry et al., 2010; Kolovos
et al., 2006; Mazanek and Rutetzki, 2011). MC en-
tails identifying similarities and differences between
a pair, or multiple, models. There are many differ-
ent MC approaches intended for a variety of differ-
ent purposes (Stephan and Cordy, 2013). However,
there are relatively few that are explicitly intended
to facilitate MTT. Furthermore, there is no consen-
sus as to which techniques are best suited. For exam-
ple, current transformation testing implementations,
such as Transformation Judge1, simply use compar-
ison tools based on the fact that they are “the most
widely used” (Mazanek and Rutetzki, 2011).

In this paper we discuss and qualitatively evalu-
ate the available model comparison approaches that
can be used as part of a MTT oracle, including some
approaches that may not have been intended for this
purpose. We focus on model-to-model (M2M) trans-
formation testing because the verification of these
transformations is more challenging than model-to-
code (Lin et al., 2005) and the literature contains more
M2M comparison approaches. Also, M2M transfor-
mations have been identified as one of the main road
blocks necessary to overcome in facilitating change
evolution in MDE (Sendall and Kozaczynski, 2003).

Our main contribution is an exploration of which

1http://sites.google.com/site/transformationjudge/

MC approach(es) are the most promising for a MTT
oracle. To demonstrate and discuss the comparison
approaches in the transformation testing context, we
use a heterogeneous M2M transformation from the
literature and discuss both homogeneous and hetero-
geneous comparisons.

2 BACKGROUND

Model Transformation Testing involves executing
a set of transformations on source models and com-
paring the output of the transformations with the ex-
pected output (Selim et al., 2012). If a generated out-
put model corresponds to expected output, then one
can infer that the transformation has been performed
correctly. Otherwise, the transformation needs to
be updated. Oracle implementation is an outstand-
ing challenge in accomplishing MTT (Baudry et al.,
2006) and can be done in a variety of ways (Mottu
et al., 2008), many involving forms of MC.

Model Comparison involves discovering similar-
ities and differences among different models. Some
applications include model versioning, model clone
detection, model merging, and, to a lesser extent,
MTT (Stephan and Cordy, 2012). In this paper we
consider all of the approaches intended for MTT and
others that we believe can be adapted. We discuss
both the calculation and visualization capabilities of
each approach.

Automatic MC is crucial in achieving MTT be-
cause manual comparison for testing is not practical,

307



nor are character- or line- based comparisons. There
are three different forms of MC being used in the con-
text of an oracle (Mottu et al., 2008): 1] Comparing
an output model with a reference model generated
by a reference transformation; 2] Comparing an in-
put model with a model that was transformed once by
the transformation and again by the inverse transfor-
mation, if the transformation is injective; 3] Compar-
ing an output model with an expected output model,
if available. This list refers to the steps preceding
the comparison. For each of these, the comparisons
themselves do not differ that much: They are likely
homogeneous, or endogenous, meaning they are per-
forming comparisons of models from the same meta-
model. In this paper, we consider both homogeneous
and heterogeneous, or exogenous, comparisons, the
latter being useful for comparing the input and output
model of a heterogeneous transformation.

3 MODEL COMPARISON
TECHNIQUES

Using a recent survey on MC (Stephan and Cordy,
2013), we include any approaches that are intended to
deal with MTT explicitly, meaning the comparisons
are specifically tailored to provide information that
can help with transformation testing.

C-Saw2 is a general-purpose model transforma-
tion engine implemented as a Generic Modeling Envi-
ronment (GME)3 plugin, originally intended as an as-
pect weaver for modeling languages. It facilitates the
execution of a model transformation specification and
includes a basic model comparison algorithm (Lin
et al., 2005).

DSMDiff (Lin et al., 2007) is a MC tool that is
intended to work with domain-specific models. It is
built on top of the GME, a tool intended to assist
with developing and managing domain-specific mod-
els. Although there are attempts to bridge the gap
between GME and EMF (Bézivin et al., 2005), there
is nothing yet that can convert instance models from
EMF to GME instance models. Thus, we do not in-
clude it in our case study.

EMF Compare (Brun and Pierantonio, 2008) is an
Eclipse project that implements MC for EMF 4 mod-
els. It avoids using static unique identifiers and relies
more on similarity based-matching to add flexibility
and usefulness in more contexts.

2http://www.gray-area.org/Research/C-SAW/
3http://www.isis.vanderbilt.edu/Projects/gme/
4http://www.eclipse.org/emf/

Figure 1: Homogeneous MC using EMF Compare.

The Epsilon Comparison Language(ECL)5 is a
rule-based approach to MC. It provides modelers the
ability to utilize language-specific information to de-
scribe semantics and to make MC more accurate and
efficient (Kolovos, 2009). It allows comparison of
models subscribing to different metamodels.

SmoVer (Reiter et al., 2007) is a technique that
can likely be adapted to perform MC for MTT. In-
tended to assist with model versioning for EMF-based
models, SmoVer performs both syntactic and semantic
comparisons. Semantic comparisons are evaluations
of models that have undergone a model transforma-
tion into semantic views. Unfortunately, much of the
described tool has yet to be implemented including
a lack of adequate visualization of differences6 and
having its comparison engine inseparable from its ver-
sion control system. As such, we do not include this
approach in our case study.

4 CASE STUDY

Our case study for comparing EMF Compare and
ECL involves testing transformations for model mi-
gration. Specifically, we consider migration from
UML 1.4 activity diagrams to UML 2.2 activity di-
agrams (Rose et al., 2010b). We believe this is a rep-
resentative and sufficient example: 1] It was used in a
transformation tool contest in 20107, meaning it was
viewed as a fair and representative set of transforma-
tions; 2] The transformation is challenging and real-
istic because the differences between the source and
target metamodels are significant; and 3] As a result
of it coming from a tool contest, we have a relatively
large set of solutions and output models to work with
via the contest website.

4.1 Homogeneous Comparison

The comparison techniques should perform well as

5http://www.eclipse.org/gmt/epsilon/doc/ecl/
6http://smover.tk.uni-linz.ac.at/prototype.php
7http://planet-mde.org/ttc2010/index.php

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

308



homogeneous MC is much simpler than heteroge-
neous. Any discrepancies between the expected and
actual output models mentioned are not, necessarily, a
reflection of the transformation tools, but of the trans-
formations that were submitted to the transformation
tool contest.

4.1.1 EMF Compare

In order to use EMF Compare for MTT, we config-
ure it to ignore unique identifiers. In Figure 1, we
show the comparison results of the expected output
with the output models that resulted from transforma-
tions from two M2M tools, Flock (Rose et al., 2010a)
and MOLA (Kalnins et al., 2005) on the left and right
of the figure, respectively. The output model from
Flock is identical to our expected output. From a test-
ing perspective, this means that EMF Compare is able
to show when a test case is executed as expected. For
the MOLA transformation, there seems to be a sym-
metric list of changes under many of the model ele-
ments. For example, for every control flow or object
flow reference missing when compared to its corre-
sponding element, a reference addition of the same
type appears. It is likely these differences are triv-
ial and these references are to the same object: EMF
Compare generates false positives, that is, elements
that are identified as different but should not be. In
addition, it is very difficult to pinpoint the differences.

4.1.2 ECL

While ECL requires more work to define the rules for
matching models, it excels at matching corner cases
based on domain knowledge and user input (Kolovos,
2009). So, if we are able to ascertain the lower level
problems, we can reduce the number of false positives
using an appropriate ECL rule.

We find the lower level problem from our example
in Figure 1: The elements are not matched because
the MOLA transformation sets the name and visibil-
ity of these elements to null and public, respectively,
rather than to unset, as in our expected output. The
issue is not that the MOLA transformation is wrong in
doing this, it is that our comparison method should
interpret them as equal. We specify this using the
ECL as demonstrated in the rule definitions in Fig-
ure 2. The top rule block accounts for the Object-
Flow false positives while the bottom rule block ac-
counts for ControlFlow false positives. Implement-
ing this rule removes 34 of 95 listed differences out-
lined in our transformation test. Many remaining false
positives can be rectified with analogous rule defini-
tions to those in Figure 2.

Figure 2: ECL rules to remove false positives.

4.2 Heterogeneous Comparison

An interesting application of MC in MTT that has
yet to be investigated is comparing metamodels in
a heterogeneous transformation and using that to
guide testing input, that is, allow test generation
from metamodel MC. This differs from existing ap-
proaches (Sen et al., 2009). We provide a brief il-
lustration using EMF Compare in Figure 3 showing
MC of the different metamodels from the provided
case study, with the evolved model on the left. This
list of differences might be a good starting place for
test-case generation. For example, to test a model
transformation with respect to the StateMachine el-
ement in isolation, we could write assertions that en-
sure those 17 or so changes have been represented ac-
cordingly.

It is clear that EMF Compare is not well suited
for heterogeneous comparisons. The EMF Compare
matching algorithm produces the same, relatively un-
helpful information in that they fail to match what, se-
mantically, we know should be a match near the top of
the model hierarchy. Only straight-forward matches
are discovered, such as those that have the same or
similar names. For example, StateMachine, State,
and PseudoState are present in both metamodels, but
it is difficult to identify the differences of their chil-
dren and other should-be matches at the same level
are missed.

Thus, we are left with ECL or, possibly, SmoVer, if
it were to be extended appropriately. We would write
rules, like the ones in Figure 2, that match UML 1.4
components to their corresponding 2.2 components.
We can indicate matching metamodel elements at all
levels and will, consequently, be left with more mean-
ingful comparisons. While this is somewhat equiva-
lent to writing the actually transformation itself, it is
done from a comparison and declarative perspective,
allowing for an extra level of verification.

Application�of�Model�Comparison�Techniques�to�Model�Transformation�Testing

309



Figure 3: Comparison of metamodels.

5 SUMMARY

Our evaluation is summarized in Table 1. The first
column lists desirable criteria: For boolean criteria,
a check mark is better than an ’X’. For non-boolean
criteria, the more pluses, the better. In terms of being
widely-applicable, C-Saw limits itself to models with
static identifiers. EMF Compare, ECL, and SmoVer
work with EMF only, but the first two can be extended
to work with other formats. DSMDiff is the most gen-
eral. C-Saw and EMF Compare are the only ones
that do not require case-specific configuration. While
the criteria authors state this is positive, we disagree
and believe case-specific configuration is important
for satisfying the other criteria, notably precision of
matches and differences. For readability and preci-
sion, all of the comparison tools seem to have room
for improvement. We give EMF Compare and ECL
the top scores, giving ECL the advantage because the
lower-level match rules increase precision. None of
the tools provide as much matching data as they could
and should, but EMF Compare and ECL provide the
most. The case study and other examples revealed no
significant differences in performance.

MC is key for achieving acceptable MTT. We pre-
sented a subset of MC techniques that are both well-
suited to MTT and representative of the available ap-
proaches. It is clear that C-Saw and SmoVer are cur-
rently inadequate because of their reliance on unique
identifiers and lack of implementation, respectively.

Using a UML activity diagram case study, we
discussed EMF Compare’s and ECL’s ability to per-
form heterogeneous and homogeneous comparisons
for MTT. ECL scores the highest out of the ap-

Table 1: Evaluation of MC approaches using the criteria
from Mazanek and Rutetzki (2011).

proaches, however, some may be discouraged by its
need for case-specific configurations. We argue that it
is a good trade off, especially in the context of MTT.

A good visualization of both matches and differ-
ences is crucial in the context of MTT. Existing vi-
sualization techniques can be improved and new ones
should be investigated. We also presented the idea
of performing metamodel comparison to achieve test
generation from models. Lastly, a hybrid approach
to MTT by reverse engineering the metamodels and
is built on top of ECL may be very useful. While
some advancement has been made in MTT, this pa-
per shows that there is still some work to be done and
improvements to be made.

REFERENCES

Baudry, B., Dinh-trong, T., Mottu, J.-M., Simmonds, D.,
France, R., Ghosh, S., Fleurey, F., and Traon, Y. L.
(2006). Model transformation testing challenges. In
ECMDA.

Baudry, B., Ghosh, S., Fleurey, F., France, R., Le Traon,
Y., and Mottu, J. (2010). Barriers to systematic model
transformation testing. Comm. ACM, 53(6):139–143.

Bézivin, J., Brunette, C., Chevrel, R., Jouault, F., and
Kurtev, I. (2005). Bridging the generic modeling en-
vironment (GME) and the Eclipse modeling framework
(EMF). In OOPSLA.

Brun, C. and Pierantonio, A. (2008). Model differences in
the Eclipse modelling framework. EJIP, pages 29–34.

Kalnins, A., Barzdins, J., and Celms, E. (2005). Model
transformation language MOLA. Model Driven Archi-
tecture, pages 900–915.

Kolovos, D. (2009). Establishing correspondences between
models with the Epsilon Comparison Language. In
MDAFA, pages 146–157. Springer.

Kolovos, D., Paige, R., and Polack, F. (2006). Model com-
parison: a foundation for model composition and model
transformation testing. In IWGIMM, pages 13–20. ACM.

Lin, Y., Gray, J., and Jouault, F. (2007). DSMDiff: a
differentiation tool for domain-specific models. EJIS,
16(4):349–361.

MODELSWARD�2013�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

310



Lin, Y., Zhang, J., and Gray, J. (2005). A testing framework
for model transformations. MDSD, pages 219–236.

Mazanek, S. and Rutetzki, C. (2011). On the importance
of model comparison tools for the automatic evaluation
of the correctness of model transformations. In IWMCP,
pages 12–15. ACM.

Mottu, J., Baudry, B., and Traon, Y. (2008). Model transfor-
mation testing: oracle issue. In IWSTVV, pages 105–112.

Reiter, T., Altmanninger, K., Bergmayr, A., Schwinger,
W., and Kotsis, G. (2007). Models in conflict-detection
of semantic conflicts in model-based development. In
WMDEIS, pages 29–40.

Rose, L., Kolovos, D., Paige, R., and Polack, F. (2010a).
Model migration with epsilon flock. TPMT, pages 184–
198.

Rose, L. M., Kolovos, D. S., Paige, R. F., and Polack, F. A.
(2010b). Model migration case for TTC 2010. In Trans-
formation Tool Contest 2010, pages 1–6.

Selim, G., Cordy, J. R., and Dingel, J. (2012). Model trans-
formation testing: The state of the art. In AMT, page 6
pp.

Sen, S., Baudry, B., and Mottu, J. (2009). Automatic model
generation strategies for model transformation testing.
Theory and Practice of Model Transformations, pages
148–164.

Sendall, S. and Kozaczynski, W. (2003). Model transfor-
mation: The heart and soul of model-driven software de-
velopment. IEEE Software, 20(5):42–45.

Stephan, M. and Cordy, J. R. (2012). A survey of methods
and applications of model comparison. Technical report,
Queen’s University. TR. 2011-582 Rev. 2.

Stephan, M. and Cordy, J. R. (2013). A survey of model
comparison approaches and applications. In Model-
sward. to appear.

Application�of�Model�Comparison�Techniques�to�Model�Transformation�Testing

311


