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Abstract

Many programs read an attributed graph and manipulate it to produce an output graph that resembles the
input. This paper shows how to org anise such a program so that it can produce a ‘‘delta’’ showing how the
output differs from the input. Storing deltas instead of full graphs saves space; it also gives a way to anno-
tate ‘‘frozen’’ data structures that programs cannot modify directly. The scheme is especially suitable for
modern programming environments, where collections of diverse tools, written and maintained by different
groups, operate on libraries of graph-structured program representations.
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1. Introduction
We can view many programs as instances of thegraph transformation paradigm: they read a graph and
transform it into a modified but related graph. In general the output graph may be an instance of a slightly
differentschema(set of node types and corresponding attribute descriptions) than the input. For example,

the DIANA representation for Ada1 characterises the semantic analyser of a compiler as transforming an
abstract syntax tree into an augmented attributed graph that contains a slight transformation of the syntax
tree as a spanning tree; the added attributes record the results of semantic analysis [3]. This paradigm is
becoming more common; much work on modern programming support environments uses graph-like repre-
sentations of programs, composed of objects and links between objects (for several examples, see the pro-
ceedings of the conference on Practical Programming Environments [4]).

If an output graph is a transformation of an input graph, we could represent the output graph as a
delta: a record of how to change the input to create the output. Storing graph deltas is important for two
reasons:

1. It reduces storage requirements when users need to keep both the input and output of a program.

2. It gives a way to represent annotations to a data structure whose representation is immutable
(such as one frozen by configuration management disciplines).

Unfortunately, determining a set of edits to transform one graph into another, giv en only the two graphs, is
difficult. The apparently related problem of determining whether two graphs share an isomorphic sub-
graph is NP-complete[2]. However, giv en control over how the application program accesses its data, it is
easy to detect what changes it makes and what portions of the original structure remain untouched.

Section 2 shows methods for detecting and recording deltas; the remainder of this section discusses
constraints on the environment in which you can use them. Section 3 discusses other issues about using
these methods and suggests some extensions; Section 3.2 discusses the special case where the input and
output schemas are identical, and one is only changing instances of nodes and attributes.

1.1. Constraints on the Program

Figure 1 shows the overall organisation of a program that can use the techniques of Section 2. The program
views its data structures as typed, attributed, directed graphs. The type of a node in the graph determines
what attributes it has; each attribute has a specific type that determines what types of nodes it may refer-
ence. The program treats internal representations as abstract data types, accessing them through an inter-
face package (Interface II, hereafter called the application interface). The operations the application may
use are

• Create a node of a particular type.

• Fetch the value of a particular attribute of a particular node.

• Store a new value in a particular attribute of a particular node.

The package implementing the abstract data type segregates old data (from the input file) from new data
(created by the application). Graph readers and writers take care of input and output; they use a wider
interface (Interface I, hereafter called the reader/writer interface) that gives them access to more informa-
tion about the representation. Using two interfaces lets us hide representational details from the application
and the input/output routines, and also lets us hide from the application whether we are reading full graphs
or deltas.

Mentioning graph readers and writers presumes some method of reading and writing general graphs.
The following discussion presumes you begin with a writer that can output a representation of any con-
nected subgraph as a single recognisable unit, and a reader that can read such a subgraph and create an
internal representation. Each might have to deal with labels to represent references to shared sub-graphs;

1Ada is a registered trademark of the U.S. Government (OUSDRE-AJPO).
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Figure 1: General Process Organisation

Arrows indicate direction of data flow.

sub-graphs without sharing must be trees, and can be represented via nesting to avoid labels. For reasons
that Section 2.1 discusses, it should be possible for the graph writer and the graph reader to traverse the
graph in a canonical order. Practical versions of readers and writers with these properties already exist; the
Interface Description Language (IDL) system is one example [6, 10].

1.2. Automation

Coordinating readers, writers, and interfaces can be a tedious and error-prone task, especially since writers
and readers must traverse the graph in the same order. It is much easier to use these methods if the environ-
ment contains a tool (hereafter called the package generator) which can generate the interface packages (as
well as readers and writers) from descriptions of the data structures. Existing IDL systems have such a
tool; extending them to handle the methods of this paper should be conceptually straightforward but would
likely require considerable implementation effort. To be as widely useful as possible, this paper discusses a
generic data definition language and corresponding environment; only the concrete examples use IDL.

The package generator and runtime system should have five characteristics.

1. The input to the package generator (hereafter called the DDL, for Data Definition Language)
describes schemas for data structures, stating what attributes each type of node contains, and
what types of node each attribute may reference.

2. The DDL has mechanisms for succinctly describing the ways in which the schema for the output
of a tool differs from the one for its input.

3. The DDL has mechanisms for saying what attributes the application might change and what
types of nodes it might create; the package generator can enforce these constraints by deleting
operations from the application interface.

4. Given a reference to a node of any data structure, the readers and writers can determine its type,
the name and nature of its attributes, and some boolean properties such as whether it came from

Version 2.3



David Alex Lamb Using Graph Deltas to Implement Programming Support Libraries Page 3

the input file or was created afterward.

5. It is possible for a writer to distinguish nodes the corresponding reader creates from nodes the
application creates.

IDL and its translator are one such DDL and package generator. In previous work I have shown that the
IDL-generated graph readers and writers are practical tools for communicating between particular pairs of
tools [6]. Nestor et al. [7] have described a representation for IDL that satisfies property 4; such representa-
tions are part of several IDL implementations. Biyani [1] has designed a runtime system with similar prop-
erties. There are several possible mechanisms for satisfying Property 5, including using different regions of
memory, or tagging individual nodes.

Figure 2 shows an IDL declaration for a simple tree structure representing programs in a trivial pro-
gramming language. The names program, const_decl, var_decl, binary, and unary arenode types; objects
of these types are nodes in a graph. Declarations with left arrows (::=) definestrict classes, which resemble
union types. The names statement, expression, and declaration are strict classes. The termclassincludes
both node types and strict classes. Declarations with right arrows (=>) say that each node that is an
instance of the class whose name precedes the arrow has all theattributesafter the arrow (up to the semi-
colon). An attribute has a value of a basic type, such as integer or string, a sequence type (Seq), or a refer-
ence (pointer) to another type of object.

Figure 3 shows a new schema derived from that of Figure 2. The new structure, graph, inherits all
the declarations of the old structure, lang, except those explicitly named inwithout clauses. Thus, for
example, the graph has no const_decl nodes, and var_decl nodes no longer have initial_value attributes.
The identifier class splits into two sub-classes: defining occurrences (in declarations) and used occurrences

Structure langRoot programIs
program =>

decls : Seqof declaration,
stmts : Seqof statement;

declaration ::= const_decl | var_decl | ... ;
const_decl =>

name : identifier,
value : expression;

var_decl =>
names : Seqof identifier,

type : type_specification,
initial_value : expression;

statement ::= ...; -- several types of nodes representing statements
expression ::= binary | unary | primary;
expression => op : operator;
binary =>

lhs : expression
rhs : expression;

unary => operand : expression;
primary ::= identifier | literal | ...;
identifier => token : string;

End

Figure 2: IDL Structure for a Simple Language
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Structure graphFrom langIs
Without const_decl;
Without var_decl=>initial_value;

identifier ::= defining_occurrence | used_occurrence;
used_occurrence => def_occ : defining_occurrence;

For statementUseForbid(create,delete)
For var_decl.typeUseForbid(store)

End

Figure 3: Example of Derived Schema

(in expressions and statements). Used occurrences include pointers back to the corresponding defining
occurrences. Thefor clauses say that we will not create new statements in the graph, and that we will not
change (store into) the type attribute of var_decl nodes.

2. The Scheme
This section shows how to modify a program that reads and writes entire graphs so that it instead writes a
‘‘delta’’ consisting of a reference to the input file followed by differences between the input and the full
output graph. Later sections will refer to Figure 4. Program 1 and Program 2 are each instances of the gen-
eral organisation of Figure 1; the dotted lines between readers and writers stand for the omitted portions of

Reader
1

Writer
1

Reader
2

Writer
2

Program 1 Program 2

Graph 1

Data 1

Graph 2

Data 2

Graph 3

Data 3

Figure 4: A Pair of Cooperating Tools

Version 2.3



David Alex Lamb Using Graph Deltas to Implement Programming Support Libraries Page 5

the organisation. The boxes labelled ‘‘Graph i’’ represent logical input and output files; ‘‘Data i’’ represent
the physical implementation. The dotted arrow from Graph i to Graph i-1 represents a reference in Data i
(the delta) to the input file it modifies to give a full graph. Reader 1 might simply read an entire graph (if
Data 1 is a full graph rather than a delta); Reader 2 is necessarily more complex. As it begins to read Graph
2, it finds the reference to Graph 1 and reads it in the same way that Reader 1 did. It then reads Data 2,
modifying its internal representation appropriately. A reader for Graph 3 would go through two lev els of
this, first reading Graph 1, then modifying it with Data 2, then modifying that with Data 3.

The following subsections describe how to handle increasingly more complex kinds of deltas. We
begin by showing how to handle deleting attributes, then work up to allowing arbitrary changes in several
steps:

• adding simple (non-pointer) attributes,

• adding pointers to new types of node not present in the input,

• allowing back-pointers from new nodes to old ones,

• adding pointers to new instances of types of objects present in the input,

• changing simple attributes,

and changing pointer-valued attributes.

‘‘Adding’’ means adding new attributes to nodes from the input file, and ‘‘changing’’ means modifying the
value of an old attribute from the input file. Changing attributes of newly-created nodes introduces no
problems, since the writer will always emit a full representation of any new node.

2.1. Representation of Deltas

A delta file may contain some fixed overhead (such as a reference to the file containing the original graph).
The remainder of the file is a sequence of directives of the form

identification of changed node
set attribute A1 to value V1
set attribute A2 to value V2

Given a way to write out a connected subgraph as a unit (so that V1 and V2 could represent graph-valued
attributes), this suffices to describe any set of changes to a graph.

One way to represent a connected subgraph is to represent a node as a unique label (if there is more
than one pointer to the node), followed by a tag representing the node’s type, followed by the values of its
attributes in a fixed order. We represent a pointer-valued attribute as the representation of the node it points
to; if a node is shared, all values but the first use a reference to the node’s label. In the delta file, we repre-
sent any node that occurs in the original input by a reference to a suitable label for the original node.

With certain assumptions, we can reduce the directives to just the sequence of values V2, V2, and so
on. The main such assumption is that a delta writer and delta reader can traverse the nodes of the original
graph in the same order. With a suitable language for defining the graph type schemas, it is possible to
declare that no instances of certain attributes would ever change. If a suitably high fraction of instances of
changeable attributes really change, we can pretend that all the instances of such attributes change without
incurring much overhead by writing the unchanged attributes. Thus the sequence of node identifications
would simply be the list of changeable nodes in canonical order; for each node, the attribute identifications
would be all the changeable attributes in canonical order. Thus we could omit these identifications, leaving
only the sequence of values. Section 2.7 discusses what happens if we cannot afford to treat all changeable
attributes as really changed.

Ensuring a canonical order is straightforward. We could ensure that each graph has a unique root
node from which we can reach all the others, and traverse the attributes of each node in a canonical order
(such as alphabetically by name of attribute). For programming environment applications, where graphs
represent program abstract syntax trees, flow graphs, and so on, the requirement for such a root is not
restrictive. Giv en the way we handle changes to pointer-valued attributes (see Section 2.8), we can ensure
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that the delta writer and delta reader traverse the original data structure in the same order.

If the root of the new data structure might be different from the root of the old, the delta file needs to
begin with a representation of the new root node. This creates no new difficulties; the rest of the paper
assumes the new and old roots are the same.

2.2. Deleting Attributes

The simplest way for the output of a process to be different from its input is for the process to eliminate cer-
tain attributes from the graph’s type schema. An easy implementation is to eliminate procedures for manip-
ulating the ‘‘deleted’’ attributes from the application interface; the application cannot tell the difference
between this implementation and one where the attributes are absent from the internal representation,
except for resource constraints.

A slightly more complex Reader 2 could avoid storing a representation for omitted attributes. For
reasons discussed in later sections, it may need to keep representations of some pointer-valued attributes.

2.3. Adding Simple Attributes

A simple attribute is one whose representation requires no pointers. Typical simple attributes are those
whose values are integers, strings, booleans, and rationals (which include all typical fixed point or floating
point numbers). When the internal representation has attributes missing from the input, the reader ignores
them and lets the application fill in values later.

The scheme for writing a minimal representation of Graph 2 depends on Property 2: the DDL has
some way to distinguish what attributes of nodes in Graph 2 are absent in Graph 1. Furthermore, because
the package generator creates the readers and writers, it knows what order the writers will store information
in the files, and thus in what order the readers will fetch it. Writer 2 can traverse the internal data in the
canonical order. Whenever it reaches a type of node that has new attributes, it writes the values of the
attributes in a fixed order to Data 2. Similarly, Reader 2 reads information from Graph 1, then traverses it
in the same order as Writer 2. Whenever Reader 2 finds a type of node that has new attributes, it reads the
appropriate number of values from Data 2 and stores them in the space reserved for them in Program 2’s
internal data.

2.4. Adding Pointers to New Data Types

The simplest pointers to deal with are those that reference new data not present in the original input file,
because such pointers cannot interfere with the pointers we use to ensure the readers and writers traverse
the original data in the same order.

Given the external representation for subgraphs mentioned in Section 2.1, the writer follows almost
the same procedure as for simple attributes. It walks over the original data, emitting values of newly-added
attributes in a fixed order. Figure 5 shows a sample internal data structure with which we will illustrate how
this works. Original data are to the left of the dotted line; new data are to the right. Writer 1 makes a pass
over the data and discovers that nodes B and D are shared. It then starts at node 1, which contains one
attribute that points to an object of a new type. It therefore writes a representation of node B, which
involves a label for B, the representation of B, the representation of C, a label for D, the representation of
D, a reference to the label for B, and finally the representation of E. This constitutes the first unit of infor-
mation in Data 2. The writer continues over nodes 2, 3, and 4. For node 4 it writes a reference to label D;
this is the second unit of information in Data 2. For node 5 it writes the representation of node A, with a
reference to label B. This is the third unit of information in Data 2.

Reader 2 can build a corresponding internal data structure. It opens Graph 2 and finds the reference
to Graph 1. As it reads node 1, it discovers that its type requires reading a unit of information from Data 2.
It reads the first unit, creating internal representations of nodes B, C, D, and E and recording labels for B
and D. It reads nodes 2 and 3 from Graph 1. On reading node 4, it discovers it must read the next unit of
information from Data 2, which is the label reference for D; it fetches the corresponding pointer by search-
ing its label table. On reading node 5, it discovers it must read the last unit of information from Data 2,
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Figure 5: Handling Pointers to New Data

which is the representation of A; it also fills in the reference to B by searching its label table.

2.5. Allowing Back-pointers

At first glance, allowing back-pointers from new data types to old ones is simple. Imagine that in Figure 5
we add a back-pointer from node E to node 4. While writing out the representation of node E, Writer 1
emits a reference to a label for node 4. When reading in this representation, Reader 2 fills in the pointer
from its label table.

Unfortunately, node 4 might not have had a label in Graph 1, since node 1 might have had the only
reference, and labeling all nodes might cost too much in storage space and reader time. Furthermore, since
we presume we cannot modify Graph 1, we cannot add a label to it. Fortunately, since readers and writers
can traverse nodes from Graph 1 in the same order, we can use the position of node 4 in canonical order as
a label; this may require a second type of label reference. If we can afford the space within Program 1, we
can make Writer 1’s job easier by adding an integer-valued attribute to each node to record its position.
Otherwise, we can add a pass to Writer 2 between the one that detects sharing and the one that writes out
Data 2. This pass traverses the original data, keeping track of what position each node would have come
from. Whenever it finds an unlabeled that now needs a label, it can create a label, write the label and input
position to Data 2, and record the label and node address in a hash table. When the output pass encounters
a reference to an unlabelled node, it fetches the label from the hash table.

2.6. New Instances of Old Data Types

Given the mechanisms of Sections 2.4 and 2.5, it is easy to allow Graph 2 to contain new instances of old
data types from Graph 1. By property 5, we can distinguish nodes Reader 1 creates from nodes the applica-
tion creates. When Writer 1 encounters a pointer to an old data type, it tests whether the node is new. It
handles old nodes as before (writing out only new attributes), but writes out newly-created nodes as if they
were new types of nodes as in Section 2.4.
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2.7. Changing Old Simple Attributes

If the schema says that Program 1 might modify certain simple attributes from Graph 1, then Writer 1 can
do one of two things. If the application will likely change most nodes with the given attributes, the writer
can treat them as if they were new attributes, and write them all out as in Section 2.3. If only a small frac-
tion of the changeable attributes really will change, then the internal representation should flag attributes
that really change. Writer 1 writes out only flagged attributes, labeled (as discussed later) with what node
they came from; Reader 2 reads the original data from Graph 1, then overwrites the attributes of those par-
ticular nodes mentioned in Data 2.

There are several methods for flagging what attributes change.

1. For each changeable attribute, add a corresponding boolean flag in the same node. Storing the
attribute via the reader/writer interface sets the flag to false; storing via the application interface
sets it to true. The writer uses the reader/writer interface to check the value of the flag.

2. Store a second attribute representing the original value of the changeable attribute. The writer
compares the two to detect changes. This has the benefit of eliminating from the delta those
attributes whose values changed, then changed back to their original values.

3. To minimise space, use a table hashed by node address to represent the new value of the
attribute. If the node address is in the hash table, the value in the hash table is the changed
attribute value; otherwise the value stored in the node is the attribute value.

When Reader 2 reads a node from Graph 1 that contains changeable attributes, it must be able to tell
whether the next value in Data 2 is a value for the changeable attribute. There are several possible schemes
for doing so.

1. The delta file might contain entries of the form

node identification
values for always-changed attributes
attribute name/value pairs for sometimes-changed attributes.

When Reader 2 is trying to read a sometimes-changed attribute, the next item in Data 2 must be
either a node identification or an attribute name; it must be possible to distinguish the two. This
requires node identifications even for nodes with only always-changed attributes.

2. For nodes with sometimes-changed attributes, the delta file would contain entries of the form

values for always-changed attributes of this node
attribute name/value pairs for sometimes-changed attributes of this node
end-of-node marker

This eliminates the need for node identifications, but forces an end marker for all nodes with
sometimes-changed attributes. If the end marker is no larger than a node identification, this
requires no more space than the previous scheme, and requires less space if the graph contains
some nodes with always-changed attributes and no sometimes-changed attributes, since they
would need no end markers. If all sometimes-changed attributes of a particular node instance
really changed, we could eliminate the end marker for that node (at a cost of slightly more com-
plex processing in the reader and writer).

2.8. Changing Old Pointers

To coordinate Reader 1, Writer 1, and Reader 2, all three had to be able to walk over the data structure in
the same way. If you change a pointer-valued attribute, this would not be possible. However, you can eas-
ily apply some method from Section 2.7 to keep both the old and the new value of pointer-valued attributes.
The writer traverses the structure using the old value, and writes out the new value using the methods of
Sections 2.4, 2.5, and 2.6.

You need not duplicate all pointer-valued attributes. The DDL might have facilities for declaring that
some pointer-valued attributes arestructural; that is, you can reach all nodes in the structure by following
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structural attributes. Other attributes would simply be cross-references. The readers and writers could limit
themselves to traversing only the structural attributes, allowing you to use the overwrite-and-set-flag
method for the others.

3. Discussion
The method of Section 2 depends on coordinating readers and writers of separate tools. It thus implies that
designers of individual tools must use the same DDL and compatible generators of readers, writers, and
interfaces. However, it does not require that designers write tools in the same language, or that tools oper-
ate on the same machine, or that they hav e the same internal representation of their data. In prior work I
have shown how to use IDL to avoid such constraints in the simple case of programs that write full graphs
[5, 6].

3.1. Efficiency

Section 2 shows that detecting and recording graph deltas is possible. The following rough analysis argues
that it should often be practical. We need to compare the efficiency of reading and writing graph deltas
with that of reading and writing full graphs.

First, the graph delta clearly requires less disk storage space. Section 2 showed that a delta file
requires a small amount of overhead to reference the original input file, followed by representations of
exactly those attributes that changed. Writing out such a file is more efficient than writing out a full graph.
The writer must traverse the internal data in the same way it would traverse the full graph, performing
almost the same operations on each node, except that it does not write out any attributes or nodes already
present in the original input. The only extra work the writer must do is to create labels for old nodes that
were unshared in the input but become shared in the output; creating such labels may be somewhat more
expensive than creating labels for new nodes.

Recording what attributes change requires some additional internal overhead.

• It must be possible to distinguish reader-created nodes from those the application creates. This
may require an overhead bit per node, or a more complex storage manager that allocates the two
kinds of nodes in different areas of memory.

• The internal representation must keep the reader’s label table so the writer can use it. When
writing full graphs, the reader could discard this table and let the writer regenerate it as neces-
sary.

• At first glance it appears that the internal representation must waste space for old, unused
attributes from the file to which the reader applies the deltas. However, since a reader can do
some simple mappings from the disk representation to an internal representation, the only unused
attributes it needs to keep in memory are the structural ones (the ones that guide reader and
writer traversals). Thus tools that avoid transforming the underlying tree structure need not incur
any internal space overhead.

Thus the only real overheads appear to be in the reader. We can ignore the time taken to read infor-
mation from the delta file, because the reader uses the same methods to read items from this file that it
would to read them from a full input file. A reader must open a second input file (which is a slow operation
on some systems), and must read some unnecessary attributes (those deleted or changed by the delta). This
costs extra input time, and may cause extra work in the storage allocator for pointer-valued attributes that
reference discarded subgraphs. However, in a well-engineered system both of these overheads are propor-
tional to the amount of deleted information.

In earlier work on graph readers and writers [6], I showed that:

• The time taken by a simple graph reader was linear in the size of the graph and the number of
labels if the label table uses an O(1) method such as hashing.
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• Sev eral kinds of graph readers were about 2-3 times slower than the corresponding kinds of
graph writers.

• The cost of traversing a tree in memory is much smaller than the cost of reading or writing the
tree.

Suppose the size of an input graph is s(shared)+ s(deleted) and a full output graph is s(shared)+ s(new), the
cost of reading a unit of input with a full graph reader is c(full), and the cost of reading a unit of input from
a delta file is c(delta); c(delta) > c(full) because of the somewhat more complex processing. Then the cost
of reading the output graph in another program is c(full) * (s(shared)+ s(new)) with a full graph reader, and
c(full) * (s(shared)+ s(deleted))+ c(delta) * s(new) with the delta reader. Thus the extra processing for a
delta reader is c(full) * s(deleted)+ (c(delta)− c(full)) * s(new). As expected, this overhead would be low if
the fraction of deleted information is low, and either the amount of new information is low or c(delta) is
close to c(full) (as it would be in our optimised representation where we can omit node identification and
attribute name information). These costs are offset somewhat by the saving in the writer; they are not com-
pletely offset because the savings in the writer are smaller (because writers are faster than readers), and
because in many applications a data structure is written once and read several times.

Other researchers (for example, Tichy [12]) have proposed methods for finding efficient string-to-
string deltas. It might be possible to apply such methods to the linear representation of a graph as an alter-
native to the methods I propose. The natural operations to use on string transformations are block copies
from the source to the destination, and adding entirely new strings. It seems likely that it would take con-
siderable effort (comparable to that required to design and implement the methods of this paper) to design
an efficient way to turn such string operations into changes to an internal graph structure.

Full validation of practicality requires building and measuring a prototype system. A reasonable
experiment requires three test systems: one to produce an original graph, one to produce a delta, and one to
read the delta. For example, a parser might emit an abstract syntax tree, a semantic analyser might annotate
it, and a metrics tool might read the annotated graph. I expect to begin such work for IDL in 1990; I hope
other researchers with similar DDLs will apply these methods to their own systems.

3.2. Instance Changes

I phrased most of the earlier sections as though the input and output of a tool had to have different schemas.
Such a restriction is unnecessary; the techniques allow you to store graph deltas representing the edit his-
tory of a graph, similar to the way tools like SCCS[8] and RCS[11] store source deltas, or the way database
systems store differential files [9]. John Nestor and Joseph Newcomer told me that they used most of these
methods in the GNAL separate compilation mechanism at Tartan Laboratories. One could view this work
as formalising their collection of ad-hoc techniques (‘‘hacks’’).

At first glance, it might appear that the techniques of this paper are unnecessarily complex for repre-
senting changes to a graph instance where the type structure does not change. However, in such a structure,
the only operations of the general scheme we cannot do are

• delete attributes from the schema,

• add new attributes to the schema, and

• create instances of new types of nodes not present in the input.

All the other types of change are still possible. The most complex techniques keep track of changing
attributes and newly-created nodes; this still necessary for changing graph instances. Thus all the mecha-
nisms of this paper are still necessary.

3.3. Other Issues

Using graph deltas to implement a programming support library requires additional library management
tools beyond the scope of this paper. For example, the library would need some form of garbage collection
to eliminate unreferenced old files. If you have a chain of deltas where earlier points in the chain do not
change frequently, you might wish to collapse a series of deltas into a single one; you could build a
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collapsing tool from the automatically-generated readers and writers with a trivial application program to
glue them together. Indeed, given any sequence of graphs G0, . . . , Gk represented by storing G0 and a
sequence of deltas D1, . . . , Dk, it is easy to select several indices I1, . . . , Im (m ≤ k) and collapse all the
deltas to a sequence of m changes that take us from G0 to GI1

, from GI1
to GI2

, and so on. One reads in G0,
applies all the deltas up to DI1

, then writes out the difference between the original G0 and the result. Then
one marks the current internal representation of GI1

as ‘‘old’’, and applies D1+I1
through DI2

, and repeats the
process.

If the data definition language allows sequence-valued attributes, the scheme will work without
change if we treat any change to a sequence as changing the value of the entire sequence. A naive repre-
sentation of inserting a new node at the beginning of a sequence of nodes would be a representation of the
new node, followed by references to the old nodes (which would still exist in the original input file). It
might be possible to do better by retaining both the old and new value of the sequence and applying a vari-
ant of a string-to-string correction algorithm.

When input and output schemas are different, the length of the chain of references from a delta file
back to an original graph tend to be short. The limit is the maximum number of tools between an original
source file and final output. Once you start storing deltas of graphs with the same structure, there are noa
priori limits on the lengths of chains. Users of source deltas find that it takes a long time to work through
the entire chain to get the most recent version of a source program; similar problems might show up in a
graph delta system. It is technically easy to modify the techniques of Section 2 to givebackwards deltas
(that is, deltas that show how to change the output graph into the input graph). You merely keep two ver-
sions of each changeable attribute, and chose a different set of attributes to write out. For example, if a pro-
gram deletes an attribute from its input to produce its output, the writer would emit a full graph for its out-
put and replace its input by a delta that showed what information to add to the output to recreate the origi-
nal input. This has two inherent disadvantages. First, you must write an entire graph plus a delta, which
costs extra time. Second, in many programming environments you could not use backward deltas to repre-
sent changes between different structures, because the (compiled) readers of earlier tools would not neces-
sarily understand the format of the new files. A third disadvantage in some circumstances is that it pre-
sumes that one input leads to only one output, so that there is always a unique output file to which to apply
the backward delta to regenerate the input; however, it should be possible to extend these techniques to rep-
resent an output file as a delta of a set of input files, rather than just one.
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