
Softw Syst Model
DOI 10.1007/s10270-013-0365-1

SPECIAL SECTION PAPER

Model transformations for migrating legacy deployment models
in the automotive industry

Gehan M. K. Selim · Shige Wang · James R. Cordy ·
Juergen Dingel

Received: 6 November 2012 / Revised: 10 June 2013 / Accepted: 25 June 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract Many companies in the automotive industry have
adopted model-driven development in their vehicle soft-
ware development. As a major automotive company, Gen-
eral Motors (GM) has been using a custom-built, domain-
specific modeling language, implemented as an internal pro-
prietary metamodel, to meet the modeling needs in its con-
trol software development. Since AUTomotive Open System
ARchitecture (AUTOSAR) has been developed as a stan-
dard to ease the process of integrating components provided
by different suppliers and manufacturers, there has been a
growing demand to migrate these GM-specific, legacy mod-
els to AUTOSAR models. Given that AUTOSAR defines its
own metamodel for various system artifacts in automotive
software development, we explore applying model transfor-
mations to address the challenges in migrating GM-specific,
legacy models to their AUTOSAR equivalents. As a case
study, we have built and validated a model transformation
using the MDWorkbench tool, the Atlas Transformation Lan-
guage, and the Metamodel Coverage Checker tool. This
paper reports on the case study, makes observations based
on our experience to assist in the development of similar

Communicated by Dr. Antonio Vallecillo and Dr. Juha-Pekka Tolvanen.

G. M. K. Selim (B) · J. R. Cordy · J. Dingel
School of Computing, Queen’s University, Kingston,
ON K7L2N8, Canada
e-mail: gehan@cs.queensu.ca

J. R. Cordy
e-mail: cordy@cs.queensu.ca

J. Dingel
e-mail: dingel@cs.queensu.ca

S. Wang
Electrical and Controls Integration Lab, General Motors Research and
Development, Warren, MI 48090, USA
e-mail: shige.wang@gm.com

types of transformations, and provides recommendations for
further research.

Keywords Model-driven development (MDD) · Model
transformations · AUTOSAR · Transformation languages
and tools · Automotive control software · Black-box testing

1 Introduction

Model-driven architecture (MDA) [72] is a standardization
effort led by the Object Management Group (OMG) for
developing systems using platform-independent models. The
application of MDA to software systems is referred to as
model-driven development (MDD) [12]. MDD is a relatively
new software development methodology that uses models as
the central means for software specification and communi-
cation.

In MDD, the software development process can be con-
ceptually treated as a sequence of model transformations,
each of which converts an input model conforming to a
source metamodel into an output model conforming to a tar-
get metamodel. For example, transformations can be used
in MDD to transform abstract models into detailed models
(and eventually into deployable code) and to refactor mod-
els. Thus, model transformations form a vital part of MDD.
Model transformations are implemented using a model trans-
formation language, which can be declarative, imperative, or
hybrid. While a declarative language or language construct
typically yields a simpler and more compact specification,
an imperative language or language construct is more likely
to be capable of specifying complex transformations [46].

As one of the early MDD adopters in industry, General
Motors (GM) has created a domain-specific modeling lan-
guage, implemented as an internal proprietary metamodel,

123

G. M. K. Selim et al.

for vehicle control software (VCS) development. The meta-
model defines modeling constructs for vehicle control soft-
ware development, including physical nodes on which soft-
ware is deployed and execution frames. VCS models con-
forming to this internal, proprietary metamodel have been
used in several vehicle production domains at GM, such as
body control, access control, and monitoring.

Recently, the AUTomotive Open System ARchitecture
(AUTOSAR) [6] has been developed as an industry stan-
dard to facilitate integration of software components from
different manufacturers and suppliers. AUTOSAR defines
its own metamodel with a well-defined layered architec-
ture and interfaces and aims at exchangeability and inter-
operability among components from different suppliers and
manufacturers. Since converging to AUTOSAR is a strategic
direction for future modeling activities, transforming GM-
specific legacy models to their equivalent AUTOSAR mod-
els becomes essential. Model transformation is considered
as a key enabling technology to achieve this convergence
objective.

Despite the existence of studies in industry adoption of
MDD [5,25,55,75], no model transformation is reported to
have migrated legacy models in the automotive industry. To
increase our understanding and test the practicality of using
transformations for migrating legacy models in an industrial
environment, we have developed and validated a transfor-
mation from a subset of GM-specific legacy models to their
equivalent AUTOSAR models with assistance of a com-
mercial model transformation tool and a black-box testing
tool.

This paper is an extended version of a study that we previ-
ously conducted [70]. In addition to discussing the transfor-
mation problem demonstrated in [70], we further validate the
transformation in this paper using an existing black-box test-
ing tool, the Metamodel Coverage Checker (MMCC) [45].
We report on the testing results and on the practicality of
using such testing tools to validate industrial transformations.

In summary, we found no bugs in the transformation, but we
discuss a few issues that require attention to facilitate indus-
trial transformation testing such as automating the stages of
transformation testing.

The rest of this paper is organized as follows. Section 2
discusses the process context in which our transformation is
implemented. Section 3 describes the source and target meta-
models of the transformation. Section 4 details the transfor-
mation development, including its rules specification, imple-
mentation, and validation. Section 5 discusses our experi-
ences and issues that require further research. Section 6 sum-
marizes related work. The paper is concluded in Sect. 7 with
a summary and future work.

2 VCS development, models, and model transformations

Applying model transformation requires understanding of
the development process, which provides a context for the
target transformation. For vehicle control software (VCS)
development, the relevant process artifacts include design
stages and activities, and the input and output models of each
stage.

2.1 Typical VCS development process and models

The VCS development process is typically described as
a V -diagram [63], shown in Fig. 1. In this process, the
stages on the left-hand side of the V -diagram are activi-
ties related to design and implementation, and the stages of
the right-hand are activities related to integration and val-
idation. The design starts from system requirements mod-
els, which are decomposed into hardware and software sub-
system requirements models. The subsystem requirements
models then are assigned to engineering groups or exter-
nal organizations for refinement into design models and then
implemented by hardware and software components. These

Fig. 1 V -diagram for the VCS
development process

123

Transformations for model migration in the automotive industry

Fig. 2 The subset of the GM
metamodel used in our
transformation

implemented components are integrated into electronic con-
trol units (ECUs), configured for a designated vehicle prod-
uct. The components are then tested and validated at various
levels against their corresponding models on the same level
on the left-hand side of the V -diagram.

Different types of models are used and generated in the
process, including control models and hardware architecture
models. The models use different formalisms: control mod-
els use differential equations and timing-variation functions,
and hardware architecture models use annotated block dia-
grams. Selected modeling tools (e.g., Simulink, Rhapsody)
and languages (e.g., UML, AADL) are used for modeling.

2.2 Model transformation types in the VCS development
process

Given the model types used in the VCS development process,
the transformations manipulating these models can be clas-
sified into two categories:

– Horizontal transformations Horizontal transformations
manipulate models at the same abstraction level [54].
Examples include the transformation of a state machine
in Matlab Stateflow into a UML 2 state machine. Such
transformations are normally used to verify integration
when subsystems/components are composed to realize a
system function. The modeling languages for the source
and target models may have different syntax, but must
share similar, or overlap in, semantics.

– Vertical transformations Vertical transformations manip-
ulate models at different abstraction levels [54]. Examples
include generation of a deployment model from software
and hardware architecture models. Vertical transforma-
tions are usually more complex than horizontal transfor-
mations due to the different semantics of the source and
target models.

3 Source and target metamodels

In this study, our models are those generated and used at
the software subsystem design stage in the VCS develop-
ment process. The source metamodel is an internal, propri-
etary metamodel to GM which we will refer to as the GM
metamodel. The target metamodel is the AUTOSAR System
Template, version 3.1.5 [7]. To simplify the exercise with-

out losing generality, a subset of the GM metamodel and
the AUTOSAR metamodel is manipulated in the transforma-
tion. Specifically, we focus on the modeling elements related
to the software components deployment and interactions, as
discussed below.

3.1 The GM metamodel

Figure 2 illustrates the meta-types in the GM metamodel1 that
represent the physical nodes, deployed software components
and their interactions.

The PhysicalNode type specifies a physical node on which
software is deployed. A PhysicalNode may contain multiple
Partition instances, each of which defines a processing unit
or a memory partition in a PhysicalNode on which software
is deployed. Multiple Module instances can be deployed on a
single Partition. The Module type defines the atomic deploy-
able, reusable element in a product line and can contain mul-
tiple ExecFrame instances. The ExecFrame type, i.e., an exe-
cution frame, models the basic unit for software scheduling.
It contains behavior-encapsulating entities and is responsible
for managing services provided or required by the behavior-
encapsulating entities. Each ExecFrame may provide and/or
require Service instances, which model the services provided
or required by the ExecFrame.

3.2 The AUTOSAR metamodel

The AUTOSAR metamodel is defined as a set of templates,
each of which is a collection of classes, attributes, and rela-
tions used to specify an AUTOSAR artifact such as soft-
ware components and ports. Among the defined templates,
the System template [7] is used to capture the configuration
of a system or an electronic control unit (ECU). An ECU is a
physical unit on which software is deployed. When used for
the configuration of an ECU, the template is referred to as
the ECU Extract. Figure 3 shows the metatypes in the ECU
Extract that capture software deployment on an ECU. Our
transformation manipulates AUTOSAR version 3.1.5.

The ECU extract is modeled using the System type
that aggregates SoftwareComposition and SystemMapping
elements. The SoftwareComposition type points to the

1 The metamodel has been altered for reasons of confidentiality. How-
ever, the relevant aspects required for the purpose of this paper have all
been preserved.

123

G. M. K. Selim et al.

Fig. 3 The AUTOSAR System Template containing relevant types used by our transformation

CompositionType type which eliminates any nested software
components in a SoftwareComposition instance. The Soft-
wareComposition type models the architecture of the soft-
ware components deployed on an ECU, the ports of these
software components, and the ports connectors. Each soft-
ware component is modeled using a ComponentPrototype,
which defines the structure and attributes of a software com-
ponent; each port is modeled using a PortPrototype, i.e., a
PPortPrototypeor a RPortPrototype for providing or requir-
ing data and services; each connector is modeled using a
ConnectorPrototype. Each ComponentPrototype must have
a type that refers to its container CompositionType.

The SystemMapping type binds the software compo-
nents to ECUs and the data elements to signals and frames.
The SystemMapping type aggregates the SwcToEcuMapping
type, which assigns SwcToEcuMapping_components to an
EcuInstance. SwcToEcuMapping_components in turn refer
to ComponentPrototype elements. According to AUTOSAR,
only one SwcToEcuMapping should be created for each
processing unit or memory partition in an ECU.

4 GM-to-AUTOSAR model transformation

In this case study, we implement a GM-to-AUTOSAR model
transformation to demonstrate the practicality of adopting
transformations in the automotive industry. First, we rational-
ize our choice of the model transformation tool and language.
Accordingly, we summarize the pragmatics of the chosen lan-
guage. We then demonstrate the transformation rules needed
to map between the two metamodels which were defined
in consultation with domain experts. Finally, we discuss the
transformation implementation and validation.

Our transformation takes three inputs: the source GM
metamodel, the target AUTOSAR system template, and an
input GM model. The output of the transformation is an
AUTOSAR model.

4.1 Selecting model transformation tool and language

A model transformation language is usually integrated as part
of a modeling integrated development environment (IDE).
Hence, the choice of a transformation language is tightly cou-
pled with the choice of the supporting IDE. It is desired that
the selected tool has strong commercial support. Several tools
and their accompanying languages have been considered as
candidates for implementing the transformation. The consid-
ered tools include IBM Rational Asset Manager (RAM) [41],
the RulesComposer add-on for IBM Rhapsody [42], and
MDWorkbench [71]. Although several other tools exist, GM
was interested in using one of the former three tools due
to the availability of their licenses (and thus, their technical
support).

After investigating the candidate tools, we concluded that
IBM RAM and Rules Composer are not suitable for this
transformation. RAM is a repository-based tool that offers
Java APIs to query assets and to create relationships between
repository assets. Assets are a group of artifacts that solve a
specific problem. So if a model is stored as an asset, the
APIs can manipulate only the model as a whole, not the indi-
vidual modeling elements. As fine-grained manipulations
are essential for mapping between individual modeling ele-
ments and implementing our transformation, the transfor-
mation support provided by RAM is not sufficient. Rule-
sComposer is a rule-based, model-to-text generator. With
RulesComposer, rules are specified as templates composed
of static text and placeholders. When executed, the static
text is copied into the output file, and the placeholders are
extracted from the input models. Since models are essen-
tially XMI files typed by a metamodel, the transformation
from GM models to AUTOSAR models can be viewed as a
model-to-text transformation from GM models to XMI files
conforming to the AUTOSAR metamodel that can be imple-
mented by RulesComposer. When using RulesComposer to
implement a model-to-model transformation, the developer

123

Transformations for model migration in the automotive industry

needs to specify two aspects in a rule template: the map-
pings between the source and target metamodels (specified
in the placeholders); the static text to be placed in the out-
put XMI file (i.e., XMI headers and the opening and closing
tags). Further, the developer needs to ensure that the static
text and placeholders in the rule template collectively gen-
erate well-formed XMI files. On the other hand, when using
a model-to-model transformation engine, the static text (i.e.,
XMI headers, and the opening and closing tags) are automat-
ically added by the transformation engine and the developer
only needs to specify the mappings between the source and
target metamodels. Thus, implementing the transformation
in RulesComposer (or any other model-to-text transforma-
tion engine) is time consuming and error prone. Moreover,
the rule templates can be very verbose and thus difficult to
maintain.

MDWorkbench is an Eclipse-based tool for developing
model-to-model transformations. MDWorkbench uses the
Atlas Transformation Language (ATL) [30,46] or the Model
Query Language (MQL) [71] for specifying model trans-
formations. ATL has declarative and imperative constructs,
while MQL has imperative constructs only. MDWorkbench
can manipulate models conforming to the metamodels reg-
istered in the tool (e.g., AUTOSAR) using rules defined in
ATL and MQL. MDWorkbench also provides connectors to
different modeling tools. Thus, we choose MDWorkbench to
implement the model transformation. To define the transfor-
mation rules, ATL was chosen as the transformation language
rather than MQL because ATL provides more flexibility to
mix-and-match declarative and imperative constructs in the
same rule definition.

4.2 ATL pragmatics

The ATL manual [30] and the ATL Zoo [29] are helpful
resources when learning ATL. However, since some infor-
mation is a bit spread out, we found it helpful to summarize
ATLs main elements and their use.

In ATL, a model transformation is defined as a set of
rules and helpers. Rules specify the creation of output model
elements. Helpers are used to modularize a transformation.
ATL defines four types of rules and two types of declarative
helpers.

Rule types The four types of rules are matched rules,
lazy rules, unique lazy rules, and called rules. A matched
rule specifies the source pattern to match in the input model
and the corresponding target pattern to create in the output
model. Matched rules are automatically executed once for
each matching pattern. A lazy rule is executed only when
called and can be called multiple times for the same matching
pattern. A unique lazy rule is executed only when called and
can be called at most once for any matching pattern. A called
rule is a parameterized rule that is executed only when called

and creates a target pattern without matching any source pat-
terns. All rule types have an optional imperative code block
that can be used to specify complicated functionality.

Matched rules are suitable for automatic detection of all
matching patterns in the input model and creation of their
corresponding target patterns. Lazy rules and unique lazy
rules are suitable for selective pattern matching, with con-
sideration of the number of times these rules should be run.
Called rules are suitable for creating output model elements
that do not match any input model elements.

Helper types The two types of helpers are functional
helpers and attribute helpers. A functional helper is a para-
metric function and is evaluated each time it is invoked. An
attribute helper is a nonparametric function and is evaluated
only the first time it is invoked. Thus, an attribute helper is
more efficient to implement a nonparametric functionality.
Otherwise, a functional helper can implement a parametric
functionality.

Model transformation specification Similarly to source
transformation languages, there are two approaches to speci-
fying transformations in ATL: specifying the transformation
as one large rule, or modularizing the transformation using
smaller rules and helpers. As in any other transformation lan-
guage, the two approaches present trade-offs between ease of
implementation and efficiency. Building one large rule makes
all variables accessible throughout the transformation, so the
developer need not worry about the ordering of rules in the
transformation specification. However, this approach makes
the transformation difficult to maintain and less readable.
Modularizing the transformation makes the transformation
easier to debug and maintain. However, the developer has to
ensure that the rules are specified in an order consistent with
the dependencies among rules.

4.3 Model transformation design and development

Our transformation rules were defined to realize the required
mappings between the input and output metamodels. The
rules were crafted in consultation with domain experts at
GM, which was a time-consuming process. For reasons of
confidentiality, we present a simplified version of the actual
transformation rules defined.

Let M be the input GM model and M ′ be the to-be-
generated output AUTOSAR model. The transformation
rules are defined as follows:

1. For every element physNode of the PhysicalNode type in
M, generate an element sys of the System type, an element
swcompos of the SoftwareComposition type, a contain-
ment relation (sys, swcompos), an element composType
of the CompositionType type, a relation (swcompos, com-
posType), an element sysmap of the SystemMapping

123

G. M. K. Selim et al.

type, a containment relation (sys, sysmap) and an ele-
ment ecuInst of the EcuInstance type in M ′;

2. For every element partition of the Partition type in
M, generate an element swc2ecumap of the SwcToE-
cuMapping type and a containment relation (sysmap,
swc2ecumap) in M ′;

3. For every containment relation (physNode, partition) in
M, generate a relation (swc2ecumap, ecuInst) in M ′;

4. For every element mod of the Module type in M,
generate an element swc_comp of the SwcToEcuMap-
ping_component type that refers to an element comp of
the ComponentPrototype type in M ′;

5. For every containment relation (partition, mod) in M,
generate a containment relation (composType, comp),
a type relation (comp, composType), and a relation
(sw2ecumap, comp) in M ′;

6. For every relation (exframe, svc) of the provided type
between a exframe element of the ExecFrame type and
a svc element of the Service type with a containment
relation (mod, exframe), generate a pPort element of the
PPortPrototype type and a containment relation (com-
posType, pPort) in M ′;

7. For every relation (exframe, svc) of the required type
between a exframe element of the ExecFrame type and
a svc element of the Service type with a containment
relation (mod, exframe), generate a rPort element of the
RPortPrototype type and a containment relation (com-
posType, rPort) in M ′.

We use the example in Fig. 4 to demonstrate the required
transformation. Figure 4a shows a sample model from the
automotive industry that captures the BodyControl controller.
Partitions running on BodyControl include SituationMan-
agement and HumanMachineInterface. Other possible Par-
titions (not shown) include climate control, vehicle motion
control, and human interface. Each Partition may have por-
tions on multiple controllers, other than BodyControl. Par-
titions may contain multiple Modules. For example, Situa-
tionManagement contains AdaptiveCruiseControl and may
also contain stop-and-go, parking assistant, blind spot detec-
tion, and warning. HumanMachineInteraction contains dis-
play and may also contain chimp control and horn. Each Mod-
ule runs multiple ExecFrames at the same or different rates.
AdaptiveCruiseControl contains ComputeDesiredSpeed and
may also contain readACCSet and vehicleSpeedSensing.
Display contains DisplaySetSpeed. ExecFrames invoke Ser-
vices for variable updates. One ExecFrame element, SetAC-
CDesiredSpeed, provides a Service that is required by
the other ExecFrame element, GetACCDesiredSpeed. The
expected output AUTOSAR model based on the above-
mentioned rules is shown in Fig. 4b. The PhysicalNode ele-
ment is mapped to an EcuInstance element, a System ele-
ment, a SystemMapping element, a SoftwareComposition
element, and a CompositionType element (Rule 1). The Parti-
tion elements are mapped to the SwcToEcuMapping elements
(Rule 2), each of which has an association with the gener-
ated EcuInstance element (Rule 3). The Module elements are

Fig. 4 a Sample GM input model and b its corresponding AUTOSAR output model

123

Transformations for model migration in the automotive industry

mapped to the ComponentPrototype elements aggregated by
a CompositionType element (Rules 4–5). The Component-
Prototype elements point to their container CompositionType
element as their type (Rule 5). Further, the ComponentPro-
totype elements are referred to by their corresponding Swc-
ToEcuMapping elements (Rule 5). The ExecFrame element
aggregating a provided Service is mapped to a PPortPro-
totype element and is aggregated by the CompositionType
element (Rule 6). The other ExecFrame element is mapped
similarly (Rule 7).

The development of the model transformation follows an
iterative, incremental process. First, a simple GM model
is created using the MDWorkbench model editor. Then, a
transformation is implemented to transform the input GM
model into an equivalent output AUTOSAR model. The out-
put AUTOSAR model is then manually checked to ensure
that the transformation performed the required mapping. If
the output model is correct, the process is repeated with addi-
tional metatypes in the input model and additional rules in
the transformation to process these metatypes. If the output
model contains errors, the transformation is analyzed, and
any erroneous rules or functions are fixed. Validating trans-
formations iteratively after each addition to the transforma-
tion’s implementation makes locating and fixing bugs easier.

4.4 The model transformation implementation using ATL

The GM-to-AUTOSAR transformation contains two ATL
matched rules (Table 1) and 9 functional helpers (Table 2)
implementing the 7 rules in Sect. 4.3. We also define 6
attribute helpers to access the model attribute values. We
described the rules and helpers in more details in [70]. The
relationships between the outputs of the two matched rules
are built using the ATL predefined function resolveTemp
which connects the ComponentPrototype elements created
by the createComponent matched rule to the Compo-
sitionType element created by the initSysTemp matched
rule.

4.4.1 Observations on implementing the model
transformation using ATL

Implementing the transformation revealed some insights on
using MDWorkbench and ATL in industrial applications.

Both the GM and the AUTOSAR metamodels are hierarchi-
cal and contain many relationships between model elements.
To process models conforming to such complex metamod-
els, ATL provides flexibility of using both declarative and
imperative constructs to implement complex transformation
rules. Moreover, since the output AUTOSAR models can
have many relationships among model elements, decisions
on where an element should be created in the transformation
such that it will be accessible for the downstream transforma-
tion are required. One such example is the relation between
the SoftwareComposition element and the ComponentPro-
totype element. As discussed in Sect. 4.2, the transforma-
tion can be either specified as one rule or modularized as
a sequence of rules. Although modularization requires that
the order of the rules be consistent with their dependen-
cies, ATL mitigates this downside of modularization through
the resolveTemp function. The resolveTemp function
allows a rule to reference the elements that are yet to be gen-
erated by other rules at runtime regardless of their order of
specification. However, using the resolveTemp function
makes the transformation less readable and difficult to debug,
so the function should be used only when necessary.

4.5 Validation of the model transformation

After implementing the transformation, we used model trans-
formation testing [69] to validate the correctness of the trans-
formation. Testing executes a model transformation on input
test models or a test suite and validates that the generated,
actual output model or code matches the expected output
model or code [38]. The test suite is built by defining test
adequacy criteria and building a test suite that achieves cov-
erage of the adequacy criteria [69]. In general, defining test
adequacy criteria, and hence testing, can follow a black-box
or a white-box approach. Black-box testing assumes that the
implementation of the transformation of interest is a black-
box and builds a test suite based on the specification of the
transformation (i.e., source metamodel or contracts). On the
other hand, white-box testing assumes that the implementa-
tion of the transformation of interest is available and builds a
test suite based on the implementation of the transformation.

For our study, we used black-box testing to validate
our transformation. More specifically, we used the MMCC
tool [45] to facilitate black-box testing. MMCC was imple-

Table 1 Matched rules, their corresponding rules from Sect. 4.3, and their functionality

Matched rule Corresponding rules:
Sect. 4.3

Functionality

createComponent 4–5 Maps a Module to a SwcToEcuMapping_component, and a ComponentPrototype

initSysTemplate 1 Maps a PhysicalNode to a System, a SystemMapping, a SoftwareComposition, and a
CompositionType

123

G. M. K. Selim et al.

Table 2 Functional helpers,
their corresponding rules from
Sect. 4.3, and their functionality

Functional helper Corresponding
rules: Sect. 4.3

Functionality

initEcuInst 1 Initializes an EcuInstance using the name of a
PhysicalNode as an input

createSwc2EcuMappings 2–3 Creates Swc2EcuMappings for all Partitions in the
input model

initSingleSwc2EcuMapping 2–3 Initializes a SwcToEcuMapping using an
EcuInstance and a Partition as inputs

addComponents 5 Creates the relation between a SwcToEcuMapping
and its ComponentPrototypes

getAllPPortsInEcu 6 Creates a PPortPrototype for any ExecFrame that
has at least one provided Service

createPPort 6 Initializes one PPortPrototype

getAllRPortsInEcu 7 Creates a RPortPrototype for any ExecFrame that
has at least one required Service

createRPort 7 Initializes one RPortPrototype

getAllSWCinEcu 5 Creates the containment relation between
CompositionTypes and ComponentPrototypes

mented in Kermeta [44] as part of a study by Fleurey
et al. [32]. MMCC guides the user in building a test suite
based on a predefined test adequacy criterion and a source
metamodel.

We used testing over formal validation techniques (e.g.,
theorem proving or model checking) for several reasons.
First, unlike formal validation techniques that use a formal-
ization such as Maude, testing does not require that the user
has a thorough knowledge of the formalization. Second, test-
ing has the advantage of uncovering bugs while maintaining
a low computational complexity [37]. Finally, formal valida-
tion of ATL transformations is a topic of ongoing research.
Several studies addressed such problems by reimplementing
their transformations in other formalizations such as Petri
Nets [62] and Maude [23] to use their accompanying valida-
tion techniques [17,49,64,76]. Reimplementing industrial-
size transformations in a different formalization can be infea-
sible due to time and money constraints. Thus, we had to use
a validation technique and tool that can process ATL trans-
formations. MMCC is one of the few publically available
tools that can validate transformations in any formalization
(including ATL) since it is a black-box testing tool (i.e., trans-
formation language independent). We are currently conduct-
ing another case study to evaluate our GM-to-AUTOSAR
transformation using a prototype developed by Büttner
et al. [21] for validating specifically ATL transformations.

4.5.1 Metamodel Coverage Checker (MMCC)

Metamodel Coverage Checker runs on two phases. In the
first phase, the user specifies the source metamodel and an
adequacy criterion as inputs. In this phase, MMCC uses
category-partitioning [61] to partition the values of multi-
plicities and attributes of type integer, string, or boolean into
ranges as follows:

– Integer attribute values and multiplicity values are parti-
tioned into three ranges: {0}, {1}, and {>1}.

– String attribute values are partitioned into two ranges:
{“”} and {“+”} (i.e., an empty string and a non-empty
string).

– Boolean attribute values are partitioned into two ranges:
{true} and {false}.

We updated MMCC to generate partitions for attributes that
are of types other than integer, string, or boolean. For exam-
ple, float attributes were partitioned into three ranges: {0},
{(0,1]}, and {>1}.

Using the generated partitions and the specified adequacy
criterion, MMCC generates object fragments and model frag-
ments. An object fragment is a template for a class object that
specifies constraints on the values of the attributes and mul-
tiplicities of objects from the corresponding class. A model
fragment is a template for an input test model that contains
one or more object fragments. A model fragment is satisfied
by a test model if the objects in the test model satisfy the
object fragments in the model fragment.

In the second phase, the user specifies the location of a test
suite and MMCC evaluates the test suite by identifying how
many model fragments generated in the first phase were sat-
isfied by the test suite. MMCC further generates a summary
of the missing model fragments in the test suite to guide the
user in building additional test models.

4.5.2 Validation results

For the first phase, we specified two inputs to run MMCC:
the GM metamodel and the AllPartitions criterion. The All-
Partitions criterion is a criterion implemented in MMCC and
mandates that values from all ranges of each property or mul-
tiplicity partition should be represented simultaneously in the

123

Transformations for model migration in the automotive industry

same model fragment. For example, for an integer attribute,
one model fragment mandates that the attribute should have
values from the three integer ranges ({0}, {1}, and {>1}) in
a single input model. In this phase, MMCC generated 196
partitions for 196 different attributes and multiplicities val-
ues. Accordingly, 196 model fragments were generated for
the AllPartitions criterion.

Besides the AllPartitions criterion, the AllRanges crite-
rion was also implemented in MMCC. The AllRanges crite-
rion mandates that values from each range of each property
or multiplicity partition should be represented in a model
fragment. We used the AllPartitions criterion instead of the
AllRanges criterion since it subsumes the AllRanges crite-
rion, i.e., a test suite that satisfies the AllPartitions criterion
also satisfies the AllRanges criterion, but the inverse is not
true.

We did not run the second phase of MMCC since we
started off with an empty test suite. Thus, we need to build a
test suite with models that satisfy the 196 model fragments.
Having 196 model fragments implies that the test suite can
contain at most 196 models to satisfy the AllPartitions cri-
terion. However, one model can cover more than one model
fragment at a time. Thus, we manually built a test suite of
100 test models to cover the 196 model fragments.

Our model transformation was executed using the gener-
ated test suite. For each test model in the test suite, the cor-
responding output model was verified by manually checking
whether the output AUTOSAR model is a valid equivalent
of the input GM model. The transformation was found to
produce the expected output models for the 100 input test
models.

Actual GM models were not used for validation since
many of the actual GM models did not conform to the
GM metamodel. They were built using IBM Rational Rhap-
sody [42] which allows building models without mandating
that these models be valid instances of a specific metamodel
(i.e., Rhapsody does not check conformance of the GM mod-
els to the GM metamodel). Since migrating to AUTOSAR is
unavoidable for GM, this migration can be done in two ways.
The first alternative is to manually build the AUTOSAR
equivalents of all the models to be migrated. The major draw-
back of this alternative is that different engineers may have
different understandings of AUTOSAR and the migration
may be inconsistent for different models. The second alter-
native is to update the GM models to ensure that they conform
to the GM metamodel and then using our transformation to
migrate all GM models (conforming to the GM metamodel)
to their AUTOSAR equivalents in an automated, consistent
way. The second alternative is easier to adopt since chang-
ing the GM models to conform to the GM metamodel can, in
many cases, involve minor changes (e.g., updating an associ-
ation, adding an attribute name) which is much simpler than
building AUTOSAR models from scratch (as in the first alter-

native) and ensuring that they convey the intended meaning.
Thus, to safely adopt the second alternative, we conducted
several meetings with GM domain experts to ensure that we
implemented the correct mapping between the two metamod-
els and we validated the implemented transformation using
black-box testing.

5 Discussion

Based on our experiences with the GM-to-AUTOSAR trans-
formation, we present some open issues requiring further
investigation for successful adoption of model transforma-
tions in the automotive industry. Recommendations for future
MDD tool and language development are also discussed.

5.1 Interoperability of MDD tools

5.1.1 Observations

One of the major challenges encountered in our study was the
lack of interoperability between commercial tools in support-
ing implementation of model transformations. According to
our evaluation of the languages for model transformation
implementation, ATL seemed to be an appropriate choice.
However, specifying the model transformation rules between
the two metamodels using ATL was not straightforward due
to the formats of these metamodels. ATL can only be used
to create model transformations that manipulate MOF [60]
or Ecore [31,73] metamodels, which the GM metamodel in
Rhapsody native format is not compatible with. Such incom-
patibility between the format required by ATL and the format
of the GM metamodel required the conversion of the GM
metamodel to a compatible format.

To do so, the MDWorkbench tool suite provides a Rhap-
sody connector that allows importing the GM metamodel
into MDWorkbench and converting it to Ecore format. To
avoid dual licensing from two different vendors2 with such
an approach, we addressed the problem using XMI. An Ecore
metamodel is essentially an XMI file. Rhapsody provides an
XMI toolkit to export Rhapsody models and metamodels
to XMI files. Thus, we exported the GM Rhapsody meta-
model using the XMI toolkit. However, the generated XMI
file does not conform to the Ecore meta-metamodel. To cre-
ate an Ecore version accessible to MDWorkbench, we import
the XMI into RulesComposer as a metamodel, which cre-
ates an Ecore version of the metamodel and an Eclipse plu-
gin project. Exporting the project from RulesComposer to

2 The Rhapsody connector provided by MDWorkbench requires a com-
bined license from both Sodius (providers of MDWorkbench) and IBM
(providers of Rhapsody).

123

G. M. K. Selim et al.

MDWorkbench as a plugin generates a registered GM Ecore
metamodel.

5.1.2 Other proposed solutions in the literature

In addition to our solution, there are other solutions to the
interoperability problem. Blanc et al. [16] decomposed the
interoperability problem into two concerns: ensuring the
compatibility of the model formats exchanged between dif-
ferent tools, and defining an exchange mechanism that can
be realized at run-time. Their study proposed the Model Bus
architecture to address these two concerns. In terms of the
two interoperability concerns identified in their study, the
interoperability problems that we encountered and proposed
solutions for are related to the compatibility of the exchanged
model formats. Bruneliére et al. [20] and Beźivin et al. [13]
proposed implementing model transformations or bridges
between tools manipulating models that conform to differ-
ent metamodels. Kolovos et al. [48] proposed a framework
that supports composing model management tasks with soft-
ware development tasks in coherent workflows. Other stud-
ies defined frameworks, standards, or guidelines to facili-
tate interoperability between different tools. For example,
projects such as the iFEST project [43] and the CESAR
project [22] proposed different frameworks and standards
that can be adopted by the industry for the development of
embedded systems. To the same end, Broy et al. [19] dis-
cussed the ingredients required to achieve seamless integra-
tion between isolated tools. The study also justified why such
a solution has not been implemented so far and the steps
required to get closer to building an environment that allows
easy integration of different tools and languages.

5.1.3 Future requirements

While a few solutions to the interoperability problem have
been implemented in some IDEs, they are not fully auto-
mated in practical applications. This can be addressed by
using the work done by the iFEST project [43], the CESAR
project [22], and Broy et al. [19] as a guide for realizing
frameworks that support automated integration between dif-
ferent tools.

5.2 Optimization in model transformations

5.2.1 Observations

Our implemented transformation mapped GM models repre-
senting a deployment of the software components on physical
nodes to their equivalent AUTOSAR models. The transfor-
mation exercised one rigid mapping between elements of the
two metamodels and generated an AUTOSAR output model
reflecting the deployment configuration. From the deploy-

ment perspective, there are other design options we have not
explored that may yield a more desirable deployment in the
output AUTOSAR model with respect to some utility func-
tion.

5.2.2 Other proposed solutions in the literature

Solutions exist to support optimization during the model
transformation. For example, Schätz et al. [67] proposed
a formalized approach to explore the design space using
rule-based model transformations. The study argued that
system development is a series of constrained design steps
that successively refine a model. Instances of intermediate
models were represented using a relational formalization,
and transformation rules were represented using predicates.
The approach was applied in an automotive-industrial con-
text for implementing a transformation that maps compo-
nents to units and communication channels to buses. The
study argued that the efficiency of the design space explo-
ration approach can be improved. Drago et al. [28] pro-
posed the QVT-Rational framework that explores different
design options which optimize predefined quality metrics.
First, a domain expert specifies the metamodels to be manip-
ulated, the quality metrics of interest, the quality-prediction
tool chain and the method for design feedback generation.
Then, a designer specifies desirable values for quality metrics
and asks QVT-Rational for different design solutions. The
study concluded that QVT-Rational is inefficient for interac-
tive development and cannot guarantee generating an optimal
solution for large design spaces.

5.2.3 Future requirements

Future model transformation tools that target industry use
need to support scalable design space exploration to aid
developers in exploring design options that optimize func-
tional or non-functional requirements of the generated model.

5.3 Dealing with semantic differences between metamodels

5.3.1 Observations

Identifying which elements of the target metamodel best rep-
resent a given element in the source metamodel can be a very
difficult task. Reasons include the following: (1) the precise
semantics of a metamodel may not have been documented
sufficiently and only be fully known to metamodel develop-
ers themselves; consultation of these developers may be time
consuming and error prone or even impossible. (2) The lack
of analysis support in metamodel construction and evolution
often means that the metamodels contain redundancies or
inconsistencies. (3) The mapping of source to target elements
is very dependent on the context and purpose of the trans-

123

Transformations for model migration in the automotive industry

formation, because they determine to what extent aspects of
the semantics of model elements can be removed (to, e.g.,
facilitate a model analysis), or need to be preserved (e.g., for
model refactorings) or refined (e.g., for code generation).

5.3.2 Other proposed solutions in the literature

Several studies discussed dealing with semantic differences
between metamodels by supporting mapping between the
metamodels. Kent and Smith [47] proposed a set of require-
ments needed in mapping functions (e.g., supporting bidi-
rectional mappings) and tools (e.g., supporting consistency
checking of mappings) that are intended to map between
different metamodels. Hausmann [39] proposed extending
a metamodeling language with additional declarative con-
structs to express mappings between metamodels. Thus, the
language can be used to build metamodels and formally
define metamodel mappings while abstracting from trans-
formation direction and platform-specific implementations.
Claypool et al. [24] proposed an architecture for a model
management system in which mappings between metamod-
els are captured as models to facilitate tooling and auto-
mated mapping between instance models. Maskeri et al. [52]
proposed abstracting or stamping-out metamodels into their
composite software patterns (e.g., multiple inheritance pat-
terns or allowed reference patterns) and defining mappings
between the patterns. Thus, the mappings can be reused later
on between models conforming to the stamped-out meta-
models.

5.3.3 Future requirements

The reviewed studies focused on developing metamodeling
techniques and tools that allow defining mappings when
defining the metamodels. Little attention has been given
to investigating techniques and tools that support mapping
between existent metamodels. To facilitate transformation
development, techniques to (1) document the semantics of
elements during metamodel construction, (2) find and sug-
gest mappings between metamodels using similarity match-
ing or learning [51,58], and (3) validate transformations via
testing and analysis are of high interest.

5.4 Validating model transformations

5.4.1 Observations

As explained in Sect. 4.5, we used a black-box testing
tool to facilitate the validation of our model transformation.
After manually examining the model fragments generated by
MMCC and the corresponding test models built to satisfy the
model fragments, we found that only 45 model fragments out
of the 196 actually trigger any rule in our model transforma-

tion. The generation of redundant model fragments and the
possibility of the test suite not triggering all the rules in the
transformation are due to the nature of black-box testing in
general; test cases are generated independent of the model
transformation implementation.

5.4.2 Other proposed solutions in the literature

More rigorous validation techniques and tools are desir-
able, especially for safety-critical systems. Formal verifi-
cation techniques are an active research topic [68] and are
not entirely mature yet as discussed in Sect. 4.5. These tech-
niques use formalizations (e.g., graph rewriting systems [65],
Petri Nets [62], Maude[23]) to represent transformations
and analyze them using analysis specific to those formal-
izations, e.g., [2,11,17,49,57,64,76]. However, formal ver-
ification techniques tend to be computationally expensive
and not necessarily scalable [37] and techniques and tools
are needed that can handle industrial-size transformations
and input models with reasonable resources and time. Fur-
ther, many of the formal verification techniques developed
so far mandate that the user has a strong mathematical back-
ground and hence are not easy to use by all developers or
testers. Rivera et al. [64] addressed this issue by using graph
rewriting systems [65] as a front-end to a tool that analyzes
transformations using Maude. Maude [23] is a language that
supports Membership Equational Logic (MEL) [18] and has
strong support for analysis techniques. The study used graph
rewriting systems as a front-end since a graphical represen-
tation of a transformation is more intuitive than a textual one.
Thus, the study takes advantage of the Maude analysis tech-
niques while making the tool easy to use by developers and
testers.

5.4.3 Future requirements

Metamodel Coverage Checker helped provide a systematic
way to generate a test suite, but the actual generation and
execution of the test models was performed manually and
hence was time consuming and error prone. For testing to
scale up to industrial-size transformations and models, it is
desirable to increase the level of automation in generating the
test suite, executing the transformation of interest using the
test suite, and evaluating the results of executing the model
transformation (e.g., using model differencing).

5.5 Model transformation scalability

5.5.1 Observations

As discussed in Sect. 4.5.2, actual GM models were not used
for validation due to their non-conformance to the GM meta-
model. Thus, no scalability study was conducted to ensure

123

G. M. K. Selim et al.

that the proposed approach scales when used to migrate
actual GM models are naturally bigger and more compli-
cated than the models we used to test our transformation
(discussed in Sect. 4.5.2).

5.5.2 Other proposed solutions in the literature

A few studies reasoned about the scalability of ATL transfor-
mations. As discussed in Sect. 6.1, Biehl and Törngren [15]
conducted a case study on an automotive brake-by-wire sys-
tem to demonstrate how transformations in ATL and Tiger
EMF can be used to model design decisions. The approach
was found to be feasible although no detailed results were
demonstrated. Aziz [8] conducted an exploratory case study
at Ericsson to investigate three model transformation tech-
nologies (ATL, IBM TF, and Acceleo). The case study
involved interacting with personnel to verify the quality of
the three transformation technologies. ATL was found to be
the most scalable transformation technology. Syriani [74]
claimed that hybrid model transformation paradigms, such
as ATL, scale better than graph transformation languages.

5.5.3 Future requirements

Based on the above-mentioned studies, we expect that
extending our ATL transformation to cover the full scope
of the GM metamodel will scale when exercised on actual
GM models. Nevertheless, we still need to conduct a scalabil-
ity study once the GM models are updated to conform to the
GM metamodel (as described in Sect. 4.5.2). Further, more
empirical studies are needed to quantitatively compare differ-
ent transformation paradigms in terms of different properties
(e.g., scalability) [14]. While Gardner et al. [35] gave an ini-
tial comparison of the scalability of different transformation
paradigms, not all transformation paradigms were covered
(e.g., graph transformations) and no case studies were con-
ducted to provide a quantitative evaluation of properties such
as scalability.

6 Related work

We survey studies that investigate using transformations in
industry for different purposes and studies that validate trans-
formations used in an industrial context. Then, we discuss
how our study is different from the surveyed ones.

6.1 Model transformations in industry

Research studies on adopting MDD in industry have been
published [5,25,55,75], but only a few investigated the adop-
tion of model transformations in the industry for different
purposes.

Transformations have been used in industry to facili-
tate analysis. For example, Daghsen et al. [26] transform
AUTOSAR timing models into classical scheduling mod-
els on which timing analysis was performed. The approach
was applied to an industrial steering-by-wire system. Focus-
ing only on timing analysis, the transformation reported did
not include details of the tools and languages used to imple-
ment the transformation, the challenges encountered, the tar-
get metamodel, or how the mapping between the source and
target metamodels was obtained. Similarly, Anssi et al. [4]
transformed an AUTOSAR scheduling analysis model into
its corresponding MAST model to perform timing analysis
using the MAST scheduling tool. The approach was applied
to a cruise control system. Focusing only on timing analy-
sis, the study only described the mapping required between
AUTOSAR scheduling analysis models and MAST models,
but no further details were given about the development of
the transformation.

Transformations have also been used in industry for model
management tasks, e.g., consistency checking between related
models. Giese et al. [36] proposed using triple graph gram-
mars to maintain consistency and synchronization between
system engineering models in SysML and software engineer-
ing models in AUTOSAR. Salay et al. [66] used macromod-
els for managing related models in the automotive indus-
try. Macromodels represent related models with their rela-
tionships captured as formal mappings and constraints. A
case study was conducted on the flow diagrams representing
an industrial, vehicle product line subsystem. The authors
demonstrated how the used macromodels helped uncover
inconsistencies and incompleteness of some of the defined
models.

Similar to our study, transformations have also been used
in other studies for migration in an industrial context. Fleurey
et al. [33] demonstrated how the Sodifrance company has
been using several model-driven engineering tasks (i.e., auto-
mated analysis of code, reverse engineering, model transfor-
mations, and code generation) for migration projects using
a tool developed in-house called Model-In-Action (MIA). A
case study was conducted and MIA was used to migrate a
large-scale banking system. Since migration was performed
by a competitive company, no details were provided on the
development of the transformations used for migration (i.e.,
specific tools and languages used to build the transforma-
tions, the mapping rules that must be realized by the trans-
formation, and transformation implementation details). Sim-
ilarly, Doyle et al. [27] used model transformations to migrate
a sample of legacy domain-specific models (DSMs) to UML
models (or other MOF-compliant models) at a financial ser-
vices company, Fortis. Since an MOF-based source meta-
model of the DSMs was not available, a considerable part of
the study was dedicated to demonstrating how such a meta-
model is derived and how new models conforming to the

123

Transformations for model migration in the automotive industry

derived metamodel can be built automatically to reflect the
information that was present in the original DSMs. Thus, no
details about the development of the migration transforma-
tion were provided.

Model transformations have also been used in an industrial
context for several other purposes. Biehl and Törngren [15]
modeled design decisions using transformations to overcome
the knowledge vaporization problem, i.e., the loss of knowl-
edge inherent in design decisions. A case study was con-
ducted on an automotive brake-by-wire system using ATL
and Tiger EMF for representing design decisions. Based on
the case study, the approach was found to be feasible although
no detailed results were given. Ali et al. [1] used a series of
transformations to automate test case generation in model-
based testing. Two industrial case studies were conducted
on a multi-media conferencing system and a safety monitor-
ing component in a safety-critical control system. Hemel and
Kats [40] used model transformations for code generation,
i.e., input models are transformed into a model of the target
program to enable seamless extension of the target language
with additional features by extending the output models of
the target program. A case study was conducted where the
approach was used to implement WebDSL, a domain-specific
language for building web applications. The approach was
found to have several advantages, e.g., ensuring syntactical
correctness of the output model representing the target pro-
gram and facilitating further transformations on the output
model representing the target program.

6.2 Validating model transformations in industry

In general, black-box testing can be based on metamodel
coverage or contract coverage [69], i.e., the test suite gen-
erated to test the transformation of interest aims to achieve
coverage of the source metamodel elements or the transfor-
mation contracts. For black-box testing based on metamodel
coverage, several studies proposed test adequacy criteria for
different metamodels such as the metamodels of class dia-
grams [3,32,34] and state charts [59,77]. However, very few
studies have evaluated the efficiency of the different ade-
quacy criteria [53]. Fewer studies investigated black-box test-
ing based on contract coverage [9,10]. Selim et al. reviewed
the state of the art in model transformation testing [69] and
other techniques for analyzing and validating model trans-
formations such as formal verification techniques [68].

From the case studies discussed in Sect. 6.2, only a
few investigated validating the correctness of their trans-
formation. Fleurey et al. [33] briefly mentioned that the
migration was evaluated using a non-regression testing
process in which customers were responsible for provid-
ing the test cases. Although their tool (i.e., MIA) auto-
mates several steps, migration of their subject banking sys-
tem took 3,500 days of work (i.e., 45 % of the project’s

cost) since a non-trivial fragment of the migration was
performed manually. Details about the testing carried out
were not discussed (i.e., criteria used for test case gener-
ation, the number of generated test cases, and the results
of testing). Giese et al. [36] manually invoked OCL con-
straint checks to validate that the models manipulated
by their transformation preserved well-formedness con-
straints.

Some studies evaluated their work in terms of other mea-
sures, e.g., execution time and size of the output models.
Doyle et al. [27] evaluated their migration transformation in
terms of the size of the generated models and the execution
time of the migration. Ali et al. [1] assessed their transforma-
tion in terms of the execution time only. The study concluded
that improving the efficiency of the approach is necessary
since executing the transformations took almost 6 h for their
second case study.

The rest of the transformations were not evaluated at all.
The case studies conducted by Daghsen et al. [26] and Anssi
et al. [4] did not discuss validation of their transformation;
they only focused on validating the schedulability of the
transformation’s output. The macro models developed by
Salay et al. [66] were used for model management but the
study did not verify that the built macromodels capture the
intended relations between the different models. Biehl and
Törngren [15] and Hemel and Kats [40] discussed the advan-
tages and feasibility of their approaches without discussing
the validation of their subject transformations.

The difference between our study and surveyed studies
Our study differs from other studies reported in the literature
in three major aspects. First, to the best of our knowledge, no
other case study was conducted to migrate legacy models in
the automotive industry which is a significant gap in the liter-
ature given the conversion of many original equipment man-
ufacturers (OEMs) to using AUTOSAR. Our transformation
migrates GM legacy models to their equivalent AUTOSAR
models. The two metamodels manipulated in our study are
industrial metamodels, which allow us to draw more real-
istic conclusions with regard to the practicality of adopting
transformations in industry.

Second, although other studies investigated using trans-
formations for migration in other industries (e.g., [27,33]),
our study considered in detail the entire transformation devel-
opment process, from tool and language selection to trans-
formation creation and validation.

Third, to the best of our knowledge, no other industrial
case study discussed using testing for validating transforma-
tions. Fleurey et al. [33] briefly mentioned that non-regression
testing was used to validate their migration transforma-
tion but the study did not discuss details of the testing
process (i.e., criteria used for test case generation, the num-
ber of generated test cases, and the results of testing). We
used a black-box testing tool (i.e., MMCC) to validate our

123

G. M. K. Selim et al.

transformation, we discussed the test case generation crite-
rion used and we reported on the testing results.

7 Conclusion and future work

In this study, we present a solution to migrating legacy VCS
design models using model transformations in the automo-
tive industry. The study has two major goals: (1) explor-
ing the practicality of using model transformations in an
industrial context to map between industrial metamodels
and (2) benefitting GM by supporting automated and easy
convergence to AUTOSAR. The implemented transforma-
tion converts domain-specific GM models to their equivalent
AUTOSAR models. We discussed the transformation context
in the development process, the selection of the ATL trans-
formation language and the MDWorkbench tool for the trans-
formation implementation, and the development and valida-
tion of the model transformation. Based on our experiences,
we discuss which tools and languages are appropriate for
implementing and validating the transformation, the chal-
lenges encountered in the study, and open issues that need
further investigation. Thus, our study can be used by other
automotive OEMs to guide them in migrating legacy models
using model transformations by demonstrating the approach
to follow, the suitable MDD tools and languages to use and
possible issues that will be encountered and their solutions.
Further, the approach we used to map between subsets of
the two metamodels can be reused to extend the transfor-
mation to the full scope of the metamodels. In other words,
we will need to consult domain experts to craft the trans-
formation rules required to map between the full scope of
the two metamodels (as described in Sect. 4.3), implement
those rules following our iterative and incremental develop-
ment approach (as described in Sects. 4.3 and 4.4), and test
the transformation using the MMCC tool (as described in
Sect. 4.5).

Since we demonstrated the effectiveness of our approach
for migrating a subset of the GM metamodel to its AUTOSAR
equivalent, engineers at GM expressed their interest in
extending the transformation to the full scope of the GM
metamodel. Thus, future work includes extending the trans-
formation and updating the actual GM models to conform to
the GM metamodel, so that the transformation can be used in
practice for migrating GM models. While our current trans-
formation covers a substantial subset of the two metamod-
els that represent the deployment problem, several obstacles
might be introduced in such an extension:

1. We expect that significant time and effort will be spent
in understanding the remainder of the two metamodels
from domain experts.

2. The transformation’s complexity will probably increase
as more mappings are added. Thus, updating the trans-
formation to make it comprehensible might be neces-
sary (e.g., using more declarative constructs that are more
intuitive and readable)

3. As more mappings are added, the transformation may
need to be refactored to make generated output elements
easily accessible to the added rules and helpers.

Work on validating the transformation can be extended in
two directions. First, several steps in the testing process can
be automated, e.g., the generation of a test suite, using muta-
tion analysis [56] for test suite assessment, the execution of
the model transformation on the test suite, and the evalua-
tion of the output models generated by the model transfor-
mation. White-box testing (e.g., [50]) can also be used for
validation. Second, formal model transformation verification
techniques [68] can be investigated for verifying the trans-
formation.

Acknowledgments This work is supported in part by NSERC, as
part of the NECSIS Automotive Partnership with General Motors, IBM
Canada and Malina Software Corp.

References

1. Ali, S., Hemmati, H., Holt, N., Arisholm, E., Briand, L.: Model
transformations as a strategy to automate model-based testing-A
tool and industrial case studies. In: Simula Research Laboratory,
Technical Report (2010–01). Citeseer (2010)

2. Anastasakis, K., Bordbar, B., Küster, J.: Analysis of model trans-
formations via alloy. In: Model-Driven Engineering, Verification
and Validation (MoDeVVa), pp. 47–56 (2007)

3. Andrews, A., France, R., Ghosh, S., Craig, G.: Test adequacy crite-
ria for UML design models. Softw. Test. Verif. Reliab. 13, 95–127
(2003)

4. Anssi, S., Tucci-Piergiovanni, S., Kuntz, S., Gérard, S., Terrier, F.:
Enabling scheduling analysis for AUTOSAR systems. In: Interna-
tional Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing (ISORC), pp. 152–159. IEEE (2011)

5. Aranda, J., Damian, D., Borici, A.: Transition to model-driven engi-
neering: what is revolutionary, what remains the same. In: Model
Driven Engineering Languages and Systems (MODELS), pp. 692–
708. Springer, Berlin (2012)

6. AUTOSAR: AUTOSAR, http://AUTOSAR.org/ (2007)
7. AUTOSAR.: AUTOSAR System Template, http://AUTOSAR.org/

index.php?p=3&up=1&uup=3&uuup=3&uuuup=0&uuuuup=0/
AUTOSAR_TPS_SystemTemplate.pdf (2007)

8. Aziz, K.: Evaluating Model Transformation Technologies: An
Exploratory Case Study. Department of Computer Science and
Engineering, University of Gothenburg, Gotheburg (2011)

9. Bauer, E., Küster, J.: Combining specification-based and code-
based coverage for model transformation chains. In: Theory and
Practice of Model Transformations, pp. 78–92 (2011)

10. Bauer, E., Küster, J., Engels, G.: Test suite quality for model
transformation chains. In: Objects, Models, Components, Patterns,
pp. 3–19. Springer, Berlin (2011)

11. Becker, B., Lambers, L., Dyck, J., Birth, S., Giese, H.: Iterative
development of consistency-preserving rule-based refactorings.

123

http://AUTOSAR.org/
http://AUTOSAR.org/index.php?p=3&up=1&uup=3&uuup=3&uuuup=0&uuuuup=0/AUTOSAR_TPS_SystemTemplate.pdf
http://AUTOSAR.org/index.php?p=3&up=1&uup=3&uuup=3&uuuup=0&uuuuup=0/AUTOSAR_TPS_SystemTemplate.pdf
http://AUTOSAR.org/index.php?p=3&up=1&uup=3&uuup=3&uuuup=0&uuuuup=0/AUTOSAR_TPS_SystemTemplate.pdf

Transformations for model migration in the automotive industry

In: International Conference on Theory and Practice of Model
Transformations (ICMT), pp. 123–137 (2011)

12. Beydeda, S., Book, M., Gruhn, V.: Model-Driven Software Devel-
opment, vol. 15. Springer, Berlin (2005)

13. Bézivin, J., Bruneliere, H., Jouault, F., Kurtev, I.: Model engi-
neering support for tool interoperability. In: Workshop in Soft-
ware Model Engineering (WiSME), vol. 2. Montego Bay, Jamaica
(2005)

14. Bézivin, J., Dupé, G., Jouault, F., Pitette, G., Rougui, J.E.: First
experiments with the ATL model transformation language: trans-
forming XSLT into XQuery. In: Workshop on Generative Tech-
niques in the context of Model Driven Architecture (2003)

15. Biehl, M., Törngren, M.: An executable design decision represen-
tation using model transformations. In: Software Engineering and
Advanced Applications (SEAA), pp. 131–134. IEEE (2010)

16. Blanc, X., Gervais, M., Sriplakich, P.: Model bus: towards the
interoperability of modelling tools. In: Model Driven Architecture:
Foundations and Applications (MDAFA), pp. 17–32 (2005)

17. Boronat, A., Heckel, R., Meseguer, J.: Rewriting logic semantics
and verification of model transformations. In: 12th International
Conference on Fundamental Approaches to Software Engineering
(FASE), York, UK, pp. 18–33. Springer, Berlin (2009)

18. Bouhoula, A., Jouannaud, J., Meseguer, J.: Specification and proof
in membership equational logic. In: Theoretical Computer Science:
Trees in Algebra and Programming, vol. 236, pp. 35–132. Elsevier,
Amsterdam (2000)

19. Broy, M., Feilkas, M., Herrmannsdoerfer, M., Merenda, S., Ratiu,
D.: Seamless model-based development: from isolated tools to inte-
grated model engineering environments. In: Proceedings of the
IEEE, vol. 98, pp. 526–545. IEEE (2010)

20. Brunelière, H., Cabot, J., Clasen, C., Jouault, F., Bézivin, J.:
Towards model driven tool interoperability: bridging eclipse and
microsoft modeling tools. In: European Conference on Modelling
Foundations and Applications (ECMFA), vol. 6138, pp. 32–47.
Paris, France (2010)

21. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of
ATL transformations using transformation models and model find-
ers. In: International Conference on Formal Engineering Methods
(ICFEM) (2012)

22. CESAR. http://www.cesarproject.eu/index.php?id=9
23. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı-Oliet, N.,

Meseguer, J., Talcott, C.: All about Maude-A high-performance
logical framework, how to specify, program and verify systems in
rewriting logic. volume 4350 of LNCS, vol. 4, pp. 50-88. Springer,
Berlin (2007)

24. Claypool, K.T., Rundensteiner, E.A., Zhang, X., Hong, S., Kuno,
H., Lee, W.-c., Mitchell, G.: Sangam-A solution to support multiple
data models, their mappings and maintenance. In: ACM SIGMOD
International Conference on Management of Data, vol. 30, p. 606.
ACM, New York (2001)

25. Cottenier, T., Van Den Berg, A., Elrad, T.: The motorola WEAVR:
model weaving in a large industrial context. In: Aspect-Oriented
Software Development (AOSD), vol. 32. Vancouver, Canada
(2007)

26. Daghsen, A., Chaaban, K., Saudrais, S., Leserf, P.: Applying holis-
tic distributed scheduling to AUTOSAR methodology. In: Embed-
ded Real-Time Software and Systems (ERTSS). Toulouse, France
(2010)

27. Doyle, D., Geers, H., Graaf, B., Van Deursen, A.: Migrating a
domain-specific modeling infrastructure to MDA technology. In:
International Workshop on Metamodels, Schemas, Grammars, and
Ontologies for Reverse Engineering (ateM), Genoa, Italy (2006)

28. Drago, M., Ghezzi, C., Mirandola, R.: Towards quality driven
exploration of model transformation spaces. In: Model Driven
Engineering Languages and Systems (MODELS), pp. 2–16.
Wellington, New Zealand (2011)

29. Eclipse. ATL Zoo, http://www.eclipse.org/m2m/atl/
atltransformations/ (2012)

30. Eclipse. Atlas Transformation Language—ATL, http://eclipse.org/
atl/ (2012)

31. Eclipse. Eclipse Modelling Framework (EMF), http://wiki.eclipse.
org/emf (2012)

32. Fleurey, F., Baudry, B., Muller, P., Traon, Y.: Qualifying input test
data for model transformations. Softw. Syst. Model. (SoSym) 8,
185–203 (2009)

33. Fleurey, F., Breton, E., Baudry, B., Nicolas, A., Jézéquel, J.-M.:
Model-driven engineering for software migration in a large indus-
trial context. In: Model Driven Engineering Languages and Sys-
tems (MoDELS), pp. 482–497. Springer, Berlin (2007)

34. Fleurey, F., Steel, J., Baudry, B.: Validation in model-driven engi-
neering: testing model transformations. In: Model, Design and Val-
idation (MoDeVa), pp. 29–40. IEEE (2004)

35. Gardner, T., Griffin, C., Koehler, J., Hauser, R.: A review of
OMG MOF 2.0 query/views/transformations submissions and rec-
ommendations towards the final standard. In: MetaModelling for
MDA, Workshop, pp. 178–197 (2003)

36. Giese, H., Hildebrandt, S., Neumann, S.: Model synchronization
at work: keeping SysML and AUTOSAR models consistent. In:
Graph Transformations and Model-Driven Engineering, Vol. 5765,
pp. 555–579. Springer, Berlin (2010)

37. Gogolla, M., Vallecillo, A.: Tractable model transformation testing.
In: European Conference on Modelling Foundations and Applica-
tions (ECMFA), pp. 221–235 (2011)

38. Haschemi, S.: Model transformations to satisfy all-configurations-
transitions on statecharts. In: Model-Driven Engineering, Verifica-
tion and Validation (MODEVVA) (2009)

39. Hausmann, J.H.: Metamodeling relations-relating metamodels. In:
Metamodelling for MDA, pp. 147–161 (2003)

40. Hemel, Z., Kats, L.C., Groenewegen, D.M., Visser, E.: Code gen-
eration by model transformation: a case study in transformation
modularity. In: Software and Systems Modeling (SoSyM), vol. 9,
pp. 375–402. Springer, Berlin (2010)

41. IBM. IBM Rational Asset Manager (RAM) http://www-01.ibm.
com/software/rational/products/ram/

42. IBM. IBM Rational Rhapsody, http://www.ibm.com/
developerworks/downloads/r/rhapsodydeveloper/

43. iFEST. http://www.artemis-ifest.eu/home
44. IRISA. Kermeta, http://www.kermeta.org/ (2012)
45. IRISA. Metamodel Coverage Checker (MMCC). http://www.irisa.

fr/triskell/Software/protos/MMCC (2012)
46. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model trans-

formation tool. In: Science of Computer Programming, vol. 72,
pp. 31–39. Elsevier, Amsterdam (2008)

47. Kent, S., Smith, R.: The bidirectional mapping problem. Electron.
Notes Theor. Comput. Sci. 82(7), 151–165 (2003)

48. Kolovos, D., Paige, R., Polack, F.: A framework for composing
modular and interoperable model management tasks. In: Model-
Driven Tool and Process Integration Workshop (MDTPI), pp. 79–
90. Berlin, Germany (2008)

49. König, B., Kozioura, V.: Augur 2-A new version of a tool for the
analysis of graph transformation systems. In: Electronic Notes in
Theoretical Computer Science (ENTCS), vol. 211, pp 201–210.
Elsevier, Amsterdam (2008)

50. Küster, J., Abd-El-Razik, M.: Validation of model transformations-
first experiences using a white box approach. In: Models in Soft-
ware Engineering, pp. 193–204 (2007)

51. Mandelin, D., Kimelman, D., Yellin, D.: A Bayesian approach
to diagram matching with application to architectural models.
In: International Conference on Software Engineering (ICSE),
pp. 222–231. Shanghai, China (2006)

123

http://www.cesarproject.eu/index.php?id=9
http://www.eclipse.org/m2m/atl/atltransformations/
http://www.eclipse.org/m2m/atl/atltransformations/
http://eclipse.org/atl/
http://eclipse.org/atl/
http://wiki.eclipse.org/emf
http://wiki.eclipse.org/emf
http://www-01.ibm.com/software/rational/products/ram/
http://www-01.ibm.com/software/rational/products/ram/
http://www.ibm.com/developerworks/downloads/r/rhapsodydeveloper/
http://www.ibm.com/developerworks/downloads/r/rhapsodydeveloper/
http://www.artemis-ifest.eu/home
http://www.kermeta.org/
http://www.irisa.fr/triskell/Software/protos/MMCC
http://www.irisa.fr/triskell/Software/protos/MMCC

G. M. K. Selim et al.

52. Maskeri, G., Willans, J., Clark, T., Evans, A., Kent, S., Sammut,
P.: A pattern based approach to defining translations between lan-
guages (2002)

53. McQuillan, J., Power, J.: A Survey of UML-based coverage criteria
for software testing. Technical Report, Department of Computer
Science, NUI Maynooth, Co. Kildare, Ireland (2005)

54. Mens, T., Van Gorp, P.: A taxonomy of model transformation.
In: Electronic Notes in Theoretical Computer Science, vol. 152,
pp. 125–142. Elsevier, Amsterdam (2006)

55. Mohagheghi, P., Dehlen, V.: Where is the proof?: a review of
experiences from applying MDE in industry. In: European Confer-
ence on Model Driven Architecture-Foundations and Applications
(ECMDA-FA), pp. 432–443. Springer, Berlin (2008)

56. Mottu, J., Baudry, B., Le Traon, Y.: Mutation analysis testing
for model transformations. In: European Conference on Model
Driven Architecture-Foundations and Applications (ECMDA-FA),
pp. 376–390 (2006)

57. Narayanan, A., Karsai, G.: Verifying model transformations by
structural correspondence. In: Electronic Communications of
the European Association of Software Science and Technology
(EASST), Vol. 10 (2008)

58. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave,
P.: Matching and merging of statecharts specifications. In: Inter-
national Conference on Software Engineering (ICSE), pp. 54–64.
Minneapolis, USA (2007)

59. Offutt, J., Abdurazik, A.: Generating tests from UML specifica-
tions. In: The Unified Modeling Language (UML), pp. 416–429.
Springer, Berlin (1999)

60. OMG, O.: Meta Object Facility (MOF) Specification Version 1.4
(2002)

61. Ostrand, T., Balcer, M.: The category-partition method for specify-
ing and generating functional tests. Commun. ACM 31, 676–686
(1988)

62. Peterson, J.: Petri nets. In: ACM Computing Surveys (CSUR),
vol. 9, pp. 223–252. ACM, New York (1977)

63. Pressman, R.S.: Software Engineering: A Practitioner’s Approach,
7th edn. McGraw-Hill, New York (2009)

64. Rivera, J., Guerra, E., de Lara, J., Vallecillo, A.: Analyzing rule-
based behavioral semantics of visual modeling languages with
Maude. In: Software Language Engineering (SLE), pp. 54–73
(2009)

65. Rozenberg, G., Ehrig, H.: Handbook of Graph Grammars and Com-
puting by Graph Transformation, vol. 1. World Scientific, Singa-
pore (1999)

66. Salay, R., Wang, S., Suen, V.: Managing related models in vehi-
cle control software development. In: Model Driven Engineering
Languages and Systems (MoDELS), pp. 383–398. Springer, Berlin
(2012)

67. Schätz, B., Holzl, F., Lundkvist, T.: Design-space exploration
through constraint-based model-transformation. In: Engineering
of Computer Based Systems (ECBS), pp. 173–182. Oxford, UK
(2010)

68. Selim, G., Cordy, J., Dingel, J.: Analysis of model transformations.
In: Technical Report 2012-592, School of Computing, Queen’s
University (2012)

69. Selim, G., Cordy, J., Dingel, J.: Model transformation testing: the
state of the art. In: Analysis of Model Transformations (AMT),
Innsbruck, Austria (2012)

70. Selim, G., Wang, S., Cordy, J., Dingel, J.: Model transforma-
tions for migrating legacy models: an industrial case study. In:
European Conference on Modelling Foundations and Applications
(ECMFA), pp. 90–101. Springer, Berlin (2012)

71. Sodius. MDWorkbench, http://www.mdworkbench.com/ (2012)
72. Soley, R., The OMG Staff: Model Driven Architecture. In OMG

white paper, November (2000)
73. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF:

Eclipse Modeling Framework, Chapter 5: Ecore Modeling Con-
cepts. Addison-Wesley, Reading (2008)

74. Syriani, E.: Matters of model transformation. In: Technical Report,
School of Computer Science, McGill University, SOCS-TR-
2009.2, March (2009)

75. Teppola, S., Parviainen, P., Takalo, J.: Challenges in deployment of
model driven development. In: International Conference on Soft-
ware Engineering Advances (ICSEA), pp. 15–20. Porto, Portugal
(2009)

76. Varró, D., Varró-Gyapay, S., Ehrig, H., Prange, U., Taentzer, G.:
Termination analysis of model transformations by Petri Nets.
In: International Conference on Graph Transformations (ICGT),
pp. 260–274. Springer, Berlin (2006)

77. Wu, Y., Chen, M., Offutt, J.: UML-based integration testing for
component-based software. In: The International Conference on
COTS-Based Software Systems (ICCBSS), pp. 251–260 (2003)

Author Biographies

Gehan M. K. Selim received
an M.Sc. from Cairo University
(Faculty of Computers and Infor-
mation) in Egypt and is currently
a Ph.D. candidate in the School
of Computing of Queen’s Uni-
versity in Canada. Her research
interests include model transfor-
mations, testing of model trans-
formations, and formal verifica-
tion of model transformations.

Shige Wang received his Ph.D.
in Computer Science and Engi-
neering from University of Michi-
gan at Ann Arbor. He is cur-
rently working as a Senior
Research Scientist at General
Motors R&D in Warren, Michi-
gan, USA. His research inter-
ests are in real-time and embed-
ded systems and cyber-physical
systems. Dr. Wang is an IEEE
Senior Member.

123

http://www.mdworkbench.com/

Transformations for model migration in the automotive industry

James R. Cordy is Professor
and past Director of the School
of Computing at Queen’s Uni-
versity in Kingston, ON, Canada.
From 1995 to 2000 he was Vice
President and Chief Research
Scientist at Legasys Corporation,
a software technology company
specializing in legacy software
system analysis and renovation.
He has published more than 150
refereed contributions in soft-
ware engineering, programming
languages, and artificial intelli-
gence. Dr. Cordy serves widely

as member and chair of conferences and workshops in programming lan-
guages and software engineering, recently chairing ICSM 2011, SCAM
2012, WCRE 2013, and the 2012 Dagstuhl Workshop on Software
Clone Management in Industrial Application. He is an ACM Distin-
guished Scientist, a Senior Member of the IEEE, and an IBM CAS
Faculty Fellow.

Juergen Dingel received an
M.Sc. from Berlin University
of Technology in Germany and
a Ph.D. in Computer Science
from Carnegie Mellon Univer-
sity (2000). He is an Associate
Professor in the School of Com-
puting at Queen’s University
where he leads the Modeling and
Analysis in Software Engineer-
ing group. His research interests
include model-driven engineer-
ing, formal methods, and soft-
ware engineering.

123

	Model transformations for migrating legacy deployment models in the automotive industry
	Abstract
	1 Introduction
	2 VCS development, models, and model transformations
	2.1 Typical VCS development process and models
	2.2 Model transformation types in the VCS development process

	3 Source and target metamodels
	3.1 The GM metamodel
	3.2 The AUTOSAR metamodel

	4 GM-to-AUTOSAR model transformation
	4.1 Selecting model transformation tool and language
	4.2 ATL pragmatics
	4.3 Model transformation design and development
	4.4 The model transformation implementation using ATL
	4.4.1 Observations on implementing the model transformation using ATL

	4.5 Validation of the model transformation
	4.5.1 Metamodel Coverage Checker (MMCC)
	4.5.2 Validation results

	5 Discussion
	5.1 Interoperability of MDD tools
	5.1.1 Observations
	5.1.2 Other proposed solutions in the literature
	5.1.3 Future requirements

	5.2 Optimization in model transformations
	5.2.1 Observations
	5.2.2 Other proposed solutions in the literature
	5.2.3 Future requirements

	5.3 Dealing with semantic differences between metamodels
	5.3.1 Observations
	5.3.2 Other proposed solutions in the literature
	5.3.3 Future requirements

	5.4 Validating model transformations
	5.4.1 Observations
	5.4.2 Other proposed solutions in the literature
	5.4.3 Future requirements

	5.5 Model transformation scalability
	5.5.1 Observations
	5.5.2 Other proposed solutions in the literature
	5.5.3 Future requirements

	6 Related work
	6.1 Model transformations in industry
	6.2 Validating model transformations in industry

	7 Conclusion and future work
	Acknowledgments
	References

