©) 1979

Technical Report No. 79-88

STRUCT79:
A Macro Package to Simulate High-

Level Control Structures in MACRO-11

by

Dr. Michael Levison

Department of Computing & Information Science
Queen's University, Kingston, Ontario, Canada

M. Levison

Introduction

STRUCT is a set of MACRO-11 macros which give this
assembly language the appearance of possessing high-level
control stiructures, including conditional, 1iterative and
case statements, declarations, procedures and interrupt
procedures. These have been used extensively both in large
and small programs to simplify programming and to improve
structure and readability. The first version of STRUCT was
described in Technical Report 77-53; the version described
here represents both a considerable extension and a reimpl-
ementation of existing features. There are a few additional
reserved words, but otherwise, existing programs should be
unaffected unless they make use of implementation details.

This report is self-contained and incorporates all
relevant material from the earlier one.

Simple Conditions

Conditions take one of the forms:

<op> <rel> <op>

<op> <rel>
<rel>
where
<op> is any MACRO-11 operand
and <rel> is .EQ. | .LT. | .HIS. |

(i.e. any similar operator derivable
from a PDP-11 conditional branch.)

The first of these 1is analogous to a compare and a
branch, the second to a test and a branch, the third to a
branch only.

Examples:

2l .GT. #4 [R1 > 4 1 2

X(R2) .LT. Y [X(R2) <Y] ?

(R6)+ .NE. [(R6)+ "= 0] ?

.EQ. [Z bit set 1 ?
Conditions are used within while, repeat and

conditional statements. The construction of more complex
conditions, including those linked with Boolean operators,
is discussed in a later section.

While Statements

While statements take the form:

WHILE <condition>
<code>
ENDWHILE

where
<code> 1is any MACRO-11 code.

The statement allows <code> to be executed repeat-
edly while the condition is true. If the condition 1is
omitted, an infinite loop is formed (and presumably there
must be some other form of exit).

WHILE may be replaced by any of WHILB, WHILJ, WHILBJ.
WHILB and WHILBJ cause CMPB and TSTB instructions to be
generated instead of CMP and TST. WHILJ and WHILBJ cause JMP
instructions to be generated between distant parts of the
statement instead of Dbranches. WHILEB and WHILEJ are
synonyms for WHILB and WHILJ respectively.

In all cases, the operands are evaluated only once
per loop, so that any MACRO-11 operands, including auto-
increments, may be used in the conditions.

There is a DO macro which may be placed on the line
preceding the body of the loop. It is normally omitted, but
must be present if the loop contains an 'inverting' complex
condition (see below). The DO macro may have another valid
MACRO-11 instruction (including one of these structure
macros) on the same line, if desired.

Repeat Statements

Repeat statements take the form:

REPEAT
<code>
ENDREPEAT

and cause <code> to be executed repeatedly. They normally
contain either an UNTIL or a COND clause, glving rise to

repeat—until or repeat-while statements. If no such exit is
present, an infinite loop is formed.

No Jjump variant has been implemented in this case.
The terminating macro itself determines whether to assemble
a branch or jump (but conditional clauses too far from the
ENDREPEAT will cause errors).

The REPEAT macro may have another wvalid MACRO-11
statement on the same line, if desired.

Conditional Statements

Conditional statements take the form:

IF <condition>
THEN
<code>
ELSE
<code>
ENDIF

The ELSE part may be omitted, and IF may be replaced
by any of IFB, IFJ, IFBJ. The interpretation is analogous to
that of the WHILE statement.

The THEN and ELSE macros may have another wvalid
MACRO-11 statement following on the same line, if desired.

For Statements

For statements take the form:

FOR <opl> FROM <op2> TO <op3> BY <opé>
<code>
ENDFOR

and cause the <code> to be executed for each value of <opl>,
starting with <op2>, and going UP in increments of <op4>, as
long as <opl> does not exceed <op3>. All or any of the parts
FROM <op2>, T0 <op3>, and BY <op4> may be omitted. 1In
default, the iteration will begin at the current value of
<opl>, the loop end test will be omitted, and the increment
will be taken to be 1, respectively. Note that the increment
must be positive. For negative increments, FOR 1is replaced
by FORDN. FORJ and FORDNJ provide JMP versions of these
macros. <op3> and <op4> are referenced only once per cycle,
but <op4> is referenced one additional time during 1loop

initialization. <opl> is referenced several times per cycle,
so that auto-increment operands should not be used. <op2> is
called only once for the entire statement.

An alternative iterative statement takes the form:

DECR <reg> FROM <op>
<code>
ENDDECR

where <reg> is the name of a register. This causes <code> to
be obeyed while the register takes each value from <op> down
to 1. Its purpose is to allow the programmer access to the
SOB instruction on those PDP-11ls which have it. FROM <op>
may be omitted, in which case the iteration starts at the
current value of the register. Note that <code> must not be
too large (that is, it must conform to the limit imposed by
the SOB instruction), and that the loop test follows loop
body (so that the register is left at 0).

Complex Conditions

Complex relational expressions, combinations of
several conditions, loop exits, repeat-until statements, and
so on, can be put together using COND (synonymously AND), OR
and UNTIL macros, which take the form:

COND <condition>

These macros may be used in any of the (vertical)
combinations:

AND UNTIL OR UNTIL UNTIL
AND UNTIL OR OR AND
AND UNTIL OR OR AND
AND UNTIL OR OR AND

the first four of which may appear within while, for, repeat
or if statements; the last in repeat statements only.

The sequence of AND macros causes a branch to the
exit (or, in the case of an if statement, to the ELSE part
where one exists) when a false condition is found.

The sequence of UNTIL macros causes a branch to the
loop exit when a true condition is found. (Note that this

combination does not read well in 1f statements.) The
UNTIL-OR sequence 1s synonymous.

The sequence of OR macros used in while, if or for
statements causes a branch to the body of the loop (or, in
the case of an if statement, to the THEN part) if any of the
conditions, including the one on the WHILE, IF or FOR, is
true. This sequence 1is one of two referred to as
'inverting' (it inverts the meaning of the preceding WHILE,
and causes the interchange of certain subsequent labels).
It imposes the following special requirements: the first OR
macro must follow 1immediately after the WHILE, IF or FOR;
the body of the loop (or the THEN part) must be preceded by
a DO (or THEN) macro; and the DO (or THEN) must immediately
follow the final OR.

The sequence of OR macros used in a repeat statement
is not 'inverting', and is synonymous with the sequence of
UNTILs.

The UNTIL-AND sequence (used in a repeat statement
only) causes a branch to the loop body if any of the
conditions is false. This too is an 'inverting' sequence.
The first AND must follow immediately after the UNTIL, and
the ENDREPEAT immediately after the final AND (no DO |is
necessary; the ENDREPEAT embodies one).

Except in the cases mentioned, the individual ANDs,
Oks and UNTILs of a sequence may be separated by sections of
code. Applications are given below.

As the examples show, the sequences specified produce
'obvious' effects. Other combinations, notably those which
mix AND and OR, do not, and should be avoided. Nor should
more than one of these sequences be included in the same
Structure.

If a byte condition is to be tested, CONDB, ORB and
UNTILB are substituted for COND, OR and UNTIL. AND and ANDB
are synonyms for COND and CONDB. There are no 'jump' forms

of the macros, the compilation of branches or jumps being
determined by the statement in which a macro occurs.
EXAMPLES:

(1) To perform a loop while (ptqg)=(r+s)

(2)

(5)

WHILE
mov p,Xx
add gq,x ; X:=p+g
mov r,y
add s,y ; y:=r+s
COND x .EQ. y

<loop body>
ENDWHILE

To perform a piece of code if two conditions p>q and
r>s hold:

IF p .GT. g
AND r .GT. s
THEN

<code>
ENDIF

As many ANDs as desired may be included, each
optionally preceded by some code which assists in
computing the condition. The 'assisting' code may
contain other structures nested within it (including
other IF and WHILE statements which contain CONDs,
etc.)

IF x .LT. #3 (4) WHILE y .EQ.
OR x .GE. #20 OR z .EQ.
THEN DO
<code> <code>
ENDIF ENDWHILE

Again, as many ORs as desired may be included, but
the first may have no 'assisting' <code. Note too
that the THEN/DO abuts the final OR.

REPEAT (6) REPEAT UNTIL x .HIS. vy
<code> <code>
UNTIL p .LT. ¢ ENDREPEAT

ENDREPEAT

(7) FOR I FROM #1 (8) REPEAT
UNTIL rl1 .GT. r2
<code>
<code>
UNTILB char .EQ. #040
ENDFOR ORB char .EQ. #'A

ENDREPEAT

NOTE

The user should remember that conditions containing
operands cause the assembly of CMP or TST instructions which
alter the PDP-11 condition codes. Hence in multiple
conditions, those without operands should be placed first;
e.g.

IF .EQ.
AND p .GT. g

determines whether the Z-bit is set and whether p>q, but the

reverse does not because the comparison of p and q alters
the Z-bit.

Case Statements

Case statements take the form:

CASE <op>
STMNT <intl>,<int2>,...
<codel>
STMNT <int3>,...
<code2>
ELSE
<codeN>

ENDCASE

and may be either one- or two-dimensional.

If the case statement is one-dimensional, <op> is a
word operand (evaluated only once), and <intl>, <int2>», ...
are integers; 1if it is two-dimensional, <op> is a pair of
word operands (each evaluated only once), and <intl>,
<int2>, ... are each pairs of integers. Each pair of
integers and operands is enclosed in angle-brackets.

The effect of a case statement is to evaluate <op>,
locate its value among the integers (or pairs) which follow
the STMNT macros, and then execute whichever one of <codel>,
<code2>, ... follows that STMNT.

Each STMNT may be followed several integers (or
pairs), a STMNT without a parameter being ignored.

The optional ELSE part provides a target for all
cases within 'jump table range' which do not appear in
STMNT macros. If the ELSE part is omitted, these cases
simply cause a jump past the case statement. All such cases
are flagged with a warning message during assembly. Note
that the execution of a case outside 'jump table range' |is
not detected, and its effect is potentially disastrous. ELSE
may, as usual, have another MACRO-11 statement on the same
line.

'Jump table range' is defined as follows:

(one-dimensional)
if n is the largest integer which appears in a STMNT macro,
the range is 0 to n;

(two—-dimensional)

for every pair <r,c> which occurs in a STMNT macro, the
range includes <r,0>, <r,1>, - , <r,c> (all earlier
columns of the same row), and also <0,0>, <1,0>,..., <r-1,0>
(the zero column of each earlier row).

Thus, the appearance of <0,2>, <3,3> and <5,2> in STMNTs
causes

<0,0> <0,1> <0,2>

<1,0>

<2,0>

<3,0> <3,1> <K3,2> <K3,3>

<4,0>

<5,0> <5,1> <5,2>

to be in jump table range.

For small integer byte operand(s), CASE 1is replaced
by CASEB. In the two-dimensional case, both operands are
either bytes or words (i.e. not mixed). 1If CASE, CASEB are
replaced by CASEJ, CASEBJ, JMP instructions will Dbe
generated instead of branches.

WARNINGS

(1)

(2)

(3)

(4)

In estimating the size of code, it should be noted
noted that a jump table is generated at the position
of the ENDCASE. The table contains one element for
every case number (or pair) in jump table range, and
an additional element for every 'row' in the two-
dimensional case.

Note that

STMNT 1,2
<codel>

is NOT equivalent to
STMNT 1
STMNT 2
<codel>

The second causes the null statement to be executed
for value 1 of the cperand.

A jump to a label placed on a STMNT macro, will cause
control to pass to the end of the case statement, not
to the code following the STMNT.

The ELSE part may be positioned anywhere in the case
statement after the first STMNT.

Procedures

where

Procedure declarations take the form:
PROCEDURE <name> <reg> GLOBAL

<code>
ENDPROC

<name> 1is the procedure name,

and the register <reg> and parameter GLOBAL are optional.

Procedure calls take the form:

<name> <opl>,<op2>,...

where
<opl>,... are optional MACRO-11 word operands.

The effect of the call depends on the register
parameter of the declaration. If the register parameter is
absent or is R7, the effect is to place the operands on the
stack (in reverse order) and call the procedure. Thus,
inside the procedure, <opl> will be found in 2(R6), <op2> in
4(R6), and so on, so long as the procedure itself does not
alter the stack. Encountering ENDPROC causes the stack to be
cleared and control to be returned to the calling program.

If the register parameter is some other register,
then this register is used as the linkage register in the
JSR instruction (and in the corresponding RTS), and the
parameters are placed in line after the call. On entry to
the procedure, the linkage register will be found to point
at the first parameter, so that <opl> 1is in @Rx, <op2> in
2(Rx), and so on. (Note the discrepancy between this and the
stack form of procedure, caused by the presence of the
return address on the stack.)

In this latter case, it 1is the responsibility of the
procedure body to ensure that the linkage register 1is
pointing at the word following the final parameter before
the ENDPROC 1is encountered. Recall that the use of a
register as 1linkage register does not affect its global
contents, since the JSR and RTS instructions preserve and
restore 1it.

EXAMPLES

(1) A procedure with R7 as register parameter
PROCEDURE FRED
; Suppose the procedure expects five parameters,
; they will be in 2(R6), 4(R6), 6(R6), ... resp.
<code>
ENDPROC

FRED R2, #45., PQR, 2(R3), @R4

This call actually generates

MOV @R4,-(R0)

MOV 2(R3),-(R6)

JSR R7,FRED

ADD #5+5,R6 ; clean up stack

(2) A procedure with R3 as register parameter

PROCEDURE FN R3
; Suppose the procedure expects five parameters,
; they will be in @R3, 2(R3), 4(R3), ... resp.

<code>

ENDPROC

FN XYZ,#A,#5,R2,4 (R4)

This call actually generates

MOV XYZ,pl

MOV R2,p4

MOV 4 (R4) ,p5

JSR R3,FN
pl: .WORD ; space to receive contents of XYZ
p2: .WORD A
p3: .WORD 5
pd: .WORD ; space to receive contents of R2
p5: .WORD ; space to receive contents of 4(R4)

where pl,p2,p3,p4,p5 denote local addresses computed
by the calling macro. On entry, R3 contains pl;

before exit, the procedure body must ensure that R3
contains the address of the word following pb5.

If the parameter GLOBAL is present, the procedure
will be available to be called from other modules. In each

such other module, there must be an 'external' declaration
of the form:

PROCEDURE <name> <reg> EXTERNAL

A procedure must be declared before it is called. To
allow a call to occur earlier in the module than the
procedure body, a forward declaration is provided 1in the
form

PROCEDURE <name> <reg> FORWARD

In these two cases, there 1is of course no <code, and no
ENDPROC.

WARNINGS

(1) With either of the two call types,
only WORD operands are permitted,
failing which an addressing error may
occur .

(2) There must be exactly one ENDPROC
per procedure; further returns can, if
necessary, be effected by RTS
instructions with the appropriate
linkage register (R7 if absent).

(3) The system will not detect the
discrepancy if the user specifies
different linkage registers in the body
declaration and the EXTERNAL and/or
FORWARD declarations of the same
procedure.

PUSH and POP

The macro calls
PUSH <opl>,<op2>,<op3>,...
and
POP ...,<0p3>,<0p2>,<o0pl>

cause the specified MACRO-11 operands to be placed on, and
removed from the stack respectively. PUSHB and POPB variants
are also available for the manipulation of byte variables.
If PUSH occurs without a parameter, a cleared word is pushed
onto the stack. If POP occurs without a parameter, stack is
popped, and the top item lost.

Interrupts and Traps

The declaration

INTERRUPT <name> <intvect> <contr> GLOBAL
<code>
ENDINT

may be used to declare an interrupt routine, where

<name> is the routine name (it will also be
used to name the associated device),

<intvect> is the interrupt vector address of
the associated device, and

<contr> is the control/status register addr
of the associated device.

The parameter <contr> is optional (traps and some
devices, such as the PDP-11/03 line-clock, have no control
register) as is the parameter GLOBAL. The parameters
<intvect>, <contr> and GLOBAL may occur in any order.

<intvect> and <contr>, unlike other parameters in
STRUCT, must be integers, or symbols defined as integers.

Once such a declaration has occurred, the user may
call

INSTALL <name> <ps>
or synonymously
<name> <Kps>

to load the address of the routine and the parameter <ps>
into the interrupt vector position named in the routine
declaration. If <ps> is absent, the processor-status part of
the interrupt vector is cleared.

The ~calls DISABLE <name> and ENABLE <name>
respectively disable and enable interrupts from the device.

These are, of course, meaningful only if there is a control
register.

Example:

INTERRUPT KEYBD 177560, 60
; these are the addresses of the
; console keyboard

does whatever 1is desired with
character typed on console keys

<code>

~e W

ENDINT

INSTALL KEYBD sets up interrupt vector (ps zero)

-e

ENABLE KEYBD ; enables keyboard interrupts

If the parameter GLOBAL 1is present, the interrupt
routine can be INSTALLed, and interrupts ENABLEd or DISABLEd
from other modules. In each such other module, there must
be an 'external' declaration of the form:

INTERRUPT <name> EXTERNAL
The routine declaration must precede in the module
any INSTALL, ENABLE or DISABLE which refers to it. To allow
any of these operations to occur earlier in the module than
the rouvine body, a forward declaration is provided in the
form

INTERRUPT <name> FORWARD

In these two cases, there 1is of course no code, and no
ENDINT.

Declarations

Declarations take one of the forms:

WORD <id>,<id>,...
or
BYTE <id>,<id>,...

where each <id> is either a MACRO-11 identifier or else a
doublet or triplet enclosed in angle brackets; for example:

WORD X,Y,<M,777>,Z,<A,6,101>

The first item of each doublet or triplet is a MACRO-11
identifier, the others are integers (or assembly-time
variables).

The effect of the given declaration is to reserve a
word for each of X,¥Y,M,Z, initializing M to 777, and an
array of 6 words for A, initializing each to 101. After each
complete BYTE l1ine, L.EVEN is generated to ensure that the
subsequent line begins on a word boundary.

Warning:

In the event that variables are used as the second
or third items of doublets or triplets, it must
be remembered that it 1is the assembly-time value
of the variable which is used in the declaration.
Thus WORD <X,22>,<M,X> will 1initialize M to the
address of X, not to its run-time contents,22.
The usual MACRO-11 restrictions as to whether
variables must be defined before use apply here.

Other forms of declaration are obtained using convent-

ional MACRO-11 facilities (i.e. .ASCII, .BLKW, .WORD, and so
onj .

BEGIN and END

Following the definitions of the macros which
implement the above constructions, the program must be
preceded by the macro call

BEGIN <macro name>,<macro hame>,...

where the optional <macro name>s are macros in the system
library file SYSMAC.SML . BEGIN 1initializes certain
parameters used in the code generation and generates .MCALLSs
to the macros in the 1list. The program may also be
terminated by a macro call of the form:

END <label>
This replaces the usual MACRO-11 .END directive; its purpose

is to generate the latter, and also to check that all the
earlier constructs have been properly terminated.

Nesting and Restrictions

The above constructions may be nested within one
another to a depth of 64, but any beginning (IF,WHILE,...)
must be matched by the corresponding ending (ENDIF, ENDWHILE,
cee) e Mismatches will be detected and reported by the
assembler.

The number of one-dimensional case statements may not
exceed 56, and the case numbers must be less than 512; the
number of two-dimensional case statements may not exceed 8,
and each part of the case 'pair' must be less than 64.

Parameter lists are in all cases restricted to 16 in
length.

The following are macro names, and are thus
'reserved’':

IF IFJ IFB IFBJ ENDIF
THEN ELSE
.EQ. .LT. .HIS. etc.

WHILE WHILJ WHILB WHILBJ ENDWHILE
WHILEJ WHILEB

DO

REPEAT ENDREPEAT
UNTIL UNTILB

COND CONDB

AND ANDB

OR ORB

FOR FORJ FORDN FORDNJ ENDFOR

DECR ENDDECR

CASE CASEJ CASEB CASEBJ ENDCASE
STMNT

PROCEDURE ENDPROC

INTERRUPT ENDINT
INSTALL ENABLE DISABLE

PUSH PUSHB POP POPB

WORD BYTE

BEGIN END

The names GLOBAL, EXTERNAL, FORWARD, FROM, TO and BY
are variables, and are also 'reserved’.

Note that, for cosmetic reasons, names longer than
six characters have been used, but that only the first six
are distinguished by the assembler.

The names of all subsidiary macros, and of all labels
generated by the macros, contain one of the symbols . or $.
Thus names containing these symbols should be avoided.

Implementation and Use

The implementation comprises about eighty macros,
approximately 750 1lines of code. These are available as a
file which can be assembled at the start of each MACRO-11
program. Locally, they have been included in an expanded
version of the system macro library SYSMAC.SML, and an
additional macro STRUCT has been written containing a .MCALL
to all of the others. In this case, it is simply necessary
to start each program with

.MCALL STRUCT
STRUCT

Essentially, the initial macro of each structure (IF,
IFB,WHILE,...) occurring in a program is assigned an
integer, which 1is wused in the generation of all 1labels
required for that structure. This integer, together with
certain other information (whether it 1is a branch or jump
macro, etc.), is placed on a stack for use when the terminal
(ENDIF ,ENDWHILE, ...) or intermediate (ELSE,STMNT) macros of
the structure occur. Although MACRO-11 does not explicitly
provide assembly-time stacks, the effect can be achieved
indirectly, because it is possible to assign an integer
value to an assembly-time variable, and use the value to
construct further variable names. For example, the variables
$LEV1, S$LEV2,... , constructed by concatenating the string
SLEV with the string corresponding to the present value of
the variable $V, constitute such a stack.

The macro call PROCEDURE X generates not only a label
X on the code which follows, but also a further macro
definition for a macro named X whose body is a subroutine
jump to label X. Happily there is no clash between label X
and macro X in MACRO-1l1. (In this case, it was not possible
to wuse a label generated from the structure's integer
because it was required to be able to generate a jump to a
global procedure from a separately assembled module, where
this integer would not be known).

In other regards, the macros are fairly straight-

forward. Further details are given 1in the appendix to this
report.

Error Messages

In addition to the usual error messages which arise
from the assembler, the macros generate a few of their own.
Each takes the form

level p:message

where p indicates static nesting level of the structure,
and message is one of

mismatched END

misplaced register parameter

missing coordinate (two~-dimens case)
too many double CASE statements (i.e. two-dimens)

A further message, prefixed by WARNING, is
missing STMNT x

This 1is not a syntax error, as the ELSE part will be
executed if the missing case 1is attempted. The warning is
issued in case the omission was unintentional.

The present implementation does not check the
'number' restrictions mentioned in an earlier section. If
they are violated, the result will usually be a label or
variable name with more than six characters, which will be
truncated by the assembler and thus clash with some other
name. Parameter lists with more than sixteen entries are
merely truncated.

Branches (rather than jumps) over too long a piece of
code give rise to the usual MACRO-1l1 error (****** A)_, The
user should realize that the line flagged with this error is
not necessarily the 1initial 1line of a construct; for
example, the ELSE macro of an if statement, or some of the
STMNTs of a case statement, will be flagged, not the IF or
CASE itself.

Failure to declare a procedure before using it causes
a macro to be called before it is defined, and this usually
leads to dozens of 'phase' errors (****%% p)

Caveat User

When the macros are used 1in the manner described
above, they appear to generate correct and (for the most
part) irredundant code. Experience, however, has suggested
the following hints which the user should bear in mind:

(1) In the matter of deciding whether to use the branch or
jump variants, one should always use branches (i.e. IF, IFB
rather than IFJ, IFBJ). In a well structured well procedured

program, even one a few thousand 1lines 1long, there are
usually only two or three instances where jumps are
necessary (these almost always involve case statements with
many simple cases), and it 1is very easy to change these
after assembly reveals an error.

(2) The error checking and recovery procedures in the pres-
ent implementation are not elaborate. Some mistakes in the
program lead to MACRO-11 errors in the code generated by the
macros, and this code may not be immediately recognizable to
the programmer. Recovery from a mismatched END sometimes
causes a cascade of further errors.

(3) Since the structure macros themselves call internal
macros to a depth of several levels, it is very unwise to
include the directive .LIST ME in the program. Doing so will
cause a very lengthy listing of material not recognizable to
the user. A more satisfactory 1listing of the code produced
by the macros can be obtained by using the directive .LIST
MEB , but this will omit the generated labels (as these
occur on 1lines by themselves), and will include some
‘immediate conditionals' of the form .IIF ... , with the
generated code on the end of the line.

(4) Most of the macros generate non—-local labels. Thus it is
not usually possible to branch to a local label across one
of the macros. (Actually, the programmer using these macros
should not be branching explicitly anyway!!).

(5) The user should beware of ascribing to the 'language'
features which it does not possess. It does not, for
example, have 'block structure'. Furthermore, if the user
chooses to declare a procedure at some inner point of the
program, he must remember to supply a branch over the body
of the procedure.

Conclusion

The macros described here have been used extensively
by Computer Science students at Queen's, and also in the

development of several very large programs. Although they
increase, perhaps twofold, the time needed for an assembly,
this is more than compensated by the time saved 1in

programming and by the readability of the resulting code.

Acknowledgement

The earlier version of STRUCT from which the present
version is adapted was implemented by R. L. Stevens.

Appendix
To assist in locating any problems which might arise,
we outline here the code generated by the individual macros.
Notation
In the following we denote by
<bfalse SKxxxx>
the sequence

<compare>
<branch SKxxxx>

where <compare> is one of CMP,CMPB,TST,TSTB or is null,
<{branch> is of the form

BNE SKxxxx
or

BEQ .+6
JMP S$SKXXxX

(when the condition being tested contains .EQ.), xxxx is the
integer assigned to the present structure, expressed in
octal with four or fewer digits, and K is some letter of the
alphabet.
We denote by
<btrue SKxxxx>

the analogous sequence with the conditional branches invert-
ed, and by

<uncond S$Kxxxx>

an unconditional branch or jump to the label $Kxxxx.

IF ,WHILE, ...

SSXXAXX :
<bfalse $Gxxxx>

REPEAT
SSXXXX:
UNTIL, ...
<btrue S$GXXXX>
AND, ...
<bfalse S$Fxxxx> (normally)
<uncond SFXxXX> (if this is the first AND
SGXXXX: of an 'inverting' sequence)
<bfalse $Fxxxx>
OR, ...
<btrue SFXXXx> (normally)
<uncond SFEFXXXX> (if this is the first OR
SGXXXX: of an 'inverting' sequence)
<btrue S$FxxXxx>
THEN, DO
(normal) SUXXXX:
('"inverting") <uncond SUXXXx>

SFXxXX:

Actually the label $Uxxxx is not referenced in the
normal case and can be omitted, as 1indeed can the macro
itself. The author has wusually included THEN for cosmetic
purposes, but omitted DO. (The suggestion in the earlier
report of placing the cosmetic THEN as the fourth parameter
of an IF macro --where it would be ignored-- does not of
course apply to the THEN required by the ‘'inverting'
sequence.)

ELSE

(normal) <uncond S$TXXXX>
SFXXXX:
SGXXXX:

(‘inverting') <uncond $TXxXX>
SUXXXX:

ENDIF

(normal) SFXXXX:
SGXXXX:
STXXXX:

('inverting') S$SUxXxxxX:

STXXXX:
ENDWHILE, ENDFOR
(normal) <uncond $Sxxxx>
SEXXXX:
SGXXXX:
('inverting"') <uncond $SXxXxXx>
SUXXXX:

(if there was

no ELSE)

(if there was no ELSE)

ENDWHILE and ENDFOR determine
branch or jump by computing the distance back to the S label
(WHILJ, WHILBJ, ... are still necessary, however, because

of the forward jumps).

ENDREPEAT

This is essentially the same as

DO
ENDWHILE

FOK, ...

MOV <op2>,<opl>
SUB <op4>,<opl>

SSXXXX:

ADD <op4d>,<opl>

CMP <opl>,<op3>
BGT SFxxxx

(if

FROM <op2> is
BY <op4> is
otherwise DEC

BY <op4> is
otherwise INC

TO <op3> is

whether to generate a

present)
present;
<opl>)

present;
<opl>)

present)

The conditional branch is replaced by

BLE .+6
JMP SFxXxXx

for the jump variant; FORDN,FORDNJ are analogous.

DECR
MOV <op>,<reg> (if <op> present)
$SXXXX:
ENDDECR
SOB <reg>, $SxxXX
(For those PDP-lls missing this instruction, this structure

would have to be simulated by the corresponding FORDNJ
structure)

CASE, ...
SSXXXX:
MOV <opl>,-(%6)
ASL @%6
ADD #SHxxxx,Q@%6
MOV @(%6) ,Q@%60 in
MOV <op2>,-(%6) the

ASL @%6
ADD (%6)+,@%6

two-dim
case

MOV @(%6)+,%7

Both lines MOV <op>,-(%6) are replaced in the byte
variants by
CLR -(%6)
MOVB <op>,@%6

STMNT

Note that case statements are each given individual
numbers in addition to the regular structure numbers; these
run from 0 to 7 for two-dimensional case statements, 10 to
77 (octal) for one-dimensional.

(one-dimensional)

<uncond $TXXXX>
$nnppp:
$nnqgq:

where nn is the number of the case statement (exactly two

octal digits), and ppp,9d99,... are the case numbers (three
or fewer octal digits).

(two-dimensional)

<uncond S$TXXXX>
LNrrce:
.nssdd:

where n 1s the number of the case statement (exactly one
octal digit), rr is the 'row' of the case pair (exactly two
octal digits, a period being used as leading 'zero' if
required), and cc is the 'column' number (two or fewer octal
digits).

The unconditional branch on the first STMNT of each
CASE statement is not generated.

ENDCASE
<uncond STXXXx>

SHXXXX:
<jump table>

SFXXXX: (if there was
SGXXXX: no ELSE)

STXXXX:
where <jump table> is as follows:

(one—dimensional)

.WORD $nn0
.WORD $nnl

* o e

.WORD $nnqqgq

where nn is the number of the case statement, and qqq is the
highest case number which occurred.

(two—-dimensional)

.WORD .no0O

.WORD .nl

.WORD .nrr
.n0:

.WORD .n.00

.WORD .n.0l1

WORD .n.Occ
.nl:

.WORD .n.10

.WORD .n.ll

.WORD .n.ldd
.nrr:

.WORD .nrr0

.WORD .nrrl

.WORD .nrree

where n is the number of the case statement, rr is the
highest 'row' which occurs, cc the highest 'column' in row O
and so on.

In both one- and two-dimensional cases, if one of the S$nnppp
or .nrrcc labels has not been declared, .WORD SFxxxx is
generated instead of .WORD $nnppp or .WORD .nrrcc, and the

corresponding case will cause a jump to the ELSE part (or
past the table if there is no ELSE).

PUSH, PUSHB
For each parameter:

MOV <param>,-(%6) or MOVB <param>,-(%6)

POP, POPB
For each parameter:
MOV (%6)+,<param> or MOVB (%6)+,<param>
If no parameter is present:

CLR =-(%6) is generated for PUSH, PUSHB
TST (%6)+ is generated for POP, POPB

PROCEDURE
.GLOBL <name> (if GLOBAL or EXTERNAL)
<name>: (if not EXTERNAL or FORWARD)
.MACRO <name>
<macrobody to generate
code specified below>
. ENDM
INTERRUPT
.GLOBL <name> (if GLOBAL or EXTERNAL)

And if not EXTERNAL or FORWARD:

.WORD <controlreg> (if present)
.WORD <intvec>
<name>:
MOV <name>-2,-(%6)
ADD #2,@%6
MOV 4 (36) ,@(%6)+
MOV #$.y,@<name>-2
RTS &7
S.y:
.MACRO <name>
<macrobody to generate
code specified below>
. ENDM

y being an integer unique to this interrupt routine.
Extra labels are generated after label <name>. The code may
seem more complex than necessary due to the desire to be
able to call ENABLE, ... in others modules.

<name>
Case 1 <name> 'declared' in a PROCEDURE macro
(a) If <reg> is %7, or is not present in PROCEDURE macro
PUSH ...,<paraml> (if there are params)
JSR %7,<name>
ADD #n+n, %6 (where n is the number

of params)

The last line is omitted if n = 0; and replaced by
TST (%6)+ or CMP (%6)+,(%6)+ for n = 1 or 2 resp.

(b) For other linkage registers, the code is shown in the
body of the report.
Case 2 <name> ‘'declared' in an INTERRUPT macro
MOV <ps>,-(%6) (CLR -(%6) if <ps> absent)
JSR %7,<name>
TST (%6)+
INSTALL

INSTALL <name> is synonymous with <name>.

ENDPROC
RTS <reg> (<reg> is %7 1if param
not present in PROCEDURE)
ENDINT
RTI
ENABLE
BIS #100,@<name>-4
DISABLE
BIC #100,@<name>-4
WORD,BYTE

These generate the obvious .WORD and .BYTE construct-
ions. Each complete BYTE declaration is followed by .EVEN .
BEGIN

This generates .MCALL if necessary. More importantly,
however, it initializes certain assembly-time variables used

by the other macros. It is therefore the one macro which
MUST be called in the program.

END

.END <label>

It will be seen that some macros generate unhecessary
labels, which shortens the implementation, without
increasing the object code. The code generated is
irredundant, except in the case that the programmer includes
his own jumps or branches out of <conditional or case

statements.

