
Toward

Fault-Tolerant Adaptive Real-Time Distributed Systems

Sam K. Oh and Glenn H. MacEwen

January 1992

External Technical Report

ISSN-0836-0227-

92-325

Department of Computing and Information Science

Queen's University

Kingston, Ontario K7L 3N6

Document prepared July 24, 1992

Copyright c
1992, Sam Oh and Glenn MacEwen

Abstract

A monitoring approach to the problem of constructing fault-tolerant and adaptive

real-time systems, based on the fail-signal processor, is described. Low error detec-

tion latency time is a primary goal. A fail-signal processor comprises an application

processor along with a simple monitoring processor that detects abnormal functional

or timing behaviour in the application processor; on such a failure the monitor issues

a failure signal to other fail-signal processors and resets the application processor.

The service-
ow graph, used to specify real-time services, shows how a service is de-

composed, redundantly designed, and structured to meet time-bounds. Information

obtained from service-
ow graphs along with run-time information provided by the

fail-signal processors permits: (1) forward error recovery from failures in application

processors; (2) avoidance or prediction of service timing failures; and (3) recon�gu-

ration with graceful degradation. Avoidance of timing failures is based on adaptive

scheduling.

Keywords: Distributed systems. Real-time. Fault-tolerance. Critical systems.



i

Contents

1 Introduction 1

2 System Model 2

3 Fault-Tolerant and Adaptive Services 3

3.1 Service Characteristics : : : : : : : : : : : : : : : : : : : : : : : : : : 3

3.2 Service-Flow Graphs : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

3.3 Implementation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

4 Run-Time Support 10

4.1 Related Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

4.1.1 Functional Monitoring : : : : : : : : : : : : : : : : : : : : : : 10

4.1.2 Timing Monitoring : : : : : : : : : : : : : : : : : : : : : : : : 11

4.2 Fail-Signal Processor Monitoring : : : : : : : : : : : : : : : : : : : : 12

4.3 Design Goals : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

4.4 Interfaces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

4.4.1 Run-Time Kernel : : : : : : : : : : : : : : : : : : : : : : : : : 14

4.4.2 Time Deviation Measurement : : : : : : : : : : : : : : : : : : 14

4.4.3 Event Noti�cation : : : : : : : : : : : : : : : : : : : : : : : : 16

4.4.4 Failure Prediction : : : : : : : : : : : : : : : : : : : : : : : : 17

4.4.5 Recovery and Recon�guration : : : : : : : : : : : : : : : : : : 18

5 Conclusion 19

July 24, 1992 92-325



1

1 Introduction

Real-time computer systems are required by their environments to produce cor-

rect results not only in their values but also in the times at which the results are

produced (timeliness). In such systems, the execution times of the real-time pro-

grams are usually constrained by prede�ned time-bounds that to-gether satisfy the

timeliness requirements. To obtain parallel processing performance and to increase

reliability, distributed architectures having processors interconnected by a communi-

cations network are increasingly being used for real-time systems. In such real-time

distributed systems, programs assigned to di�erent processors interact by sending

and receiving messages via communication channels.

A failure in a real-time system used for certain applications can result in se-

vere consequences. Such critical systems should be designed a priori to satisfy their

timeliness and reliability requirements. To guarantee the timeliness, one can esti-

mate the worst-case execution times for the real-time programs and check whether

they are schedulable, assuming correct execution times. Despite such design, timing

failures 1 can still occur at run-time due to unanticipated system or environment

behaviours.

For example, a real-time system can fail because of transient overloads caused

by excessive stimuli from the environment, or caused by inde�nitely blocked pro-

grams engaged in resource contention. Furthermore, processors and communication

channels can fail, possibly resulting in total system failure. Consequently, design

methods for real-time systems that are tolerant of component failures and adap-

tive to environment behaviours while preserving predictability [SR90] are required.

A �nal motivation for such methods is e�ciency; in the absence of such methods,

signi�cant underutilization of processing resources can occur if estimated program

execution times have a safety factor but actual times are much less.

Redundancy, long used in fault-tolerant and adaptive systems, is the provision

of resources, such as hardware, software, coding information or time [Joh89], that

are not needed if a system can be guaranteed to be fault-free. However, redundancy

does not inherently make a system fault-tolerant and adaptive; it is necessary to em-

ploy fault-tolerant methods by which the system can tolerate hardware component

failures, avoid or predict timing failures, and be recon�gured with little or graceful

degradation in terms of reliability and functionality.

Early error detection is clearly important for real-time systems; error is an ab-

breviation for erroneous system state, the observable result of a failure. The error

detection latency of a system is the interval of time from the instant at which the sys-

tem enters an erroneous state to the instant at which that state is detected. Keeping

the error detection latency small provides a better chance to recover from compo-

nent failures and timing errors, and to exhibit graceful recon�guration. However, a

1When a real-time system or program produces no result, or a result outside of the
imposed time-bounds, it is said to have a timing failure.

July 24, 1992 92-325



2

small latency alone is not su�cient; fault-tolerant methods need to be provided with

su�cient information about the computation underway in order to take appropriate

action when an error is detected. Such information can be obtained during system

design and implementation. In current practice, the design and implementation for

real-time systems often does not su�ciently address fault tolerance and adaptiveness

issues.

In this paper, we introduce a model of real-time distributed systems in which ser-

vices (a service is a non-re
exive partially ordered set of operations) are performed

in response to stimuli from the environment, monitored changes in the environment

and/or the passage of time. We introduce service-
ow graphs as design speci�ca-

tions of services. A service-
ow graph shows explicitly how a service is decomposed,

redundantly designed, and structured to meet a time-bound imposed on that ser-

vice. We also describe how component services should be allocated to application

processors and implemented so that the design speci�cations as given by the service


ow graphs, are satis�ed. As a processing component supporting fault-tolerance

and adaptiveness in real-time systems, we introduce a compound processor that

consists of an application processor on which application programs are executed

and a simple coprocessor called a monitoring processor. We call such a compound

processor a fail-signal processor because the application processor itself or the mon-

itoring processor issues a failure signal to other fail-signal processors when it detects

an abnormal functional or timing behaviour in the application processor. With the

information recorded in the service-
ow graphs, and certain information provided

by the run-time mechanisms (fail-signal processors), real-time distributed systems

can use forward error recovery to tolerate failures of the application processors, to

avoid or predict timing failures of services, and to be recon�gured with graceful

degradation. Avoidance of timing failures is based on adaptive scheduling.

2 System Model

We take a real-time distributed system to comprise a set of fail-signal processors

interconnected by a communications network. The application processor in each

fail-signal processor controls sensors and actuators, and contains a set of software

tasks and a run-time kernel. The tasks, implementations of services speci�ed in a

service-
ow graph, are scheduled by a local run-time scheduler in the kernel, and

interact with their environments (e.g. devices, the network and other tasks) via the

kernel. We assume that the network has redundant communication channels and is

connected (i.e. no partitioning). We also assume that network messages are received

correctly; that is, corrupted messages are detected and discarded.

To overcome transient overloads, task migration schemes, i.e. the transfer of

tasks in overloaded processors to non-overloaded ones, have been introduced [BSR88,

RSZ89, SS91]. In real-time systems, however, the placement of certain tasks is

often constrained because they must access sensors and actuators permanently wired

92-325 July 24, 1992



3

to speci�c application processors. Even when migration is possible it can cause

signi�cant processing and communication overheads. Furthermore, migration can

make schedulability analysis, crucial for predictability in real-time systems, to be

di�cult. For these reasons, we address only systems without task migration.

3 Fault-Tolerant and Adaptive Services

Real-time systems should be tolerant of component failures and adaptive to envi-

ronment changes such as transient overloads. To build such a fault-tolerant and

adaptive, yet predictable, real-time system, services should be speci�ed with dif-

ferent levels of required tolerance and acceptable functionality. For each of these

di�erent levels a careful analysis of the service's timing behaviours is necessary.

The information obtained from design speci�cations, as represented in the service-


ow graphs, is needed not only during the design of fault-tolerant methods and for

predictable behaviour but also for detecting abnormal functional and timing be-

haviour at run-time.

3.1 Service Characteristics

A service is characterized by an associated set of input events, an associated set of

output events and a timing upper-bound. An output event represents the delivery of a

result to the environment or to another service; that is, any required communication

time occurs before the output event. A service is activated when required input

events occur and all other necessary conditions are satis�ed. The upper-bound of a

service is the maximum allowed interval from the occurrence of the �rst input event

to the occurrence of the last output event. The interval from the occurrence of the

�rst input event to the occurrence of the activation event is called the waiting time

bound. The interval from the occurrence of the activation event to the occurrence

of the last output event is called the service time bound. Consequently, the upper-

bound is the sum of the waiting time and service time bounds.

Figure 1 shows diagrammatically the characteristics of a service; events associ-

ated with a service have unique names although not explicitly shown. The input

condition of a service, specifying the set of input events necessary for activation,

is shown within a triangular join point construct at which input events are shown

as arriving arrows. The output condition of a service, specifying the output events

to occur, is shown by a fork point construct at which output events are shown as

departing arrows. The notation k=n in a join point means that k of n possible input

events must occur; k�=n means that at least k among n must occur, and k=n in a

fork point means that k among n possible output events must occur. A join or fork

point associated with only one event can be omitted. Where the number of possible

events at a join point or fork point is obvious, k=n and k�=n can be written as k

and k�.

July 24, 1992 92-325



Figure 1: Characteristics of A Service

3.2 Service-Flow Graphs

Depending on the strictness of its upper-bound, a real-time service is categorized

as either hard or soft. In a hard real-time service, outputs produced beyond the

upper-bound are not useful, while such outputs in a soft real-time service may be

still useful to some, perhaps reduced, degree. Services whose failures, functional or

timing, can cause severe consequences, are called critical real-time services.

A service can be decomposed into subservices and redundancy incorporated into

the design. Such a decomposed service, called a compound service, consists of a set

of component services, each of which can in turn be decomposed. Each service is

speci�ed by a service-
ow graph (SFG). Of course, intermediate service-
ow graphs

can be generated during the design of a compound service.

The set of subservices speci�ed in a SFG is partially ordered by the strict

precedes relation, where `a precedes b' means that b can activate only when a

has completed. A service preceding a is called a predecessor of a, and a service

succeeding a is called a successor of a. If there are no intervening services between

a and b, a is called the immediate predecessor of b, and b is called the immediate

successor of a.

If a service has an immediate successor, then it has one or more output events

each of which causes exactly one input event in that successor. A service with no

predecessors is called an entry service, and a service with no successors is called an

exit service. A trivial case of a SFG contains one service, which is both the entry

and exit service.

Since there is a �nite number of entry and exit services in a SFG, there is a

92-325 July 24, 1992



5

�nite number of paths from an entry service to an exit service. For each path in

the SFG, one can calculate its path-bound as the sum of the upper-bounds of the

services on the path. The path with the largest path-bound is the longest path. The

path-bound of the longest path must not exceed the upper-bound of the compound

service.

In calculating the path-bound of a path, the upper-bound of a service may

include a non-zero waiting time bound, and the amount of time represented by that

waiting time bound may be overlapped with the upper-bound of the immediate

predecessor in the path (e.g., services interconnected in parallel). In that case, the

waiting time bound must be o�set from the path-bound because it is counted twice.

A primitive service is one that is not decomposed. Such a primitive service im-

plemented as a program component and assigned to a speci�c application processor

is called a task. Each task is scheduled by a local run-time scheduler in its host

application processor.

As shown in Figure 2, SFGs allow three types of service interconnection:

1. serial,

2. parallel,

3. choice.

In service G1, showing a serial connection, service S1 can be executed when input

event i1 occurs as the result of output event o0 from S0. In G2, showing a parallel

connection, all n services (S1,S2,...,Sn) can be executed in parallel when activated

by their corresponding input events which occur as a result of n output events from

Sx. Sy can be executed when n input events occur as a result of n output events

from S1 through Sn. The choice interconnection is shown in G3 and G4. G3 shows

a set of services (S1,S2,...Sn) among which one can be chosen. On the other hand,

G4 shows a service S1 that can be skipped; in other words, null choices are allowed

in choice interconnections.

In fault-tolerant design, the degree of service redundancy chosen depends on a

service's criticality and failure probability. A set of service replicas constitutes a

service group; each replica becomes a member of the group. For example, Figure 3

shows a service-
ow graph constructed by duplicating S0 and S1 of service G1 from

Figure 2. In this graph, S00 and S01 form service group S0, and S10 and S11 form

service group S1. Since S0 has two members requiring the same inputs, the input

environment of G1 may need to be modi�ed to accommodate any necessary syn-

chronization. Similarly, since S1 has two members, each of which issues the same

outputs, the output environment of G1 also may need to be modi�ed to accommo-

date these outputs. Of course, any time delays resulting from these changes should

be accounted for in such a re-design.

The service-
ow graph allows one to specify up to three di�erent requirements for

redundant implementation in a group. First, the group can be required to provide

at least k service outputs to activate a succeeding service. Second, the group can be

July 24, 1992 92-325



Figure 3: A Service-Flow Graph and A Service Group

92-325 July 24, 1992



7

required to contain at least a active services with which to provide the outputs. And

third, the group can be required to provide a total of n services, of which n� a can

be on inactive status (Service status is discussed below.). For example, the diagram

shown on the right side of Figure 3 shows a service group SX with n members,

and a service SY. The notation (k�=(a�=n)) in the join-point of SY speci�es that

at least k input events, among the n possible events, must occur for activating SY.

Furthermore, the number of active members must be at least a (clearly, a � k), and

the total number of active and inactive members must be n.

Note, particularly, that not all n group members need to be active. If all mem-

bers are speci�ed to be active then `(a�=n)' is written as n. We call k the output

redundancy, a the minimum redundancy , n the maximum redundancy, n � k the

potential tolerance degree, and a� k the tolerance degree of group SX. As a further

example, the notation 1� in the join-point of S10 means that at least one active mem-

ber of S0 is required. Since service group S0 has two active members (n = a = 2),

S00 and S01, it has a tolerance degree of one.

The number of active members in a service group can fall below the minimum

redundancy due to a failure in an application processor to which an active member

is assigned. In the case that the group performs a critical service and the output

redundancy cannot be relaxed, the speci�cation stands and means that the group

must activate inactive members.

Also, the speci�cation can permit the minimum redundancy and/or the output

redundancy to be relaxed in the case of a failure. As shown in Figure 4, the non-

relaxed and the relaxed redundancies are speci�ed as k�=(a�=n) and rf : j�=(b�=n)

respectively in the join-point of SY, where rf is a threshold value called the relax-

ation factor. When the actual tolerance degree at run-time (the number of active

members minus the output redundancy k) becomes less than or equal to rf , the

speci�cation of the relaxed redundancy j�=(b�=n) applies. The relaxation factor rf

must satisfy: 0 � rf � a � k.

In order to deal with timing errors, services can be designed to have multiple

versions of primitive services, each having a di�erent execution time [LC86, KL91]

but with a common upper-bound (design diversity), or to have primitive services

that can be skipped (imprecise computations) [SLC89, CLL90, LLSY91]. The results

produced by such compound services are still acceptable although their functional

precision may be degraded.

Such compound services can be speci�ed with choice interconnections. If a com-

pound service has multiple versions, the longest version has the greatest execution-

plus-communication time, and the shortest version has the shortest execution-plus-

communication time. The adaptiveness degree to timing errors (or simply the adap-

tiveness degree) of the compound service is the execution-plus-communication time

of the longest version minus the execution-plus-communication time of the shortest

version. On the other hand, the adaptiveness degree of a compound service with

a skippable primitive service is just the upper-bound of the primitive service. In

order for run-time schedulers, or tasks themselves, to select suitable versions or to

July 24, 1992 92-325



Figure 4: Relaxation of The Redundancy Speci�cation

skip primitive services, the amounts by which actual times deviate from speci�ed

bounds can be measured at run-time and provided to the schedulers and tasks.

3.3 Implementation

Once the service-
ow graphs of all compound services are produced, the services

must be allocated to application processors in a way that satis�es the service-
ow

graphs' speci�cations. Several factors constrain the allocation of services. For ex-

ample, services may require access to resources in speci�c processors, may have

precedence relationships, and may be constrained by communication delays. Ser-

vices must be allocated so that these constraints are satis�ed. Furthermore, if

services are not appropriately allocated, even with enough redundancy, the required

processor failure tolerance may not be satis�ed. Finally, sharing of processors and

memories should ideally be minimized where practical to reduce failure correlations

and timing uncertainties.

The execution and communication times of tasks are a�ected by many factors

such as program behaviour, input data, the run-time kernel, and processor and

communication loading. To ensure predictable behaviour, each task is associated

with a deadline, the maximum allowed interval from its activation to its comple-

tion. To assign appropriate deadlines it is necessary to estimate task execution

and communication times. We assume that best-case and worst-case execution and

communication times can be obtained with known techniques [PK89, PS91, SHH91].

In summary, each task is associated with the following timing parameters: a

deadline, best-case execution and communication times, and worst-case execution

and communication times. It is important to note here that the execution time

includes the waiting time for task activation.

92-325 July 24, 1992



9

After the resource allocation of primitive services, a task allocation and commu-

nication map (TACM) is produced for each service-
ow graph. The TACM shows,

for each primitive service (hence task), the processor to which it is assigned, timing

parameters, input and output conditions, and communication delays.

The TACM of a service-
ow graph also shows how component tasks of the graph

are interconnected as well as the attributes of each task. An entry (exit) task im-

plements an entry (exit) primitive service; other tasks are intermediate. A non-

interacting task implements a trivial service; other tasks are interacting. A non-

interacting task is both an entry and exit task. A multi-version task implements

a primitive service in a set of multi-version services. A skippable task implements

a skippable primitive service. Finally, a task producing low quality, yet acceptable

results is an imprecise task [LLSY91].

A set of service replicas constitutes a service group. Each service group is de-

scribed by its service group membership (SGM) information; each member is asso-

ciated with its host processor, and is assigned a member status of which there are

four types:

� Active (A),

� Standby (S),

� Passive (P),

� Failed (F).

Both active and standby members are schedulable so that they can maintain appli-

cation state information. However, outputs produced by standby members are not

used while those of active members are. Passive members are not schedulable. When

a member of a service group fails (or its host application processor fails), its status

becomes Failed (F). Since all tasks are statically allocated and cannot be migrated,

service membership information is �xed except for the status of members. Members

of a service group are not necessarily tasks; a member can be a partially-ordered set

of tasks. For simplicity, we assume that members are single tasks.

Each application processor is loaded with a set of tasks including the tasks'

attributes, input/output conditions, timing parameters and the SGM. The moni-

toring processor is loaded with information describing each service to which moni-

tored tasks belong (TACMs and SGMs). The table in Figure 5 shows service group

membership with design and implementation information.

Although a service group may perform a critical service, not all members need

to be scheduled with their timing constraints. For example, standby members need

not meet deadlines because outputs are not needed, and passive members are not

scheduled. A standby member of a group can become active due to the failure of

an active member; since standbys maintain state information such recon�guration

is made easier. If a passive member must become either standby or active, state

information must be provided.

July 24, 1992 92-325



Figure 5: A Table of SGM and Design and Implementation Information

Since relaxation can be speci�ed in a service-
ow graph, di�erent task sets can

exist in each application processor. Consequently, it is necessary to analyze schedu-

lability for each possible task set.

4 Run-Time Support

Continuous monitoring seems necessary to enable detection of abnormal functional

or timing behaviour with small error detection latencies. Unfortunately, most such

approaches currently proposed monitor either functional or timing behaviour but

not both, and are intended for uniprocessors or multi-processors. An integrated

approach that monitors both kinds of behaviour for real-time distributed systems is

needed.

4.1 Related Work

4.1.1 Functional Monitoring

A transient or permanent hardware fault in an application processor can cause a

control-
ow error, an invalid sequence of instructions. Since control-
ow errors

can cause arbitrary behaviour (Byzantine failures: [LSP82, SD83]), watchdog-based

monitoring techniques [Lu82, MM88, WS88] 2 have been introduced to detect them.

Using these techniques, the control-
ow behaviour of an application processor is

monitored by an attached simple co-processor called a watchdog.

Watchdog-based techniques generally involve two phases: a setup phase and a

checking phase. During the setup phase, usually at compile-time, the watchdog

is provided with certain information about the programs to be executed. During

2Experiments based on fault injection [SS87, MM88, GKT89], i.e. arti�cial introduction
of faults into the components of application processors, show that roughly 80% of the injected
faults cause control-
ow errors.

92-325 July 24, 1992



11

the checking phase at run-time the watchdog continuously monitors the application

processor, collects corresponding run-time information, and detects errors via any

discrepancies between the information collected and the information provided.

Without incurring much extra cost, watchdog-based techniques allow low de-

tection latency for control-
ow errors. However, they don't seem to be e�ective at

detecting invalid data values [SS87, MM88, GKT89], which may also result from

transient or permanent hardware faults. Real-time systems usually contain criti-

cal variables for which invalid values may cause severe consequences. Such variables

must be checked for acceptable in-range values. Furthermore, an application proces-

sor can respond too late or not at all due to resource contention, an in�nite program

loop or a processor crash. Techniques dealing with such failures are needed.

Current watchdog-basedmethods are intended for programs running on a unipro-

cessor or multiprocessor. In real-time distributed systems, in which tasks require

intra-group coordination, tasks often maintain replicated state information that

must be consistent. Since a processor failure can threaten the consistency of such

information, fast noti�cation of a failed processor to other non-failed processors is

necessary.

4.1.2 Timing Monitoring

Haban and Shin [HS90] propose a monitoring approach in which each task is divided

into a set of disjoint program segments according to the syntactic structure of the

task. Assuming knowledge of the maximum number of loops within each of these

segments, the worst-case pure execution time for each segment is estimated. In their

approach, a specially designed processor, called TMP, measures the true execution

time and resource sharing delay of tasks at run-time. The measured results enable

the run-time scheduler, a part of TMP, to schedule tasks adaptively.

Gopinath and Gupta [GG90] propose a `compiler-assisted' approach in which

the compiler examines the code of each application task and partitions it into typed

segments. The type of each segment is determined by the combination of two cri-

teria: predictability and monotonicity. A segment is predictable if it has a �xed

execution time; otherwise, where the execution time is determined by input data,

it is unpredictable. A segment is monotonic if its output quality is monotonically

improved as it is executed longer; otherwise it is non-monotonic. During compi-

lation, program segments are re-ordered in such a way that unpredictable and/or

non-monotonic segments can be executed �rst. At the end of each unpredictable

segment, measurement code is inserted to measure the actual execution time of the

segment; a time deviation is calculated by subtracting this measured time from the

estimated worst-case execution time of the segment. We call this estimated exe-

cution time the segment time bound. If the accumulated segment time deviations

of a task indicate a timing error, the run-time scheduler takes recovery action by

changing the loop bounds of monotonic segments. Tasks that cannot be recovered

are aborted.

July 24, 1992 92-325



12

In a real-time distributed system, a compound service does not necessarily have

a timing failure when a component task fails since timing errors caused by pre-

ceding tasks can be compensated in succeeding tasks. A compound service can

comprise a set of service replicas to tolerate application processor failures; failures

of component tasks, functional or timing, do not necessarily result in failure of the

service. Unfortunately, current timing behaviour monitoring methods do not deal

with functional failures. Furthermore, they only deal with non-interacting tasks, i.e.

implementations of trivial services.

4.2 Fail-Signal Processor Monitoring

A fail-signal processor consists of an application processor (AP) and a monitoring

processor (MP). The MP, which is similar to the monitor used in current watchdog-

based methods, monitors control-
ow behaviour in the AP. The AP is assumed

to have self-checking capabilities; value errors such as invalid input data can be

detected. When the MP detects a control-
ow error, it resets the AP and issues a

control-
ow failure signal. Similarly, when the AP detects a value error it issues a

value failure signal, and resets itself if necessary. These failure signals are sent as

network messages to be used by other fail-signal processors in carrying out recovery

and recon�guration. A reset AP enters a self-diagnosis mode and rejoins the system

only after repair or self-determined correctness and it receives approval from the

other fail-signal processors. The MP also supports the restarting and recon�guration

of the AP.

A task can fail due to an in�nite program loop, or a host AP crash. Since these

failures, like control-
ow errors, cannot be detected by the AP itself and can result

in a service failure, we give the responsibility for failure prediction and detection to

the MP. When a service failure is predicted, a strategy determined during design

time can be enforced. Depending on the service criticality, the entire system may

be stopped, some analog or human alternative can assume control, or the service

may be aborted to provide more time for other services.

A time deviation is any di�erence between a speci�ed time bound and the corre-

sponding run-time interval. A negative time deviation indicates a timing error. The

run-time kernel in each AP provides time deviation information to its scheduler and

application tasks. The kernel also supports its MP by notifying the MP of certain

events necessary for predicting service failures. The MP makes use of time deviation

information in messages received via the network.

Figure 6 shows two fail-signal processors interconnected by a network. The

functions performed by each are listed and the failure signal paths are shown with

the labels FSIG(V,...) for value failures and FSIG(CF,...) for control 
ow failures.

The label MSG(� ,..) represents a message containing time deviation information.

The internal AP/MP interface is also shown.

92-325 July 24, 1992



Figure 6: Interconnection of Two Fail-Signal Processors

4.3 Design Goals

In designing the internal and external interfaces of a fail-signal processor, we have

three primary goals:

� Non-intrusive monitoring: The MP should not normally interfere with the

services performed by the AP; i.e. the MP receives run-time information from

the AP through their direct interface or from the network.

� Minimal overhead: Overhead within the AP should be minimized.

� Minimal modi�cation: Required changes to standard AP hardware and soft-

ware should be minimized.

With this approach, a failure in an MP should not a�ect services performed by its

AP, even though fault tolerance capabilities may be lost or degraded to a certain

degree. An MP is assumed to be designed for fail-stop semantics.

4.4 Interfaces

The run-time kernel in an AP is the interface between an application task and

its environment. This section describes how the kernel for an AP is structured,

measures time deviations, noti�es the MP of certain events, and reacts to detected

errors and failure signals. We also brie
y describe criteria that could be used by

the MP for prediction. Since there are many watchdog-based methods for detecting

control-
ow errors [Lu82, MM88, SS87, SM90, MS91], we assume that a suitable

one is used. However, it is an interesting question as to which of such methods are

best suited for the fail-signal processor architecture.

July 24, 1992 92-325



14

4.4.1 Run-Time Kernel

The scheduler in an AP attempts to select tasks at run-time so that each task dead-

line can be met. One complication in predicting schedulability is that there can be

signi�cant delays between event occurrences and their recognition. In conventional

real-time systems, event handling programs such as interrupt handlers are usually

executed immediately even though such quick executions may not be necessary.

Consequently, delays may occur in recognizing other events. The run-time kernel

should be designed to recognize event occurrences as quickly as possible.

As an approach to fast recognition of event occurrences we structure the AP

software into layers. See Figure 7. The applications layer comprises application

tasks, and perhaps some system tasks that can be treated similarly. The kernel has

three layers:

� Event recognition layer.

� Dependability management layer.

� Adaptive scheduling layer.
The event recognition layer is responsible for event recording and time management.

The event recording mechanism records the times of input and output event occur-

rences such as device interrupts, timeouts, shared variables updates and messages

sends and receives. The time of occurrence of a message send (receive) is de�ned to

be the time at which the last data byte is transmitted (received). When a message

is sent its occurrence time is appended to the message.

The dependability management layer includes time deviation measurement, event

noti�cation, and recovery and recon�guration functions; details are described later.

The adaptive scheduling layer includes an adaptive scheduling algorithm that at-

tempts to schedule tasks by making use of information obtained from the service-
ow

graphs and the time deviation information. The hardware is assumed to provide a

high-resolution clock.

The e�ciency and predictability of a real-time system can be improved by phys-

ically separating the kernel from the applications. For example, a shared-memory

multiprocessor architecture can be used for this purposes. One processor could be

specially designed for the kernel, with the others used for application tasks. With

this architecture, unnecessary interruptions of application tasks can be minimized,

and the number of context-switches can be signi�cantly reduced. Also, the timing

behaviour of the application tasks and the kernel become more predictable. The

fail-signal processor can be easily adapted to such an architecture.

4.4.2 Time Deviation Measurement

A measurement point is any instant at which a time deviation in a service is mea-

sured. For example, earliest input event and activation event occurrences are mea-

surement points for a service. At each measurement point of a service the kernel

calculates a time deviation.

92-325 July 24, 1992



Figure 7: Layered Approach: The Applications Layer and The Kernel Layers

We now describe how to measure the time deviation of a service using as an

example the compound service G shown in Figure 8. We assume that an input

event i0 occurs at t0, and the time deviation of G is initially zero. Since task S0 has

no other input event, the activation time is t0. We denote the time deviation of G

at t0 as �(t0). The kernel associates with S0 the activation time t0, the service time

bound SB0, and the time deviation �(t0).

When S0 issues a message to S1 (event o1), the kernel inserts (t0+SB0) and

�(t0) into the message, and appends the message transmission time to1. Similarly,

when a message is issued to S2 (event o2), the kernel inserts (t0+SB0), �(t0), and

to2 into the message.

When the kernel in AP1 recognizes an event i1 (i.e., a message from S0), it

records, with reference to its local clock time, the occurrence time t1. t1 becomes

the activation time of S1. At t1, the kernel measures the time deviation for S0,

which is: (t0+SB0) - (to1+�i1)

where �i1 is the message transmission delay.

If the network does not guarantee �xed transmission times, a clock synchroniza-

tion assumption seems necessary. Assuming clock synchronization, we obtain �
i1

by (t1-to1). If �xed message transmission times are guaranteed, we can calculate

the actual transmission delay �i1 by multiplying the unit message transmission time

by the length of the message. Problems due to clock drift and the period of clock

synchronization are ignored here.

Once the time deviation of S0 is obtained, the kernel obtains �(t1), the time

deviation of service G at t1, by adding the time deviation of S0 to �(t0). When task

S1 issues an output message (event o3) to S3, the kernel inserts (t1+SB1), �(t1),

and to3 into the message. The kernel in AP2 performs similarly.

Task S3 is di�erent; it can be activated only when events i3 and i4 both occur.

Assume that i3 occurs �rst at time t3 (i.e., the earliest input event) and i4 occurs

next at time t4. At t3, the kernel calculates the time deviation for S1, and obtains

�(t3) by adding it to �(t1). At t4 (i.e. at the activation time of S3), the kernel

July 24, 1992 92-325



Figure 8: A Compound Service With Four Primitive Services

calculates the waiting time deviation by (WB3 - (t4-t3)), i.e. waiting time bound

minus the actual waiting time of S3, and obtains �(t4) by adding it to �(t3). The

current value of �(t4) shows the amount of the time deviation of service G up to

the activation of S3.

It was noted previously that a service consisting of a single non-interacting task

can be partitioned into segments. Similarly, tasks occurring near the end of a

compound service can be partitioned into segments if more frequent measurements

are desirable. A kernel call is inserted at the end of each segment, allowing the kernel

to detect segment completion time (a segment event) and to update time deviation

information. The kernel also noti�es the MP of the segment event. Of course the

segment time bound must have been provided to the kernel and the MP prior to

run-time.

4.4.3 Event Noti�cation

The run-time kernel supports the MP by notifying it of certain events necessary

for service failure prediction. For such noti�cations, a unidirectional high-speed bus

from the AP to the MP is used. Events transmitted to the MP are:

� earliest input event (Sid,Tid)

� activation event (Sid,Tid).

� rejection event (Sid,Tid).

� segment event (Sid,Tid,Bid).

� completion event (Sid,Tid).

92-325 July 24, 1992



17

where Sid, Tid and Bid respectively represent the identi�cation of an associated

service, primitive service (task) and segment.

Under certain conditions, the AP may not be able to activate a task or continue

a task execution: in the case of, for example, a failed task or a passivated task. The

kernel informs the MP of such a happening by sending a rejection event. The kernel

also noti�es the MP of task completion by sending a completion event. If the MP

does not receive noti�cation of the activation event, segment event, or completion

event within a preset time limit after the earliest input event, it assumes task failure

and hence failure of the service to which the task belongs.

4.4.4 Failure Prediction

An evaluation point of a service is an instant of time at which its status is evaluated.

Any occurrence of an earliest input event, an activation event, a segment event, or

a completion event for a task can be an evaluation point of the service to which

the task belongs. The MP evaluates service status when noti�ed of these events.

However, it is not necessary to evaluate services at all such points. Rather, the

determination of evaluation points can be made at design time.

At an evaluation point i, the status of a compound service is characterized by

the following four parameters:

� SA: Safety Allowance.

� �(i): Time Deviation.

� RUB(i): Remaining Upper-Bound.

� RT(i): Remaining Waiting and Service (execution-plus-communication) Time.

where the safety allowance of a compound service is de�ned to be its upper-bound

minus the path-bound of the longest path. For convenience, we de�ne the laxity of

a service at an evaluation point i as:

L(i) = RUB(i) - RT(i)

By using the estimated best-case and the worst-case service times of each task

obtained during the implementation and analysis, we can calculate two di�erent

laxities:

� BL(i) = RUB(i) - BRT(i).

� WL(i) = RUB(i) - WRT(i).

where BRT(i) is the remaining best-case waiting and service time and WRT(i) is the

remaining worst-case waiting and service time. We call BL(i) the best-case laxity,

and WL(i) the worst-case laxity.

A non-negative value of �(i) indicates that the service is processing faster than

expected. In this case, the amount of time represented by �(i) can be used for other

July 24, 1992 92-325



18

services. On the other hand, a negative value of �(i) indicates that the service has

incurred a timing error.

In evaluating the severity of a timing error, the MP uses the following criteria:

1. abs(�(i)) � BL(i): Failure Zone.

2. WL(i) � abs(�(i)) < BL(i): Uncertainty Zone.

3. SA < abs(�(i)) < WL(i): Slight Deviation Zone.

4. abs(�(i)) � SA: Safety Zone.

where abs(�(i)) represents the absolute value of �(i). If a service is in the failure

zone, it will fail even though it is continued. If a service is in the uncertainty zone,

it is di�cult to predict its future timing behaviour (although statistics based on

previous run-times may be useful). If a service is in the slight deviation zone it is

unlikely to fail. If a service is in the safety zone it is, within the assumptions of the

design, certain not to fail.

At the current state of the development of our ideas, we propose to evaluate a

task, and hence the service to which it belongs, only at its earliest input event. At an

evaluation point i, assuming that the task is not an exit task, the sum of �(i), UB(i)

and BL(i+1) is used as the time limit for judging failure of the service to which the

task belongs; UB(i) is the upper-bound of the primitive service corresponding to the

task. If the task is not completed within this limit, the service is assumed to have

failed. We are currently investigating other prediction criteria for evaluating service

status.

4.4.5 Recovery and Recon�guration

The kernel's dependability management layer deals with value errors, which can

be detected by the kernel itself (e.g., message validity checks) or in application

tasks. When a task having a value error is detected, the kernel aborts it, changes

its status to `F' and sends a rejection event to the MP. The kernel then identi�es

the task's group members and immediate successors and multicasts a failure signal

FSIG(V,Proc-id,Failed Task-id,...) to the AP's containing them. If relaxed redun-

dancies are speci�ed for the group and relaxation is required, this is indicated in the

failure signal.

The kernel also reacts to failure signals. Assume that a task, an active member

of a service group, has failed. Once the kernel is noti�ed of the failure, it changes

the status of the failed member to `F' if its host AP contains a member of the

group. If the failure signal indicates relaxation, the kernel appropriately changes

the redundancy speci�cation.

In order to maintain the minimum redundancy speci�ed for the group, the kernel

attempts to change the status of a non-failed passive or standby member to `A'. For

this recon�guration, the kernel may be required to force the failure of certain tasks.

In turn, the redundancy speci�cations of the service groups to which these failed

92-325 July 24, 1992



19

tasks belong may need to be relaxed. Since this process cannot be carried out alone,

the kernel interacts with other fail-signal processors, including the one containing

the failed task.

When an MP detects a control-
ow error, it resets its AP and multicasts a

failure signal FSIG(CF,Proc-id,...) to all AP's containing at least one related task.

A related task is any member of a group containing a task in the failed AP, or any

successor of a task in the failed AP. Broadcasting can be performed group-by-group;

in this case the multicasting order may depend on the relative importance of the

groups.

When the number of noti�ed task failures at an MP reaches a predetermined

threshold value, it resets the AP and multicasts a failure signal. This signal is

treated in the same way as a failure signal due to a control 
ow error in the AP.

The MP also supports the failed AP when it restarts and rejoins the system.

5 Conclusion

Fault-tolerant and adaptive real-time systems not only require low latency support

for error detection, but also need application information to permit failure predic-

tion, failure avoidance, and appropriate recovery action. We have introduced a

monitoring approach based on fail-signal processors, which allows continuous ob-

servation of the functional and timing behaviour of application processors. The

service-
ow graph is used as the vehicle for specifying services. By incorporating

top-down design and fault-tolerant methods such as design diversity to deal with

timing errors, and design redundancy to deal with functional errors, a designer can

specify explicitly how a service is decomposed, redundantly designed, and structured

to meet its time-bound. Information obtained from the service-
ow graphs, along

with run-time information from the fail-signal processors, permits forward error re-

covery after failures in application processors, prediction and avoidance of timing

failures, and recon�guration with graceful degradation.

Recently, attention has been paid to the monitoring approach for debugging

and performance monitoring of multiprocessor and distributed systems [LSMC90,

Cas91]. The fail-signal processor, when used for multiprocessor and/or distributed

systems, can also be useful for system testing, debugging, performance measurement,

and validation.

The research reported here is a part of a larger project to investigate meth-

ods and tools for designing real-time distributed systems [BCMM86, CMM87]. We

are currently addressing service failure prediction with more detailed prediction cri-

teria, and adaptive scheduling algorithms that can e�ciently make use of design

time and run-time information. Dynamic recon�guration algorithms are also under

investigation.

July 24, 1992 92-325



20

References

[BCMM86] C. Belzile, M. Coulas, G. H. MacEwen, and G. Marquis. Rnet: A hard

real-time distributed programming system. Proceedings of the Real-

Time Systems Symposium, pages 2{13, December 1986.

[BSR88] S.R. Biyabani, J.A. Stankovic, and K. Ramamritham. The integration

of deadline and criticalness in hard real-time scheduling. Proceedings of

the Real-Time Systems Symposium, pages 152{160, December 1988.

[Cas91] T.L. Casavant. Panel session: Debugging and performance monitoring

for distributed systems: Problems and prospects. Proceedings of the

11th International Conference on Distributed Computing Systems, pages

378{383, May 1991.

[CLL90] J.Y. Chung, J.W.S. Liu, and K.J. Lin. Scheduling periodic jobs that

allow imprecise results. IEEE Transactions on Computers, 39(9):1156{

1174, September 1990.

[CMM87] M. Coulas, G. H. MacEwen, and G. Marquis. RNet: A hard real-time

distributed programming system. IEEE Transactions on Computers,

36(8):917{932, August 1987.

[GG90] P. Gopinath and R. Gupta. Applying compiler techniques to scheduling

in real-time systems. Proceedings of the Real-Time Systems Symposium,

pages 247{256, December 1990.

[GKT89] U. Gunne
o, J. Karlsson, and J. Torin. Evaluation of error detection

schemes using fault injection by heavy-ion radiation. The 19th Sympo-

sium on Fault-Tolerant Computing, pages 340{347, June 1989.

[HS90] D. Haban and K.G. Shin. Application of real-time monitoring to

scheduling tasks with random execution times. IEEE Transactions on

Software Engineering, 16(12):1374{1389, December 1990. Also in Real-

Time Systems Symposium 1989, pages 172-181.

[Joh89] B. W. Johnson. Design and analysis of fault tolerance digital systems,

1989.

[KL91] K.B. Kenny and K.J. Lin. Building 
exible real-time systems using the


ex languages. IEEE Computer, 24(5):70{78, May 1991. Also shown in

technical report UIUCDCS-R-90-1634 University of Illinois at Urbana-

Champaign.

[LC86] A.L. Liestman and R.H. Campbell. A fault-tolerant scheduling prob-

lem. IEEE Transactions on Software Engineering, 12(11):1089{1095,

November 1986.

92-325 July 24, 1992



21

[LLSY91] J.W.S. Liu, K.J. Lin, W.K. Shih, and A.C. Yu. Algorithms for schedul-

ing imprecise computations. IEEE Computer, 24(5):58{68, May 1991.

Also as a tech. report UIUCDCS-R-90-1628, Dept. of Computer Science,

University of Illinois-Urbana.

[LSMC90] J.E. Lumpp, Jr., H.J. Siegel, D.C. Marinescu, and T.L. Casavant. Spec-

i�cation and identi�cation of events for debugging and performance

monitoring of distributed multiprocessor systems. Proceedings of the

10th International Conference on Distributed Computing Systems, pages

476{483, June 1990.

[LSP82] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals prob-

lem. ACM Transactions on Programming Languages and Systems,

4(3):382{401, 1982.

[Lu82] D.J. Lu. Watchdog processors and structural integrity checking. IEEE

Transactions on Computers, 31(7):681{685, July 1982.

[MM88] A. Mahmood and E.J. McClusky. Concurrent error detection using

watchdog processors- a survey. IEEE Transactions on Computers,

37(2):160{174, February 1988.

[MS91] Henrique Madeira and Joao G. Silva. On-line signature learning and

checking. Second International Conference on Dependable Computing

for Critical Applications, pages 170{177, February 1991.

[PK89] P. Puschner and CH. Koza. Calculating the maximum execution time of

real-time programs. The Journal of Real-Time Systems, pages 159{176,

1989.

[PS91] C.Y. Park and A.C. Shaw. Experiments with a program timing tool

based on source-level timing schema. IEEE Computer, 24(5):48{57,

May 1991.

[RSZ89] K. Ramamritham, J.A. Stankovic, and W. Zhao. Distributed scheduling

of tasks with deadlines and resource requirements. IEEE Transactions

on Computers, 38(8):1110{1123, August 1989.

[SD83] H. R. Strong and D. Dolev. Byzantine agreement. Digest of Papers

from COMPCON, IEEE, pages 77{81, Spring 1983.

[SHH91] A. Stoyenko, V. Hamacher, and R. Holt. Analyzing hard-real-time pro-

grams for guaranteed schedulability. IEEE Transactions on Software

Engineering, 17(8):737{750, August 1991.

[SLC89] W.K. Shih, J.W.S. Liu, and J. Chung. Fast algorithms for scheduling

imprecise computations. Proceedings of the Real-Time Systems Sympo-

sium, pages 12{19, December 1989.

July 24, 1992 92-325



22

[SM90] N.R. Saxena and E.J. McClusky. Control-
ow checking using watchdog

assists and extended-precision checking. IEEE Transactions on Com-

puters, pages 554{559, April 1990.

[SR90] J.A. Stankovic and K. Ramamritham. Editorial: What is predictability

for real-time systems. The Journal of Real-Time Systems, 2:247{254,

1990.

[SS87] M.A. Schuette and J.P. Shen. Processor control 
ow monitoring us-

ing signatured instruction streams. IEEE Transactions on Computers,

36(3):264{276, March 1987.

[SS91] N. Shivaratri and M. Singhal. A transfer policy for global scheduling al-

gorithms to schedule tasks with deadlines. Proceedings of the 11th Inter-

national Conference on Distributed Computing Systems, pages 248{255,

May 1991.

[WS88] K. Wilken and J.P. Shen. Continuous signature monitoring: E�cient

concurrent-detection of processor control-
ow errors. Proceedings on

International Test Conference, pages 914{925, September 1988.

92-325 July 24, 1992


