
SPRUCE: A Framework for Software Restructuring

David Alex Lamb
David Putnam

February, 1991
External Technical Report

ISSN-0836-0227-
1989-244b

Department of Computing and Information Science
Queen’s University

Kingston, Ontario K7L 3N6

Version 2.1
Document prepared Thursday, November 20, 1997

Copyright © 1989,1990,1991 David Alex Lamb and David Putnam

Abstract

Software restructuring can improve the maintainability and understandability of pro-
grams. We propose to divide restructuring into four stages: code restructuring, data
restructuring, procedural restructuring, and remodularization. We survey prior restructur-
ing work, and present our plans for SPRUCE, a framework for incorporating such work
into an integrated tool.

Keywords and phrases:software restructuring, software maintenance, automated assis-
tant

Computing Reviews categories:
D.2.7 Distribution and Maintenance - Restructuring
K.6.3 Software Management - software maintenance

General Terms:design, human factors

SPRUCE Page i

Table of Contents

1 Introduction .. 1
1.1 Motivation .. 1
1.2 Software Restructuring .. 1

1.2.1 Code Level Restructuring ... 2
1.2.2 Data Restructuring .. 2
1.2.3 Procedural Restructuring .. 2
1.2.4 Remodularization .. 2

2 Previous Research .. 3
2.1 Code and Procedural Restructuring ... 3
2.2 Data Restructuring and Remodularization ... 4

3 A Restructuring Tool .. 5
3.1 Language Dependence ... 5
3.2 Philosophy .. 6
3.3 Call Graph Analysis ... 7
3.4 Code Shifter ... 7
3.5 Data Flow Analysis .. 8
3.6 Goto Analysis ... 8
3.7 Interface Controller .. 8
3.8 Module Structure Controller .. 8
3.9 Procedural Analysis ... 9
3.10 Procedural Rewriting ... 9
3.11 Structure Organizer .. 9
3.12 Variable Renaming ... 9
3.13 Variable Usage Analysis .. 10

4 Conclusion ... 10

Acknowledgements ... 10

References ... 11

List of Figures
Figure 1: Comparison of IF Statements in C and Pascal ... 5
Figure 2: Pseudo-Code Tree Walker .. 6
Figure 3: Summary of Facilities ... 7

Version 2.1 November 20, 1997

SPRUCE Page 1

1. Introduction
Software restructuring transforms a program’s source code into a more ‘‘structured’’
form, thereby improving its maintainability and prolonging its life. SPRUCE, a System
for Providing assistance with RestrUcturing CodE, is an integrated collection of tools to
assist a human in restructuring. Fully automatic restructuring is currently infeasible, and
may remain so. This paper proposes to divide software restructuring into distinct types,
and outlines an architecture and initial collection of facilities for SPRUCE, which we
designed in late 1988 and began to implement in 1989-90.

1.1. Motivation

Software maintenance involves correcting (removing functional errors), adapting
(enhancing), or perfecting (improving efficiency or performance) of software after its
release for production use [1]. It can count for more than 50% of the costs in the lifetime
of a software system [29]. Any technique that could reduce its cost is obviously valuable.

Maintenance is difficult because a maintainer must first understand the system
before making changes; this currently accounts for about half of a maintenance program-
mer’s time [29]. The program is hard to understand if the original program was poorly
written, or if previous maintenance degraded the program’s structure [28].

The structure of a program refers to both the structure of the code (called structured
programming or programming-in-the-small) and the structure of the system (called mod-
ule structure or programming-in-the-large [9]). Structured programming is an ‘‘art of rea-
soning’’ about the task, being able to abstract different levels of understanding of a prob-
lem, and connect them together in a hierarchy [18, 31]. Good module structure can be
achieved by applying information hiding, in which every module hides a design decision,
allowing the modules to be understood independently [30]. Although both these tech-
niques were developed in the early 1970’s, some estimate that most programs in use
today are unstructured [25, 35].

Good software structure can make the task of understanding the software much eas-
ier [2]. This can reduce the cost of maintenance to as little as one third of the cost of
maintaining unstructured programs. Rewriting the unstructured programs from scratch
using structured programming and information hiding techniques is impractical because
of high costs [21].

Software restructuring is an alternative to software rewriting. However, this area has
only recently begun to be studied, and further research is required [2]. This paper pro-
poses a more detailed definition of restructuring (Section 1.2), reviews prior work on
restructuring (Section 2), and outlines a framework for incorporating restructuring ideas
into a common tool (Section 3).

1.2. Software Restructuring

Software restructuring creates an ‘‘equivalent structured replacement’’[34] from an
unstructured source program. This can involve many types of transformations whose
common goal is to make programs easier to understand and maintain. One way to make

Version 2.1 November 20, 1997

SPRUCE Page 2

the study of restructuring easier is to divide it into smaller pieces, and view restructuring
as a sequence of specialized restructuring stages: code level restructuring (Section 1.2.1),
data restructuring (Section 1.2.2), procedural restructuring (Section 1.2.3), and remodu-
larization (Section 1.2.4).

Each of these stages has three phases.Information gatheringinvolves examining
the input source program, compiling information about the program, and then presenting
it to a restructurer (programmer or program) for analysis.Decision making, the most dif-
ficult phase, requires the restructurer to analyze the information and determine an appro-
priate structure for the software.Executionincludes all the actions that implement the
restructuring decisions.

1.2.1. Code Level Restructuring

Code level restructuring transforms program code to adhere to structured programming
principles. Oulsnam [26] identifies several forms of code unstructuredness (often called
‘‘spaghetti code’’): jump into a decision, jump out of a decision, jump into the forward
path of a loop, jump out of the forward path of a loop, jump into the backward path of a
loop, and jump out of the backward path of a loop. These problems makes it difficult, if
not impossible, to understand and maintain the code [11].

Code level restructuring is a logical first step in a complete restructuring since it
greatly simplifies the following stages by allowing them to make additional assumptions
about the source code.

1.2.2. Data Restructuring

Data restructuring makes the data structures and variable usage of the program more sen-
sible. Data structure analysis includes making sure that all components of the data struc-
tures are related, that closely related data are not in separate structures, and that the best
type of data structure is used. The data is much easier to understand if it is in a represen-
tation that abstracts its relevant similarities [16]. Variable analysis includes determining
if variables are overloaded (that is, have two or more distinct roles), if a global variable
should be local, and if variable parameters should be value parameters.

1.2.3. Procedural Restructuring

Procedural restructuring divides a program up into a logical set of routines. While many
programs are already divided into routines, they are not necessarily the best possible divi-
sions. Each routine should have only one entry point and one exit point, it should do a
single abstract function, and the routines should be organized into a hierarchy [31]. Pro-
cedural restructuring may involve significant changes in the parameterization of routines,
and may force further data restructuring.

1.2.4. Remodularization

Remodularization is the restructuring of an existing system into a modular hierarchy; it
involves moving routines into appropriate modules. There are two distinct methods. Full
remodularization involves the complete redesign of the modular structure. A designer

Version 2.1 November 20, 1997

SPRUCE Page 3

deduces the requirements of the new system from the functionality of the old, then
defines a new modular structure, independent of the existing structure. Maintainers then
reorganize the source code into the new design. This method requires a large amount of
effort all at once. Incremental remodularization involves examining the source code for
recognizable information hiding modules and extracting them one by one. As more mod-
ules are recognized and extracted, the unstructured portion becomes smaller, making it
easier to recognize additional modules [19]. This method amortizes the restructuring
over a long time, but requires a larger total investment than for full remodularization, and
the resulting module structure may not be as good.

2. Previous Research
High-level programming languages were first developed in the mid 1950’s [27]. Among
the first of these were FORTRAN and COBOL, both of which are still widely used today.
The main criteria for determining how good a program was were its speed and its size.
This encouraged programmers to develop ‘‘tricks’’ and their own personal programming
style. Throughout the 1960’s computers became faster, cheaper, and their memory capac-
ity increased. Applications increased in difficulty and size, but programming styles
remained the same. As programs grew larger, they became more and more difficult to
understand. Dijkstra [10] attributed this to a lack of structure in programs, and sparked a
debate over the use of thegotostatement that continued for years. Knuth [18] outlines
the history of this debate.

With the introduction and gradual acceptance of structured programming, newly
developed programs became easier to understand. It was natural to try to find a way to
get the benefits of structured programming out of the many unstructured programs previ-
ously written, without having to rewrite them.

2.1. Code and Procedural Restructuring

Bohm and Jacopini [5] showed it is possible to transform arbitrary flow diagrams into
structured flow diagrams, sometimes by adding boolean variables. Ashcroft and Manna
[3] extended this by introducing an algorithm for transforming arbitrary ‘‘goto programs’’
into equivalent ‘‘while programs.’’ Peterson et al. [32] showed how to transform any pro-
gram into a ‘‘well-formed’’ program that only used if, repeat, and multi-level exit state-
ments. Yourdon [37] introduced a boolean flag approach to eliminate multi-exit loops.
Linger et al. [20] introduced a technique for parsing arbitrary flowgraphs into their prime
components: sequence, if-then-else, and while-do.

deBalbine [7] used these ideas in his fully automatic FORTRAN ‘‘structuring
engine’’ dev eloped for Caine, Farber, and Gordon, Inc. It does not do any data restructur-
ing or remodularization, but does some procedural restructuring if blocks of code appear
more than once. It translates each subprogram into a flowgraph, transforms these into
structured flowgraphs using node-splitting, then translates the result to S-FORTRAN, a
superset of FORTRAN with structured constructs. Baker’s STRUCT program [4] at Bell
Laboratories translates FORTRAN into RATFOR (another extended FORTRAN).

Version 2.1 November 20, 1997

SPRUCE Page 4

In the early 1980’s the amount of work done in software restructuring continued to
increase, particularly in the area of COBOL code and procedural restructuring. Lyons
[21] and Miller [23] developed Structured Retrofit for the Catalyst Corporation. It makes
programs more readable by removing all ALTER statements, eliminating procedure over-
lap caused by PERFORM THRU statements, eliminating some GOTOs by introducing
PERFORMs, converting NOTEs to comments, eliminating control flow falling through
one paragraph to the next, and removing unreachable code. To improve structure it cre-
ates an isolated control hierarchy, highlights looping conditions, places bounds on action
modules, groups and standardizes all I/O, and consolidates all program termination to a
single goback.

Also in 1981, Sage Software Products developed a COBOL restructurer to salvage a
client’s unmaintainable (but properly working) software system [6]. The restructurer
generates a functionally equivalent version in structured pseudocode, which it then trans-
lates to COBOL. The total cost, including the restructurer, was less than 10% of the low-
est estimate for rewriting the system.

Group Operations Inc. introduced another COBOL restructurer in 1984, called
Superstructure [24]. This program evolved from SCAN/370, a COBOL static analyzer
that helped maintainers understand unstructured COBOL programs. Superstructure
placed all PROCEDURE DIVISION code in independent single entry/single exit proce-
dures, eliminated GOTO statements except those to the beginning or exit point of the
paragraph that contained them, removed all paragraph fall-throughs and ALTER state-
ments, put unreachable code in comments, and eliminated PERFORM range violations.

Harandi [12] at the University of Illinois at Urbana-Champaign was more interested
in the theoretical aspects of COBOL restructuring. His restructurer removes ALTER
statements, replaces GOTO-DEPENDING-ON statements with IF-THEN-ELSE state-
ments, transforms all procedures into single entry/single exit routines, transforms unstruc-
tured flows of control to structured equivalents, and simplifies complex control structures
by simulating them with disciplined uses of GOTO statements. This work also provides
experimental results showing the improved maintainability of restructured programs.

2.2. Data Restructuring and Remodularization

There has been little prior work on data restructuring or remodularization. The Leeds
Transformation System, developed in 1983 at the University of Leeds [22], handles some
data restructuring. It removes redundant variables and assignments, moves loop invariant
statements, and collapses implicit loops. Since Parnas’ paper on information hiding [30],
most of the work on modularity has dealt only with designing new software or com-
pletely rewriting existing systems (such as the redesign of the software for the A-7 air-
craft [15]). Lamb [19] has proposed incremental remodularization, and Arnold [2] has
recognized the need for more research in this area.

Version 2.1 November 20, 1997

SPRUCE Page 5

3. A Restructuring Tool
This section describes the System for Providing assistance with RestrUcturing CodE
(SPRUCE). SPRUCE is a collection of user-visible facilities designed to help a restruc-
turing programmer in carrying out each of the restructuring stages of Section 1.2.
SPRUCE supplies all the information required by each stage, assists in the decision mak-
ing, and makes the execution of the restructuring decisions less error prone. SPRUCE
also lays a foundation for future enhancements, perhaps leading to fully automatic
restructuring.

3.1. Language Dependence

Most of the SPRUCE facilities depend on the source language of the system it is restruc-
turing. An important part of making SPRUCE flexible is to minimize its language depen-
dencies; one of our few assumptions is some way to split a program into an interface file
(for externally visible declarations) and a program file. Thus SPRUCE will contain sev-
eral modules with a language-independent algorithm, and tables or parameters that spe-
cialize them for the particular source language.

Our main plan is to use abstract syntax trees to represent the source program. The
type of tree nodes available may differ from language to language, but they overlap. For
example, the concrete syntax of the if statements in C and Pascal (Figure 1) are different,
yet we could use the same node type to represent both.

Pascal: if boolean-expression
thenstatement
[elsestatement]

if (expression)
statement
[elsestatement]

C:

Concrete Syntax Abstract Syntax

if node

stmt 1exp

Figure 1: Comparison of IF Statements in C and Pascal

Version 2.1 November 20, 1997

SPRUCE Page 6

To limit the language dependencies, SPRUCE processes the tree with a language-
independent tree walker. The tree walker understands the structure of the abstract syntax
tree and provides routines to allow access of the information in the nodes and to instruct
the tree walker to move between nodes. Table entries for the each node type tell the tree
walker what to do. Figure 2 describes an example trees walker in pseudo-code to provide
a more concrete description.

3.2. Philosophy

Designing an automatic restructuring tool is in many ways similar to designing an auto-
matic natural language translation tool. Both require specialized human talents and nei-
ther is understood nor even defined well enough for automatic tools to be feasible. How-
ev er, Kay [17] proposes the ‘‘Translator’s Amanuensis,’’ which implements only well
understood areas of language translation, like making vocabulary suggestions from a dic-
tionary. The human expert solves the less understood problems, like choosing an exact
word based on context, just as she would without the tool. The Amanuensis should be
flexible enough to include any parts of language translation that may be solved in the
future.

Our work parallels this proposal. SPRUCE concentrates on known areas of software
restructuring, and focuses particularly on the information gathering and execution phases
of each stage. The decision making phases are still not well understood, and so are left to
the human expert. It is possible to add new features to SPRUCE as they become better
understood.

The following sections describe several facilities that should be useful in restructur-
ing, along with how to apply them to the various stages of software restructuring. These

routine TreeWalker with parameter Table
initialization code
call ProcessNode(Table,RootNode)
ending code

end TreeWalker

routine ProcessNode with parameters Table, NodeID
call Table[NodeType(NodeID)]
for all subnodes of NodeID

call ProcessNode(Table, Subnode)
end ProcessNode

Figure 2: Pseudo-Code Tree Walker

Version 2.1 November 20, 1997

SPRUCE Page 7

sections describe how a restructuring programmer may use the facilities, but avoid
describing precise user interfaces (which are subject to change following feedback from
use). Figure 3 summarizes the facilities we propose, showing what phase (information
gathering or execution) and stage (code, data, procedural, or remodularization) they are
part of, what inputs they take, and what outputs they produce. To sav e space we avoid
replicating this information in the individual sections.

3.3. Call Graph Analysis

This facility generates and displays the call graph of the program. After SPRUCE analy-
ses the input source code, the user may request display of the call graph in either graphi-
cal or textual form. The information can be used in full remodularization to help deter-
mine which procedures will go into the new modules, and by incremental remodulariza-
tion to help recognize potential modules. There are standard techniques for creating a
call graph [14] and displaying graphs in textual form [8, 36].

3.4. Code Shifter

This facility allows the programmer to transfer routines and data from the old system to
the new one. The user can select a procedure and specify its visibility and what module

Facility Phase Stage(s) Input Output

Call Graph Analysis Info source code call graphProc/
Remod

Code Shifter Exec Remod updated sourcesource, module structure diagram,
data flow diagram, call graph

Data Flow Analysis Info Data any source data flow diagram, variables
for further study

Goto Analysis Code original source improved sourceInfo/
Exec

Interface Controller Exec Remod source, module structure diagram updated source
Module Structure Controller Exec Remod new module structure diagramnothing, or old module structure

diagram
Procedural Analysis Info Proc data restructured source list of procedures to restructure
Procedural Rewriting Exec Proc data restructured source, call graph procedure restructured source
Structure Organizer Exec module structure diagram directory with skeletal filesFull

Remod
Variable Renaming Exec Data any source code renamed source code
Variable Usage Analysis Info source, data flow diagram information requested by userall but

Code

Figure 3: Summary of Facilities

Version 2.1 November 20, 1997

SPRUCE Page 8

to move itto. SPRUCE examines the call graph and data flow diagram to determine if the
module structure diagram will be violated.

The user may also select variables and data types to move; SPRUCE lists all their
uses to help find routines that may also need to move. If the user does not want to move
all the routines that access the data, he can create new routines to allow other modules to
set and fetch values that used to be global.

3.5. Data Flow Analysis

This facility creates and analyzes a data flow diagram to help user select candidate vari-
ables for further analysis and possible restructuring. The user may request display of the
data flow diagram in either graphical or textual form, and may also request further analy-
sis of the data flow diagram to identify unstructured data and variable usage. Criteria for
this include: how widespread a variable’s usage is; what values are never possible in cer-
tain contexts; which variables are changed and then never used; which variables are
mostly used as counter or index variables. Before any actions are taken, the results
should be analysed using the variable usage facility described below. There are standard
techniques for creating a flow graph [14] and displaying graphs in textual form [8, 36].

3.6. Goto Analysis

This facility analyzes programs for harmful uses ofgotostatements, and replaces them as
the user requests. It shows the context of eachgotostatement, labeled as harmful or
harmless appropriately. Harmful uses of thegotoare those that create Oulsnam’s
unstructured forms [26], or cause abnormal exit or entry of procedures. Harmless uses
simulate higher level constructs, such as transferring control to the end of a loop [7]. For
eachgotoSPRUCE asks the user whether to remove it. For a description of replacing
gotos with structured programming techniques, see Ashcroft and Manna [3].

3.7. Interface Controller

This facility helps change routines and types in a module from visible to hidden, or vice
versa. The user can invoke this facility on any program or interface file in the remodular-
ization directory. In a program file the user may select a hidden (that is, non-interface)
type or routine, and change it to visible; this creates a corresponding entry in the interface
file. In an interface file the user may select any visible type or routine and change it to
hidden. Before complying, SPRUCE checks the modules that depend on this module
(according to the module structure diagram) to determine if any of them use the type or
routine selected. If any do, it tells the user and avoids the change. Otherwise, it removes
the declaration from the interface file.

3.8. Module Structure Controller

This facility keeps track of the module decomposition and dependencies. The user may
edit the structure by adding new modules and dependencies, or by deleting existing mod-
ules or dependencies. At the end of the session SPRUCE checks that the module struc-
ture remains sensible. It forbids disconnected components, requires a single root, and

Version 2.1 November 20, 1997

SPRUCE Page 9

issues warnings for each cycle in the graph. For full remodularization the user enters the
new modular design at the beginning of remodularization; for incremental remodulariza-
tion she starts with the original decomposition.

3.9. Procedural Analysis

This facility helps the restructuring programmer decide what procedures to rewrite. It
applies software metrics to each procedure, then displays procedure names with corre-
sponding metric information. Users may enter threshold values for each metric to mark
the boundary between acceptable and unacceptable procedures. Harrison et al. [13] sur-
vey metrics.

3.10. Procedural Rewriting

This facility makes rewriting procedures easier and less error prone. Depending on the
state of the procedure being rewritten and the intentions of the restructuring programmer
there are two types of procedural rewriting: refinement and splitting. After procedural
restructuring, it may be good to do data restructuring again, particularly if many new rou-
tines have been created.

Refinement restructures procedures that have not been decomposed far enough. The
user selects a procedure, names a new procedure, and selects sections of code from the
original procedure to move tothe new one. SPRUCE examines the new routine’s vari-
ables; parameters of the original routine become parameters of the new routine; locals
used only in the new routine become locals of the new routine; remaining locals become
parameters. SPRUCE then places an appropriate call to the new routine in the parent rou-
tine.

Splitting replaces procedures that do several distinct functions by several smaller
routines, one for each distinct task. Splitting begins like refinement, deletes the original
routine, then (for each call of the original routine) asks the user which new procedure to
call instead of the original.

3.11. Structure Organizer

This facility sets up a skeleton module structure. Using the dependencies and module
names in the module structure diagram, SPRUCE creates a command file (or UNIX
makefile) for compiling the new version, and an empty interface file and program file for
each module. Each program file will contain statements linking it to its own interface file
as well as the interface files for each module it depends on directly. This is only done at
the beginning of full remodularization to set up a framework.

3.12. Variable Renaming

This facility helps change variable names without changing the meaning of the program.
The user selects any occurrence of a variable and enters a new name. SPRUCE examines
all other occurrences to see if the scope rules change the meanings of the statements. For
example, in Pascal, if a record field name is changed to a name already in use by a global
variable (which is legal), anywith statement for that record will have to be checked to

Version 2.1 November 20, 1997

SPRUCE Page 10

insure that any intended accesses of the global variable are not captured.

3.13. Variable Usage Analysis

This facility traces variables’ potential data flow through the system, allowing the user to
determine if their usage is consistent and appropriate. It displays the source code, allow-
ing the user to select any occurrence of a variable to analyze, then shows related occur-
rences by following the data flow. It can be used in procedural restructuring to determine
how a set of variables are related, and in remodularization to help determine closely
related routines by finding which have the most variables in common.

4. Conclusion
We hav e defined several software restructuring stages, and have outlined a collection of
facilities (based on research of many other people) that can fit together into a coherent
tool. We invite others to propose additional facilities that might fit into the same frame-
work.

So far we have said little about how feasible it would be to build SPRUCE. It
should be clear from the descriptions in Section 3 that most of the individual facilities are
straightforward applications of well-understood work. Furthermore, Putnam [33] has
done a detailed design of a carefully chosen subset of the SPRUCE facilities, to the level
where an experienced programmer could implement them.

Since individual facilities are of medium size and independent of each other, it is
possible to build SPRUCE incrementally. To date we have constructed

• A Pascal parser, pretty-printer, and partial semantic analyser (for name resolu-
tion).

• Implementations of lines-of-code, Halstead, McCabe, and a few lesser-known
metrics.

• Partial implementation of a SUNView-based user interface for browsing
through Pascal source code.

• Data- and control-flow analysis.

• Implementation of the ‘‘variable renaming’’ facility.

These pieces are not yet all integrated with each other; they arose as separate student pro-
jects.

Acknowledgements
Katherine Franklin built the Pascal parser and pretty-printer. Heather Burles did the
name resolver, the metrics, and a first version of the flow analyser. Wendy Sharp did the
SUNView interface. Mary-Ellen Maybee revised the flow analysis and built the variable
renaming facility.

Margaret Lamb gav e helpful comments on an earlier draft of this paper. This work
was supported in part by the Natural Sciences and Engineering Research Council

Version 2.1 November 20, 1997

SPRUCE Page 11

(NSERC) of Canada under Grant OPG0000908, in part by the NSERC graduate student
fellowship program, and in part by the Information Technology Research Centre (ITRC),
which is part of the Ontario Centres of Excellence program.

References
1. Robert S. Arnold and Donald A. Parker, ‘‘The Dimensions of Healthy Maintenance,’’

in Proceedings of the Sixth International Conference on Software Engineering, pages
10-27, IEEE Computer Society (1982).

2. Robert S. Arnold, ‘‘An Introduction to Software Restructuring,’’ inTutorial on Soft-
ware Restructuring, pages 1-11, IEEE Computer Society (1986).

3. Edward Ashcroft and Zohar Manna, ‘‘The Translation of ‘Goto’ Programs to ‘While’
Programs,’’ in C. V. Freiman, editor,Proceedings of the IFIP Congress 71, vol. 1,
pages 250-255, North-Holland Publishing Company (1972).

4. Brenda S. Baker, ‘‘An Algorithm for Structuring Flowgraphs,’’Journal of the ACM
24(1):98-120 (January 1977).

5. Corrado Bohm and Guiseppe Jacopini, ‘‘Flow Diagrams, Turing Machines and Lan-
guages with Only Two Formation Rules,’’Communications of the ACM9(5):366-371
(May 1966).

6. Kevin Burns, ‘‘Using Automated Techniques to Improve the Maintainability of Exist-
ing Software,’’ inDSSD User’s Conference/6-Maintenance, pages 33-39 (1981).

7. Guy deBalbine, ‘‘Better Manpower Utilization Using Automatic Restructuring,’’ in
AFIPS Conference Proceedings, vol. 44, pages 319-327 (1975).

8. Guy deBalbine, ‘‘MTR - A Tool for Displaying the Global Structure of Software
Systems,’’ inAFIPS Conference Proceedings, vol. 47, pages 571-580 (1978).

9. F. DeRemer and H. H. Kron, ‘‘‘Programming-in-the-Large’ vs. ‘Programming-in-the-
Small’,’’ IEEE Transactions on Software EngineeringSE-2(2):80-86 (June 1976).

10. Edsger W. Dijkstra, ‘‘Go to Statement Considered Harmful,’’Communications of the
ACM11(3):147-148 (March 1968).

11. Barnaby J. Feder, ‘‘Straightening Out the Spaghetti Code,’’The New York Times, :F5
(May 8, 1988).

12. M. T. Harandi, ‘‘An Experimental COBOL Restructuring System,’’Software: Prac-
tice and Experience13(9):825-846 (September 1983).

13. Warren Harrison, Kenneth Magel, Raymond Kluczny, and Arlan DeKock, ‘‘Applying
Software Complexity Metrics to Program Maintenance,’’IEEE Computer
15(9):65-79 (September 1982).

14. Matthew S. Hecht,Flow Analysis of Computer Programs. Elsevier North-Holland,
Inc (1977).

Version 2.1 November 20, 1997

SPRUCE Page 12

15. Kathryn L. Heninger, ‘‘Specifying Software Requirements for Complex Systems:
New Techniques and Their Applications,’’IEEE Transactions on Software Engineer-
ing 6(1):2-13 (January 1980).

16. C. A. R. Hoare, ‘‘Notes on Data Structuring,’’ inStructured Programming, pages
83-174, Academic Press (1972).

17. Martin Kay, ‘‘The Proper Place of Man and Machines in Language Translation,’’
Technical Report CSL-80-11, Xerox Palo Alto Research Center (October 1980).

18. Donald E. Knuth, ‘‘Structured Programming with goto Statements,’’Computing Sur-
veys6(4):261-301 (December 1974).

19. David Alex Lamb,Software Engineering: Planning for Change. Prentice-Hall, Inc.
(1988).

20. Richard C. Linger, Harlan D. Mills, and Bernard I. Witt,Structured Programming:
Theory and Practice. Addison-Wesley (1979).

21. Michael J. Lyons, ‘‘Salvaging Your Software Asset (Tools Based Maintenance),’’ in
AFIPS Conference Proceedings, vol. 50, pages 337-341 (1981).

22. B. Maher and D. H. Sleeman, ‘‘Automatic Program Improvement: Variable Usage
Transformations,’’ ACM Transactions on Programming Languages and Systems
5(2):236-264 (April 1983).

23. Jon Cris Miller, ‘‘Structured Retrofit,,’’ in Girish Parikh, editor,Techniques of Pro-
gram and System Maintenance, pages 181-182, Little, Brown, and Company (1982).

24. Henry W. Morgan, ‘‘Evolution of a Software Maintenance Tool,’’ inProceedings of
the Second National Conference on EDP Software Maintenance, pages 268-278
(1984).

25. Henry Mullish,Structured COBOL: A Modern Approach. Harper & Row Publishers
(1983).

26. G. Oulsnam, ‘‘Unraveling Unstructured Programs,’’The Computer Journal
25(3):379-387 (August 1982).

27. Donald E. Knuth and L. T. Pardo, ‘‘The Early Development of Programming Lan-
guages,,’’ in J. Belzer, A. G. Holtzman, and A. Kent, editors,Encyclopedia of Com-
puter Science and Technology, vol. 6, pages 419-493, Marcel Dekker (1977).

28. Girish Parikh, ‘‘The World of Software Maintenance,’’ inTechniques of Program and
System Maintenance, Little, Brown, and Company (1982).

29. Girish Parikh and Nicholas Zvegintzov, ‘‘Introduction to Tutorial on Software Main-
tenance,’’ inTutorial on Software Maintenance, pages ix-xi, IEEE Computer Society
(1983).

30. David L. Parnas, ‘‘On the Criteria to be Used in Decomposing Systems Into Mod-
ules,’’ Communications of the ACM15(12):1053-1058 (December 1972).

Version 2.1 November 20, 1997

SPRUCE Page 13

31. David L. Parnas, ‘‘On a Buzzword: Hierarchical Structure,’’ inProceedings of IFIP
Congress 74, North Holland (1974).

32. W. W. Peterson, T. Kasami, and N. Tokura, ‘‘On the Capabilities of While, Repeat,
and Exit Statements,’’Communications of the ACM16(8):503-512 (August 1973).

33. David W. Putnam,Software Restructuring, M.Sc. dissertation, Queen’s University
Department of Computing and Information Science (February 1989).

34. Donald J. Reifer and Stephen Trattner, ‘‘A Glossary of Software Tools and Tech-
niques,’’ IEEE Computer10(7):52-60 (July 1977).

35. Norman F. Schneidewind, ‘‘The State of Software Maintenance,’’IEEE Transactions
on Software EngineeringSE-13(3):303-310 (March 1987).

36. Ben Shneiderman, Philip Shafer, Roland Simon, and Linda J. Weldon, ‘‘Display
Strategies for Program Browsing: Concepts and Experiment,’’IEEE Software
3(3):7-15 (May 1986).

37. Edward Yourdon,Techniques of Program Structure and Design. Prentice-Hall, Inc.
(1975).

Version 2.1 November 20, 1997

