
The Bird-Meertens Formalism

as a Parallel Model

D.B. Skillicorn

May 1992

External Technical Report

ISSN-0836-0227-

92-332

Department of Computing and Information Science

Queen's University

Kingston, Ontario K7L 3N6

Document prepared August 20, 1992

Copyright c
1992, D.B. Skillicorn

Abstract

The expense of developing and maintaining software is the major obstacle to the routine use of parallel

computation. Architecture independent programming o�ers a way of avoiding the problem, but the

requirements for a model of parallel computation that will permit it are demanding. The Bird-Meertens

formalism is an approach to developing and executing data-parallel programs; it encourages software

development by equational transformation; it can be implemented e�ciently across a wide range of

architecture families; and it can be equipped with a realistic cost calculus, so that trade-o�s in software

design can be explored before implementation. It makes an ideal model of parallel computation.

Keywords: General purpose parallel computing, models of parallel computation, architecture indepen-

dent programming, categorical data type, program transformation, code generation.

1 Properties of Models of Parallel Computation

Parallel computation is still the domain of researchers and those desperate for performance, rather than

the normal way of doing things. The reason surely does not lie with parallel hardware, whose performance

follows a curve of the same slope as that of sequential hardware, and whose cost per cycle is typically

much lower than a high performance uniprocessor. The di�culty lies with parallel software: how to write

it, how to translate it to something that can be e�ciently executed, and how to port it to new platforms

as they are developed. Our inability to solve any of these problems well has led some to talk of a \parallel

software crisis."

It is not really surprising that industry has failed to use parallelism enthusiastically. Although the

average performance of parallel architectures has steadily improved, the family of architectures that has

the best performance at a given time has changed frequently. There is little sign that a candidate for

\best architecture over the long term" can be agreed upon. Indeed, the development of optical devices

for communication and, more slowly, for computation shows every sign of confusing the picture even

more. There has therefore never been a plausible architecture family that a company could select with

con�dence in its medium term future.

Around each family of architectures has grown up a collection of computation models, languages,

compilation techniques, and idioms; and a group of programmers pro�cient in their use. This family-

speci�c knowledge means that neither software, nor programmers, can easily migrate fromone architecture

family to another. Indeed, it is not unknown for software to fail when moved from one machine to a larger

one from the same family. Since software lifetimes are normally measured in decades, while machines

change much more frequently, a huge investment is needed to keep parallel software running. This

situation is made much worse for companies who already have large amounts of \dusty deck" software,

since it is never clear which computation model they should migrate it to. Unsurprisingly, they decide to

wait and see.

A good solution to the parallel software development problem is important to the research community.

If a good one is not found, the �rst workable one is likely to be adopted and that, in the long run, will

be an expensive error.

Let us consider what a solution might look like. There are two identi�able groups who want di�erent

things: programmers and implementers. The interface between them is a model of parallel computation.

Programmers bene�t from high levels of abstraction while implementers prefer a lower level. Selecting

an appropriate model therefore requires a careful choice of the level of abstraction that maximises the

bene�ts to both. The requirements of each group are so strong that, until recently, there was little belief

that a useful model could be found. Fundamental results of the last �ve years have changed this view.

Let us consider what properties a model should have from the point of view of each group. Program-

mers want:

� A methodology for software development that is independent of any particular architecture family.

This includes both a programming language that is architecture independent and an approach for

developing software. Current practice is to carry over into the parallel domain what we do to

develop sequential software; it seems improbable that this will scale and, if correctness is a concern,

as it surely must be, the \build then verify" sequence seems impossibly di�cult for parallel systems.

� A way of measuring software's cost of execution that is architecture independent but accurate.

Without this it is not really possible to design software, since the trade-o�s between di�erent

1

implementations can only be done by guesswork.

� An intellectually manageable model of what is happening when the software executes. Because, in

the long run, parallelismwill be massive, the model must reduce or eliminate the cognitive burden of

decomposition or partitioning into threads or processes, the explicit description of communication,

and the speci�cation of synchronisation between threads. The model must therefore be independent

not only of the architecture family but also of the number of processors to be used and of the

interconnection topology.

� A migration path that speci�es how to alter a program when the underlying target architecture

is changed. For models that are su�ciently architecture independent, this is not necessary; even

for models that lack architecture independence, it is an advantage to make the migration path the

responsibility of the implementer. For models that are not architecture independent and do not

provide a migration path, each new platform requires a complete redesign of software.

Implementers want the following properties of a model:

� It must be able to be \e�ciently" implemented on a full range of current and foreseeable architec-

tures. This must include at least some members of the following architecture families: sequential,

vector processors, shared memory MIMD machines, hypercube-based distributed memory MIMD,

distributed memory MIMD with constant valence interconnection topologies, and possibly SIMD

machines.

By \e�ciently" implemented, we mean that the time-processor product for the implementation

should not be asymptotically worse than the time-processor product of the best known abstract

(that is, PRAM) implementation of the same program. In other words, the implementation must

preserve the work of the abstract program. This is the strongest requirement we can make { in

general real implementations cannot match just the time of the best abstract program because real

communication takes longer than unit time.

� A methodology for architecture-dependent transformation, code generation, and choice of number

of processors (all of the decisions that have been kept from the programmer) that produces these

e�cient implementations.

� A migration path that speci�es how to alter a program to �t a new architecture. If the model

is su�ciently powerful, this may just be recompilation and the use of a new set of architecture-

dependent transformations.

The di�culty with �nding such a model is the apparent intractability of the mapping problem. In

general, a parallel program has some reference structure that can be represented as a graph and must be

mapped to an architecture with some interconnection topology. This mapping is known to be NP hard.

It has come to be realised that plausible solutions that avoid the full generality of the mapping problem

exist. For example, uniform architectures dispense with locality in exchange for bounded delivery times

on all communications, by using memory hashing [?] or randomized routing [?]. Thus the topology of

the target architecture becomes irrelevant to mapping since the target appears fully connected with some

bounded transit time. Another kind of solution involves restricting the full generality of programs that can

be written to certain primitives with known computation or communication patterns. Experiments with

this idea include adding operations such as scan [?], multipre�x [?], skeletons [?], P3L [?,?], paralations

2

[?], and the scan vector model [?]. In these approaches, the complexity of the mapping problem is avoided

by reducing the topological structure of the program.

2 Some Proposed Models

Let us consider some proposed models to see how well they satisfy these criteria. We will examine the

PRAM model, Valiant's Bulk Synchronous Parallel (BSP) model [?,?], Linda [?,?], and higher order

functional programming [?]. This is only a small selection of the models of parallel computation that

have been suggested { a survey covering many more can be found in [?].

The PRAM Model does not meet the needs of the programmer very well. It requires a complete

description of the partitioning of code among processors and of the way in which memory is arranged to

provide communication. The di�culty of writing computations using the PRAM model can be clearly

seen by two facts: almost all PRAM computations are actually SIMD, although the model doesn't require

it; and a paper describing a single computation in the PRAM model is still considered publishable. Cost

measures for the PRAM model exist. Valiant has shown [?] that, for implementations on uniform

architectures (those that use randomized techniques to get bounded memory access times), PRAM costs

can be realized on shared memory and hypercube machines. Implementations on distributed memory

machines with constant valence interconnections have an unavoidable overhead of order logarithmic in

the number of processors. These implementations require the use of parallel slackness, an excess of virtual

over physical parallelism. Thus the PRAM model is architecture independent in the sense that a PRAM

computation can be automatically implemented over a range of architectures.

From the implementer's point of view, the unavoidable overhead in implementation on some archi-

tectures means that e�cient implementation, in our sense, is not possible. This is especially unfortunate

since the family that causes the problem is the most easily scaled. Apart from this, the PRAM model

is easy to implement because it is low level; the choice of number of processors is dictated by parallel

slackness considerations. However, it fails to provide a migration path in the sense that there is general

method for changing a program, either before or during compilation, to take advantage of some architec-

tural feature. For example, parsing context free languages can be done in time O(n) on O(n2) processors

or in time O(log n) on O(n6) processors, but the two algorithms were discovered independently and there

is no obvious way to transform one into the other.

The problem with e�cient implementation of the PRAM model on distributed memory systems with

constant valence topologies is that the amount of communication generated at each step can easily overrun

the bandwidth provided by such a topology. Valiant therefore suggested the BSP model [?,?], a version of

the PRAM in which communication between threads is restricted in frequency. The actual restriction is

based on parameters of the architecture: l , the minimum time between global communication operations,

and g the ratio between processor speed and network delivery speed. Thus, given a computation, its

performance on a machine for which these characteristics are known can be computed. Like the PRAM

model, the BSP model requires programmers to be aware of partitioning and placement, and access to

memory. In fact, it is arguably more complex since programmers must check that global operations

occur su�ciently infrequently. Migration is harder than for the PRAM, since changing the number of

processors in an implementation will change l and may require recasting the whole computation to alter

the frequency of global operations.

For the implementer, the BSP model is similar to the PRAM model, except if changing granularity

(that is, frequency of global operations) is done at compilation, which may the only way to make it

3

practical.

Linda [?,?,?] is a model that provides an abstraction of a content-addressable shared memory. For

the programmer, the overhead of managing partitioning is still present, but that of communication is

reduced because of content addressability, and that of synchronisation disappears. Software development

still requires a message passing idiom, and correctness is presumably di�cult because of the inherent

non-determinism of input from tuple space. The biggest weakness of Linda for software development is

that it completely hides any idea of the cost of a computation from the programmer { it is not possible

to assume anything about the response time of tuple space accesses.

For the implementer, a reasonably e�cient implementation of tuple space is a challenge. For a

distributed memory implementation on a constant valence interconnection, it is clear that a logarithmic

order penalty is unavoidable. The semantics of in that requires destructive reads from tuple space makes

this even harder.

Higher order functional programming, unlike these other models, is abstract and therefore better for

the programmer. It comes with a methodology for software development (equational transformation).

Nothing need be said at the program level about partitioning, communication or synchronisation. Cost

measures (somewhat coarse ones in terms of function call counts) have been developed [?,?,?], and linear

logic could be used to develop better ones.

This abstraction at the programmer level causes di�culties for the implementer. Partitioning, com-

munication, and synchronisation must be inferred, at compile time or dynamically during execution. This

has been done with some success for shared memory machines but has not been very successful for other

architecture families.

Data parallel models are usually relatively easy to implement on parallel architectures because of

the explicit and limited nature of their communication and computation operations. They are also

attractive because they are single-threaded and thus do not require programmers to explicitly think

about communication and synchronisation. However, their weakness in general lies in the area of software

development; the choice of data parallel operations is usually ad hoc and the relationships between them

hard to discover and exploit.

In the next section we introduce the Bird-Meertens formalism, a model of parallel computation that

combines an abstract view for the programmer with straightforward and e�cient implementability.

3 The Bird-Meertens Formalism

The Bird-Meertens formalism is an approach to software development and computation based on theories,

that is categorical data types and their attendant operations. A theory is built from the constructors of

a type using a categorical construction based on initiality and developed by Malcolm [?], Spivey [?], and

others. Unlike abstract data types, categorical data types have operations, equations relating them, and

a guarantee that all of the required operations and equations are present. This guarantee of completeness

is the major advantage of categorical over abstract data types.

Beginning with some set of constructors, the categorical construction gives the following:

� a polymorphic datatype described by the constructors; that is there is a constructed type for each

existing type;

� operations de�ned on the new datatype, including a generalized map operation and a generalized

reduction operation; the set of operations is �xed and the communication and computation pattern

4

each embodies can be exploited both by the compiler and at run time;

� equations on the new operations and on the constructors de�ning how the new operations relate to

each other and how to evaluate homomorphisms in terms of the constructors;

� a guarantee of the completeness of the set of equations in the sense that any formulation of a homo-

morphism on the type can be transformed into any other formulation by equational substitution;

� a guarantee that any function on an object of the constructed type that relies only on its type

properties can be expressed in terms of the new operations;

� locality of reference for homomorphisms if it is present in the constructors.

BMF theories have been built for bags, cons lists [?], cat lists [?], trees [?], and arrays [?]. BMF programs

are compositions of these (second order) operations on appropriate datatypes.

To illustrate we describe the BMF theory of lists. We use concatenation lists, since the theory of

cons-lists is inherently sequential. Lists are built using three constructors:

[�] : �! �� [�]a = [a]

[] : unit! �� [] = K[]

++ : � � ��� ! �� [as] ++ [bs] = [as; bs]

The new operations on the type are:

� For any function f : �! � a function f � : �� ! ��;

� For any M = (�; ; id) a monoid, a reduction = : �� !M

Both of these operations contain inherent parallelism and a �xed communication pattern; map is com-

pletely parallel and requires no communication, while reduction is evaluated in an obvious tree-like way

and contains signi�cant parallelism. Equations such as the following hold for these new operations:

f � �[�]� = [�]� � f

f � �++� = ++� � (f �; f �)

f � �[]� = []�

id�� = id��

(g � f)� = g � �f �

= � []� = id

= � [�]� = id�

= �++ = (=) (=)

h � = = = � h � (h a homomorphism)

h = = � (h � [�]�) � (h a homomorphism)

Because concatenation is a list operation with locality, it follows that evaluating homomorphisms on lists

will also be an operation with locality. Other operations that can be de�ned in terms of these basic

operations are

5

� pre�x (written ==), which given a list of values returns a list of pre�xes of these values by applying

an associative operator:

==[a1; a2; � � �; an] = [a1; a1 a2; � � �; a1 a2 � � � an]

� inits which generates all of the initial segments of its argument list:

inits[a1; a2; � � �; an] = [[a1]; [a1; a2]; � � �; [a1; a2; � � �; an]]

� zip (written), which combines two lists of the same length by applying to the pairs with one

element from the �rst list argument and the other from the second:

[a1; a2; � � �; an] [b1; b2; � � �; bn] = [a1 b1; a2 b2; � � �; an bn]

A simple example of a homomorphism on lists is sorting since

sort(as ++ bs) = sort(as) sort(bs)

where is the binary merge operation. Thus sort can be written, using the last equation of the list

above, as

sort = = � ([�])�

where [�] is the make singleton function and the occurrence of sort on the right hand side has been

deleted because a singleton is necessarily already sorted. Many other examples of the use of the theory of

lists can be found in [?,?,?,?]; a particularly interesting example is the derivation of the Knuth-Morris-

Pratt string matching algorithm [?]. Examples of operations on trees such as parenthesis matching and

attribute grammar evaluation can be found in [?].

We now turn to evaluating the Bird-Meertens formalism by the criteria we suggested earlier.

Methodology. The BMF style views software development as the transformation of an initial solution

to a given speci�cation into an e�cient one. Many initial solutions have the form of comprehensions. It

is straightforward to check that the result of a particular comprehension meets a speci�cation but it is

typically an expensive solution computationally. Using equations from theories, such a program can be

transformed into one that is more e�cient. Since transformation is equational, correctness is necessarily

preserved. The completeness of the equational system guarantees that the optimal solution is reachable,

and that mistakes made during derivation are reversible. A program that computes a homomorphism

has a normal form called a catamorphism into which it can be translated.

Cost Measures. The di�culties of implementation on distributed memory constant valence topology

architectures can be avoided by ensuring that all communication occurs between near neighbours. The

locality of operations on categorical data types re
ects the locality of the constructors of the data type,

that is, the extent to which building an object of the type involves putting together pieces at a small

number of points. For example, concatenation involves joining lists at a single point; a constructor using

a cartesian product does not. For all the types so far considered, locality does seem to be a natural

property of constructors, so that the resulting BMF theories will exhibit considerable locality.

Since local communication can be implemented in constant time, the cost measures for BMF programs

can be those of \free communication" models. Such cost measures only account for operations and their

6

arrangement. We have shown [?] that two appropriate measures are Blelloch's vc, the total number of

operations performed by a computation, and sc, the length of the computation's critical path [?]. From

these, an implementation on p processors has a time complexity of

Tp = O(vc=p + sc)

by a simple extension of Brent's theorem [?]. This time complexity holds for implementations on a wide

range of architectures, provided that BMF computations can be mapped onto their topologies while

preserving near neighbour adjacencies. This can certainly be done for lists, and there seems to be no

fundamental impediment for other, more complex, types.

Intellectual Manageability. BMF programs are single threaded and data parallel. They are thus

conceptually simple to understand and reason about. In particular, decomposition occurs only in the

data, and communication and synchronisation are hidden within the �xed set of second order functions.

Migration Path. The completeness result shows that any form of a computation can be transformed

into any other when that is appropriate. However, the model is so architecture-independent that there

is never a need to do this at the programmer level. It can be taken care of by the compiler, where all

architecture-dependent transformation occurs.

From the implementer's perspective, we are concerned with how to make such systems execute e�-

ciently.

E�cient Implementation. Bird-Meertens theories are not very demanding of architectures. They

require only a subgraph in the architecture topology that matches the structure of the relevant datatype's

constructors (path for lists, log depth spanning tree for trees, mesh for arrays). All communication is

local so that the global communication structure is of little relevance.

The choice of number of processors to use can be made by using the cost measures outlined above. If

a computation has costs vc and sc then a locality-based implementation can compute it on p processors

in time O(vc=p + sc). Therefore the best choice of p is the one that makes the two terms vc=p and

sc most nearly equal. Using more processors than this doesn't provide further speed-up because of the

critical path; using fewer misses potential speed-up.

The number of processors will not, in general, match the size of the data structures being used. Thus

these structures have to be aggregated so that a piece can be allocated to each processor. It turns out

that the best way to do this is to allocate contiguous pieces of the data structure to each processor rather

than to use a round-robin allocation [?,?]. Code generation for an operation over the whole structure

now involves generating two kinds of instructions: one to take care of the (sequential) computation on

the piece within each processor, and a second to take care of the global computation on the results from

each processor. Thus each operation f , applied to a data structure of size n on p processors, decomposes

into a sequential operation on a piece of size n=p executed in parallel on all p processors, followed by a

parallel operation of size p to compute the �nal result.

This kind of code generation can be expressed equationally. For example, if we use subscripts to

indicate the size of piece to which an operation applies and an overbar to indicate the sequential version

of an operation, then a reduction applied to a list of n values, computed on p processors, satis�es the

equation:

(=)n = (=)p � ((=)
n=p)�p

Given p, this equation describes precisely what code should be generated for the original instruction. We

7

can also compute the actual running cost on p processors from the equation by summing each of the

parallel steps; in this case we get

tp = log p + n=p

For other operations, the implementation equation describing how to compute it in pieces can be quite

complex. For example, computing a pre�x operation, we �nd that the implementation equation is

==n = ((+x)�
n=p) �p �shift � ==p � (==

n=p)�p

with cost

tp =
n

p
+ 1 + logp +

n

p

We have built a small compiler that generates code for a Transputer system [?] and shown how these

ideas can be worked out in practice.

Architecture-Dependent Transformation. Such transformation is not necessary in the imple-

mentation of the Bird-Meertens approach, since all architectures with an appropriately rich topology look

the same to the compiler until �nal code generation.

Migration Path. The completeness of the equation set for each datatype means that it is possible

in principle to convert any form of a program satisfying a given speci�cation into any other. Doing this

to �nd a new algorithm requires human reasoning at present, although there is potential for automating

part of the process. We have built a small transformation assistant that allows a programmer to select a

subpart of a program, be shown all of the rules that apply, and select one. Replacement of the altered part

is then done automatically. It is possible to add cost information to this kind of assisted transformation

system although, of course, most developments do not simply reduce cost in a monotonic way. Low level

transformation is not really required to provide a migration path because of the level of architecture

independence of the model.

4 Conclusions

It is clear that data parallelism has much to commend it as the standard way to program massively

parallel machines and still retain portability. Its two advantages are that it hides much of the complexity

of managing massively parallel threads, and that it requires only a �xed set of global operations to be

implemented on each potential target architecture. Of course, programming in the data parallel style

is a restriction on how computations can be arranged and there will be those for whom this seems

unattractive or cumbersome. The expressiveness question can only be resolved with su�cient experience

in data parallel programming and the development of programming assistants (transformation systems,

optimizing compilers) for data parallel software development.

The principal weakness of existing data parallel models is the ad hoc choice of the operations allowed

on each data type. Choices are often made with expressiveness in mind, but no proof of completeness in

the sense we have been discussing is usually possible. The main advantage of the Bird-Meertens approach

is the guarantee of completeness that the CDT construction provides. Nevertheless there are substantial

pay-o�s in use and compilation because of the underlying regularity and elegance of the approach, as we

have tried to illustrate.

The future of software for parallel computation depends on making it a mainstream technology and

thus bringing the bene�ts of parallel hardware within reach of the average industrial user. Since portability

8

seems, at the moment, to be the biggest stumbling block to this goal, development of architecture

independent models should be a priority of the research community. The Bird-Meertens formalism is

a very attractive candidate.

Acknowledgements: The compiler was developed by Wentong Cai and the transformation tool by

Scott Kirkwood. This work was supported by the Natural Sciences and Engineering Research Council of

Canada.

9

