
Abstraction Problems in Software Manufacture

David Alex Lamb

February, 1989
External Technical Report

ISSN-0836-0227-
1989-243

Department of Computing and Information Science
Queen’s University

Kingston, Ontario K7L 3N6

Version 1.1
Document prepared Thursday, November 20, 1997

Copyright © 1989 David Alex Lamb

Abstract

Software manufactureis the process of building or re-building a large software system
from myriad components. The UNIXmakeprogram is the most well-known software
manufacture tool.Make and similar systems have sev eral deficiencies when used for
complex multi-language, multi-subsystem programs; this work addresses those problems
related to abstraction mechanisms. Particular problem areas discussed include specifying
indirect and derived dependencies, manufacture subprocesses, and handling systems com-
posed of independently-developed subsystems.

Keywords and phrases:configuration management, software manufacture, abstraction,
makeprogram

Computing Reviews categories:D.2.6 (Software Engineering: Programming Environ-
ments). D.2.9 (Software Engineering: Management - Software Configuration Manage-
ment).

General Terms:Design

Manufacture 1.1 Page i

Table of Contents

1 Introduction .. 1

2 Problem Areas .. 3
2.1 Manufacture Abstractions .. 3
2.2 Implied dependencies ... 5
2.3 Derived dependencies .. 6
2.4 System-wide processing ... 7

3 Other Considerations ... 7

4 Conclusion ... 8

References ... 8

List of Figures
Figure 1: SimplemakeFile .. 2
Figure 2: Book Chapter Abstraction .. 4

November 20, 1997 1989-243

Manufacture 1.1 Page 1

1. Introduction
Software configuration management consists of several related sub-disciplines.Software
manufactureis the term Borison introduced to describe the activity of constructing a soft-
ware system from a collection of source objects [Bori86]. The archetypical software
manufacture tool is the UNIXmakeprogram [Feld77]. Althoughmakeand similar tools
work well for systems with simple structure, they hav e some difficulties in manufacturing
larger, more complex systems. This paper discusses some of the areas of difficulty, and
sketches some approaches to solutions. The difficulties we will explore are each a form
of failure to provide appropriate abstraction mechanisms in the input language to the
manufacture tool.

The kinds of systems this work addresses have sev eral properties.

• A system is composed of several subsystems, each of which may have its own
substructure. Each subsystem might be reusable, and thus might be part of sev-
eral distinct systems.

• Subsystems evolve; each subsystem might be under the control of a separate
project, and might have its own independent development schedule. The man-
ager of a project using subsystems can choose the version of a subsystem to use,
but beyond that cannot control the contents of a subsystem.

• Each subsystem consists ofexported(visible) components, plushiddencompo-
nents. Components might be programming language modules, or tools, or data
files. Other subsystems might know the visible components, but should be able
to ignore the hidden components. However, system-wide processing tools, such
as the linker, need to know all the components, or perhaps all components with
certain properties, of all subsystems.

• Source components are not all written in the same language. This property
comes not so much from mixing ordinary programming languages as from hav-
ing tools that generate portions of the system. The input notation for each tool
is a different language. Furthermore, there may be long chains of tools produc-
ing output that becomes the input to yet other tools.

In this work, I assume the basic software manufacture tool follows Borison’s model.
The key aspects of this model are as follows: The tool works from a manufacture graph,
which is a directed acyclic graph (DAG). Such graphs have two kinds of nodes:process-
ing nodes, where work takes place, andobjectnodes, which are the inputs to and outputs
from processing steps. An important difference between such a graph and the depen-
dency graphs of programs likemakeis that a manufacture graph must representall
dependencies, including not only the input files for a tool, but the tool itself and any ‘‘hid-
den’’ files it references.

To understand the last point, consider the example of Figure 1, which shows amake

November 20, 1997 1989-243

Page 2 Manufacture 1.1

input file for a small system consisting of a main program and two submodules.1 Each
line that starts in the left margin says that the target file, whose name precedes the colon
(:), depends on all those files whose names follow the colon; if any of them change,make
must use the immediately following command to rebuild the target. The dependency of
prog on main.o arises because main.o is a relocatable file we pass to the linker to make up
the executable program. The dependency of main.o on main.c arises because main.c is
the source file from which we get the relocatable file main.o; the dependencies on mod1.h
and mod2.h arise because main.c incorporates these two files by file inclusion. However,
there are several more hidden dependencies.

• mod3.o also depends on the command line arguments ‘‘${CCFLAG} -DDE-
BUG’’; if we change these options, we must recompile mod3.o, butmakedoes
not detect this. The fourth generationmakeprogram [Fowl85] lets a file depend
on the contents of macros; by putting each distinct set of command line options
in a macro we can record these dependencies, but this is clumsy for a system
designer to do.

• The linking step implicitly depends on the C library, which on the particular
version of UNIX we run at Queen’s happens to be the file /lib/libc.a. This may
not seem important in a system where such files rarely change; however, in
some environments (such as those using a compiler and library that themselves
are under development) such hidden files can change rapidly. Furthermore, if
we had this information we could use it to find all the files we would need to

CCFLAG=-c -g
prog: main.o mod1.o mod2.o mod3.o

ld -o prog main.o mod1.o mod2.o mod3.o
main.o: main.c mod1.h mod2.h

cc ${CCFLAG} main.c
mod1.o: mod1.c mod1.h mod3.h

cc ${CCFLAG} mod1.c
mod2.o: mod2.c mod2.h mod3.h

cc ${CCFLAG} -DLISTOPTION=short mod1.c
mod3.o: mod3.c mod3.h

cc ${CCFLAG} -DDEBUG mod1.c

Figure 1: SimplemakeFile

1This example ignoresmake’s mechanisms for specifyingdefault rules, which could shorten the example somewhat, but do not
solve the problems we address here.

1989-243 November 20, 1997

Manufacture 1.1 Page 3

archive to tape to be able to faithfully rebuild an old version of the system.

• All the C compilations depend on the C compiler. Howev er, the compiler itself
runs several other programs, such as the C preprocessor. Furthermore, what C
compiler we get depends on the value of the search path variable (PATH) in the
shell; in an environment with several possible versions of a tool, such consider-
ations become important.

Even if we could in principle record all these dependencies, forcing a system designer to
specify the full manufacture graph in such detail would cause enormous headaches.
Adding independent subsystems causes even more problems, since now portions of the
manufacture graph for a system would be under the control of the developers of different
subsystems.

The goals of this work are to design a few simple mechanisms to minimize what a
system builder must specify to cause the manufacture tool to construct the correct manu-
facture graph for the system. Such mechanisms must make it easy to change the graph in
response to changes in the relationships among the components of the system, and must
track changes to the subsystem structure, not just the contents of files.

2. Problem Areas
This section considers several specific problem areas with current software manufacture
input specification languages:

• Reusable abstractions.

• Implied dependencies.

• Derived dependencies

• System-wide processing steps.

2.1. Manufacture Abstractions

Anyone who does much complex software manufacture eventually develops a collection
of idioms she uses over again. Such idioms are patterns of multi-step manufacture sub-
processes; they hav e several characteristics:

• They are reusable in the same system, or different systems.

• They produce several objects.

• The builder might want to selectively reconstruct individual objects, rather than
all the objects in the subprocess.

• There should be a way to hide some of the intermediate objects in the subpro-
cess; their existence should not really be visible outside the subprocess.

makehas no abstraction mechanism that can express such idioms; the only way to cap-
ture them is to use tools such as thesedstream editor to generate portions of amakeinput
file.

November 20, 1997 1989-243

Page 4 Manufacture 1.1

For example, Figure 2 shows the process I used to produce individual chapters of a
Software Engineering textbook [Lamb88]. The & symbol stands for the name of a chap-
ter. The & object is the main exported result; it involves first making the printable form
of the chapter (&.hp), then postprocessing some auxiliary outputs to update global book-
wide data files. The &.chk object involves building three different objects (&.spl, &.styl,
&.dic), which contain reports from simple machine proofreading programs; you might

&: &.hp
sed -f /staff/dalamb/book/bin.sed &.tm >&.tm1
cp book.xaux book.oxaux
dsplit -key LB &.xxaux -omit \(TC FC IX LX SX HX \) -key SO &.xso &.tm1
part -part book.so &.xso > &.so1
mv &.so1 book.so
part -part book.xaux &.xxaux > &.xaux1
mv &.xaux1 book.xaux
- diff book.xaux book.oxaux >book.xdif

&.chk: &.use &.spl
&.use: &.dic &.styl
&.dic: &.de ${DICTIONFILE}

diction ${DICTIONFLAGS} &.de >&.dic
&.spl: &.de1 ${DICTIONARY}

spell ${SPELLFLAGS} &.de1 >&.spl
&.styl: &.de

style ${STYLEFLAGS} &.de >&.styl
&.de0: &.n

SOelim -noso &.n | sed -e "s/@.*@/EQUATION/g" >&.de0
&.de: &.de0 ${REM}

cat ${REM} &.de0 | nroff -Tlpr - | sed -e "/ˆ.TG/d" >&.de
&.de1: &.de0 ${SPELL} ${REM}

cat ${SPELL} &.de0 | nroff -Tlpr - | sed -f ${BKDIR}/remspell.sed >&.de1
&.pre: &.n ${SOFILES}

SOelim ${SOFLAG} -part book.so &.n | sed -e "//d" | \
docpre -phase ${CITEPART} ${XREFFL} | number > &.pre

&.hp: &.pre ${MACS}
- cp &.tm &.tmold
eqn &.pre | troff -me -Ttrlj 2> &.tm | ditplus -dtrlj > &.hp

Figure 2: Book Chapter Abstraction

1989-243 November 20, 1997

Manufacture 1.1 Page 5

want to select each of them independently. Some objects serve as intermediate process-
ing points; for example, &.de is the result of filtering out text formatter markup that
would confuse the proofreading programs; it is input to two of the proofreaders.

We can look to standard ideas from programming language design to solve these
problems. Given any language semantic unit X, such as a manufacture step, we can intro-
duce the idea of an X-valued abstraction [Tenn81]. Thus the input language for a manu-
facture tool should allow parameterized abstractions. The parameters would be objects
(such as files or strings). Thus, for example, I might invoke a Chapter abstraction as:

intro: chapter(intro.n)

An abstraction would act somewhat like a generic module in a language like Ada. After
you invoke such an abstraction, you could reference individual exported components
(such as intro.use, or intro.hp). You could independently build any exported component.
The manufacture tool might support a library mechanisms for such abstractions, so you
could reuse them.

One sign that an idea is a good one is for it to solve elegantly problems other than
the ones you planned for. The serendipity with abstractions is that the same mechanism
works for subsystem descriptions; a subsystem is nothing more than an abstraction that
you happen to invoke only once per system.

2.2. Implied dependencies

makehas difficulty handling transitive dependencies. For example, consider the C source
file x.c, which incorporates several .h files by file inclusion:

x.o: x.c x.h lib1.h lib2.h lib3.h
cc $(CCFLAG) x.c

Now suppose we are trying to simulate abstract data types in C. Module lib1 might
define some type with some fields intended to be visible to its clients, and others intended
to be hidden. Suppose we add some ‘‘hidden’’ fields, and so modify lib1.h to include
adt1.h. Unfortunately, we cannot really hide such fields in C, even though we know we
will not reference them in clients of lib1; we must recompile x.c whenever adt1.h
changes, since the sizes of some records defined in lib1.h might change. Existing
approaches have problems.

• We could make x.o depend on adt1.h. However, we must do this for all the
clients of lib1; this is a repetitious, error-prone editing job.

• We could add the step:

lib1.h: adt1.h
touch lib1.h

to the manufacture graph. When adt1.h changes, this forces lib1.h to change,
too. However, this fails if lib1.h is part of a reusable subsystem, since clients of
the subsystem would typically not have permission to modify the date-of-last-
change of such files. Furthermore, because of cross-subsystem dependencies,
adt1.h and lib1.h might be in separate subsystems; two different clients of the

November 20, 1997 1989-243

Page 6 Manufacture 1.1

same version of lib1.h might sensibly select different versions of adt1.h.
Finally, even without these problems, your environment may have other uses for
accurate modification dates that this mechanism would defeat.

• We could cause our manufacture tool to scan source files automatically for
inclusion directives, and deduce dependencies from them. In some environ-
ments this is a good solution. However, this requires a (potentially) language-
specific scanning tool for each language in our toolset. Furthermore, in some
commercial software environments, this approach places too much control of
the system structure in the wrong place; managers may want a ‘‘freezable’’
description of the system interdependencies, rather than distributing this infor-
mation throughout the source code. It would be better to find an approach that
would allow us to specify such dependencies by hand when we had to, but allow
tools to help when we have time to build them.

I believe the best approach is to separate out different kinds of dependencies. Thus
x.o has a clear-cut direct dependency on x.c; however, depending on x.c implies a depen-
dency on lib1.h and so on; depending on lib1.h implies a dependency on adt1.h. We can
construct a database of suchimplied dependencies. If x depends directly on y, and y
implies a dependency on z, then changing z means rebuilding x, without rebuilding y. We
can build such a database by hand if we have no appropriate tools. When we can afford
to schedule the effort to build one, a database editor can invoke language-specific scan-
ners to find or check such dependencies when asked to do so.

2.3. Derived dependencies

Suppose source file mod.c depends directly on lib1.h. Normally, lib1.h is the specifica-
tion part of a module whose implementation is in lib1.o. This means that mod.o implies a
dependency on lib1.o; that is, any system that includes mod.o must also include lib1.o.

Current systems manage this problem in one of two ways, both of which have some
difficulties.

1. The system builder might explicitly list all relocatable object files for the linker.
This is a tedious and error-prone process if done manually.

2. The system builder might instruct the manufacture tool to place all such relocat-
able object files in a linker library, and rely on the library external symbol reso-
lution rules to link in all appropriate components.

The second solution can work if each separate project using several subsystems can
afford the space for a library file large enough to hold copies of all the object files of all
the subsystems, and if the linker can correctly resolve backward references in such a
library. Howev er, many projects cannot afford the space for so many copies; instead, they
expect to have separate libraries for each subsystem, shared among all the users of a sub-
system. Furthermore, many linkers are not clever enough for such a search strategy; they
may expect new object modules to refer only to previously-linked symbols, or to symbols
that will appear in later object modules. Even if they do allow arbitrary references within
a library file, they may not allow it across a list of library files; thus, projects that cannot

1989-243 November 20, 1997

Manufacture 1.1 Page 7

afford so many copies of object modules are out of luck if there are any loops in the rela-
tionships among subsystems.

A related problem for systems that must explicitly list what object modules to link is
subset management. Suppose a subsystem exports k modules, each of which depends on
different subsets of its hidden modules. Different clients might import different subsets
of the exported modules. The problem is that there are potentially 2k − 1 distinct collec-
tions to manage.

A possible direction for a solution is to develop a mechanism for the process of con-
structing mod.o from mod.c to generate an implied dependency of mod.o on lib1.o; we
call this aderived dependency. The manufacture step for constructing the executable pro-
gram would specify only a direct dependency on main.o, the object file for the main pro-
gram. The manufacture tool could deduce all the rest of the object files from implied and
derived dependencies. Indeed, the simplicity of Ada-specific or Modula-specific manu-
facture tools is that they can deduce these two kinds of dependencies automatically.

2.4. System-wide processing

The need to find all the appropriate object files to link is a special case of the general
problem of processing all files of certain characteristics from all subsystems as a group.
Other examples from the Queen’s Program Component Generator (PCG) project
[Lamb89] include:

• Pass all run-time symbol tables for IDL-based data structures to a tool that gives
each a unique structure number.

• Combine error descriptions from all subsystems to theersorttool to form a sin-
gle database of all error messages.

A solution to this problem seems to require two mechanisms:

• Abstractions need the ability to add dependencies to a parameter or global
object. For example, the IDL translator abstraction could add each structure
symbol table to an ‘‘all IDL symbol tables’’ object.

• There should be some means for turning a set of dependencies into input for a
tool.

3. Other Considerations
There are several other problem areas for a software manufacture specification language
that I have not addressed in the previous section, and whose solutions require further
design.

Subsystems can depend on each other in complex ways that seem inherently to
require some interaction with the version selection process. For example, for a graduate
course I provided an input subsystem to teach the students how to use a parser generator.
The generated parser called an error subsystem, which expected both to print errors on
the terminal and to incorporate them into a listing. Thus, to learn about the parser the stu-
dents had to learn about several other subsystems. Ideally, there should have been a way

November 20, 1997 1989-243

Page 8 Manufacture 1.1

for the manufacture tool to notice the subsystems the main system was using, and to
select different versions of the error reporting subsystem depending appropriately. If the
students showed they knew of the listing subsystem by calling it from their main pro-
grams, the manufacture tool should select the version that reports errors in the listing;
otherwise, it should select the version that only prints on the terminal.

There needs to be some mechanism to handlecomponent migration, where a module
or group of modules split off from their former subsystem as the set of tools evolve. To
use a component, a second component should not need to mention the subsystem of the
first component; there should be a separate mechanism to associate such use names with
appropriate subsystems. Perhaps theprovides/requiresfacility of typical module inter-
connection languages is an appropriate mechanism.

There needs to be a way to integrate version selection with manufacture; theshape
system at the Technical University of Berlin does so formake, and its mechanisms may
be appropriate for other manufacture tools [Mahl88]. Selecting versions of subsystems
may be more complex, since different versions of a subsystem may have different manu-
facture sub-graphs.

4. Conclusion
We hav e shown several problem areas where currentmake-like tools do not meet the
needs of complex systems, and have sketched possible solutions. During 1989 we plan to
flesh out the notational sketches of this paper, and design a prototype translator and tool.
We expect that the PCG tools environment will be a reasonable one in which to test the
ideas of the prototype; the tools are small and well-defined, but have interesting relation-
ships.

I would like to thank Ellen Borison for several enlightening discussions of software
manufacture, and for the students in Queen’s course CISC 835 (The Tools Approach) in
Winter 1988 for pointing out deficiencies in my earlier approaches to these problems.
The members of IFIP Working Group 2.4 gav e helpful feedback on the talk on which I
based this paper. Margaret Lamb corrected several small deficiencies in an earlier draft.
This work was supported in part by the Natural Sciences and Engineering Research
Council of Canada (NSERC) under grant OPG0000908, and in part by the Information
Technology Research Centre (ITRC), which is part of the Ontario Centres of Excellence
Program.

References
Bori86. Ellen Borison, ‘‘A Model of Software Manufacture,’’ in Reidar Conradi, editor,

Proceedings of the International Workshop on Advanced Programming Envi-
ronments, pages 197-200, Springer-Verlag, Berlin (June 1986). Lecture Notes
in Computer Science 244.

Feld77. S. I. Feldman, ‘‘Make - A Program for Maintaining Computer Programs,’’
Technical Report 57, Bell Laboratories (April 1977).

1989-243 November 20, 1997

Manufacture 1.1 Page 9

Fowl85. Glenn S. Fowler, ‘‘The Fourth Generation Make,’’ inProceedings of the 1985
Summer Conference, USENIX Association (11-14 June 1985). Held in Port-
land, OR.

Lamb88. David Alex Lamb,Software Engineering: Planning for Change. Prentice-
Hall, Englewood Cliffs, NJ (1988).

Lamb89. David Alex Lamb, ‘‘Program Component Generator Project Implementor’s
Guide - Version 2.3,’’ Internal Report ISSN-0836-0235-89-IR-02, Queen’s
University Department of Computing and Information Science (October
1989).

Mahl88. Axel Mahler and Andreas Lampen, ‘‘shape— A Software Configuration Man-
agement Tool,’’ inProceedings of the International Workshop on Software Ver-
sion and Configuration Control, German Chapter of the ACM (January 1988).
Held in Grassau, West Germany.

Tenn81. R. D. Tennent,Principles of Programming Languages. Prentice-Hall Interna-
tional, London (1981).

November 20, 1997 1989-243

