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Abstract

Values of an abstract data type (ADT) can be built by some functions of the type called

constructors. A construction term of a value is an expression which contains only construc-

tors and whose evaluation yields the value. The abstractor of an ADT is a function that

takes a value as an input and produces the corresponding construction term as an output.

Abstractors may be used in communicating ADT values in distributed programs.

For a given implementation of an ADT, the abstraction function maps values from the

concrete representation (in the implementation) to some abstract representation. So far,

abstraction functions have been mainly used in verifying the correctness of implementations.

This paper, in contrast to the current use of abstraction functions, explores a novel role

they play in abstractor generation. It describes a notation for specifying abstraction func-

tions and presents a simple method for transforming abstraction functions into abstractors.

1
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1 Introduction

An abstract data type (ADT) is characterized by a collection of sorts (types) and a

collection of functions. A subset of the functions is called constructors, in the sense that

values of the type can be built by calls on them. A construction term of a value is an

expression which contains only constructors and whose evaluation yields the value.

The abstractor of an ADT takes a value as an input and produces a construction term of

the value as an output. One application of abstractors is in systems which use construction

terms as exchange representations to communicate ADT values in distributed programs

[HL92]. In such systems, ADT values are exchanged in their construction terms; they must

be converted into their corresponding construction terms before being transmitted.

In this paper, we are interested in the problem of generating abstractors. Basically,

abstractors can be generated from speci�cations or from implementations:

� In the method of generation from speci�cations, an abstractor is derived from the

speci�cation of a type. The resulting abstractor is implementation-independent, and,

therefore, is applicable to any implementation of that type.

� On the other hand, in the method of generation from implementations, the abstractor

is derived from the relationship between the type and the implementation type that

implements it, and the abstractor is only applicable to that particular implementation.

Generation from speci�cations appears more desirable than generation from implemen-

tations, since abstractors generated from speci�cations are implementation-independent.

However, speci�cations may not always provide the right functions for generating such an

abstractor; sometimes, particularities of an implementation need to be considered. The two

methods are complementary.

Our earlier paper [HL92] focused on generation from speci�cations. This paper explores

generation from implementations. We shall show how to generate the abstractor for a

given implementation from a user-provided abstraction function | a mapping from the

implementation type to the ADT.

The organization of this paper is as follows. Section 2 introduces background informa-

tion, including speci�cation and implementation of abstract data types, and the application

of abstractors in communicating ADT values in distribute programs. Section 3 presents

a de�nition of abstraction functions and describes a notation for writing them. Section 4

gives a de�nition of abstractors, discusses general strategies for generating abstractors, and

shows how to generate abstractors from abstraction functions. Section 5 summarizes the

results of this paper. The appendices include the syntax of the notation for writing abstrac-

tion functions, example abstraction functions for some common implementations of several

types, and speci�cations of types Array, Record, Set, and Binary tree.

2 Background

This section describes the notion of (algebraic) speci�cation and implementation of abstract

data types, and discusses the application of abstractors in communicating ADT values in

distributed programs. Those familiar with abstract data types may go directly to Subsec-

tion 2.3.

2.1 Speci�cation of Abstract Data Types

There is a large literature on algebraic speci�cation methods [GH78, GTW78, EM85,Wir90].

Here we brie
y illustrate the basic idea using an algebraic speci�cation for the well-known
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type Stack. A speci�cation de�nes a type through the functions that are to be available to

others. As shown in Figure 1, it consists of seven clauses:

Speci�cation describing the type being speci�ed, that is, the Type Of Interest (TOI).

Here the TOI is Stack.

Parameters describing those items which must be instantiated in declarations. \P : S "

(S is a set) means P must be instantiated with an element of S. In Figure 1, for

example, \Ele : Type" indicates Ele is a parameter which must be instantiated with

a type.

This clause is optional.

Declaration describing the format in which variables are declared to be of the type. Pa-

rameters, if any, must be instantiated in variable declarations. The declaration format

for Stack variables is Stack[Ele], where the parameter Ele must be instantiated with

a type. As an example, one may declare s to be of a stack of integer by

s : Stack[Int]

Base types describing the types on which the TOI is based. Stack is based on three types:

Boolean, Ele (a parameterized type), and Nat (the natural number type).

Functions describing the functions of the type, including the function symbols, the domains

and ranges. Stack has six functions: new, isnew, push, pop, top, and size.

Constructors describing a subset of the functions which can be used to construct each

value of the type. The range of a constructor must be the TOI. The constructors of

Stack are new and push.

Equations describing a set of relations that de�nes the semantics of the functions. For

example,

top(push(s; e)) = e

means applying the function top to the result of push(s; e) returns the value of the

element just pushed onto the stack.

2.2 Implementation of Abstract Data Types

An ADT is implemented using another type called implementation type. Implementing

an ADT is to represent its values in terms of values of the implementation type and de�ne

its functions in terms of the implementation type's functions.

Figure 2 gives an implementation of Stack using implementation type Record with �elds

buf : Array and ptr : Nat, where Record and Array1 have the same meaning as their

counterparts in imperative languages like Pascal, but their operations are functional. For

an array A, fetch(A; i) returns the element with index i, and store(A; i; e) returns a new

array which is equal to A except the element with index i is e. Similarly, for a record R,

fetch:f(R) returns �eld f , and store:f(R; e) returns a new record which is equal to R except

its �eld f has value e.

In the implementation, a stack is represented by an array which stores its items and and

a natural number which points to the position of the top item in the array; the abstraction

function absF Stack relates concrete stacks to abstract stacks (see Section 3 for the details

of abstraction functions); each function of Stack is de�ned in terms of functions of Record,

Array and Nat.

1
Appendix C gives a formal de�nition of Record and Array.
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Speci�cation

Stack

Parameters

Ele: Type

Declaration

Stack[Ele]

Base types

Boolean, Ele, Nat

Functions

new: ! Stack
isnew: Stack ! Boolean
push: Stack � Ele ! Stack
pop: Stack ! Stack
top: Stack ! Ele
size: Stack ! Nat

Constructors

new, push

Equations

top(push(s, e)) = e
pop(push(s, e)) = s
isnew(new) = true
isnew(push(s, e)) = false
size(new) = 0
size(push(s, e)) = size(s)+1

Figure 1: Speci�cation of Stack

3



Implementation

Stack

Representation

Stack = Record[buf:Array[Ele], ptr:Nat]

Abstraction function

absF Stack(r) = abs1(fetch.buf(r), fetch.ptr(r))
where

abs1(a) = if n=0 then new else push(abs1(a,n-1), fetch(a,n)) end
end

De�nitions

new = store.ptr(store.buf(newRec, newArray), 0)
push(s, e)= store.buf(s1, store(fetch.buf(s1), fetch.ptr(s1), e))

where s1=store.ptr(s, fetch.ptr(s)+1) end
top(s) = fetch(fetch.buf(s), fetch.ptr(s))
pop(s) = store.ptr(s, fetch.ptr(s)-1)
isnew(s) = if fetch.ptr(s)=0 then true else false end
size(s) = fetch.ptr(s)

Figure 2: Implementation of Stack

4
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Data

Exchange
representation

module
Sender

Data

Local

converter converter
Out-In-

representation

module

representation

Receiver

Data

Local

In- Out-
converterconverter

Figure 3: The general communication process

2.3 Communicating Abstract Data Type Values in Heterogeneous

Distributed Programs

A distributed program is heterogeneous if its modules run on di�erent kinds of machines,

use di�erent programming languages, and/or use di�erent implementations for the same

abstract data type. In a heterogeneous program, di�erent data representations may be

present at its modules. This prevents data from being directly transmitted from one module

to another; data conversions are needed somewhere in the process of a communication. One

solution is to choose an exchange representation2 that is acceptable to all the modules of a

program and to equip each module with an in-converter and an out-converter (See Figure 3).

In this approach, a communication involves three steps, as illustrated by the solid arrows

in Figure 3 : the out-converter at the sender transforms the communicated value from the

sender's local representation to the exchange representation; the underlying network system

transmits the value in the exchange representation from the sender to the receiver; and the

in-converter at the receiver transforms the value from the exchange representation into the

receiver's local representation.

Particularly, our approach is based on the fact that values of an abstract data type may

be built by some of its functions called constructors. A construction term of a value is an

expression which contains only constructors and whose evaluations yields the value. We have

chosen construction terms as the exchange representation. Accordingly, in-converters can be

2
Exchange representation is the way to represent values during transmission.
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Interpreter

Term-based exchange

Interpreter

121110

push(push(push(new,10),11),12)

Term-based

representation

module
Sender

representation
Array

Abstractor Abstractor

10 1211

module
Receiver

representation
Pointer

Figure 4: The process of communicating a stack

implemented by interpreters of terms and out-converters by abstractors (See Section 4.1 for

the de�nition of abstractors). In a communication, the communicated value is transformed

into its construction term by the abstractor at the sender and the construction term is then

transmitted to the receiver. The interpreter at the receiver parses the term and produces

the local representation by invoking the constructors in the term in an appropriate order.

Let us look at an example. Suppose type Stack is implemented by an array at the sender

and by a linked structure at the receiver. Figure 4 shows the process of communicating a

stack of three elements: 10, 11 and 12, with 10 at the bottom and 12 at the top. The stack

(an array) is transformed into its construction term push(push(push(new; 10); 11); 12), then

the construction term is transmitted to the receiver, and the local representation (a linked

structure) at the receiver is obtained by invoking the operations in the construction term.

Two immediate advantages of this approach are

� The exchange representation is a mathematical notation | independent of any ma-

chine, language or implementation| and so is particularly suitable for communication

in heterogeneous distributed programs.

� Interpreters are just simple parsers and thus can be easily generated.

This paper studies the problem of generating abstractors from abstraction functions.
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3 Abstraction Functions

This section describes the notion of abstraction functions and presents a notation for spec-

ifying abstraction functions.

3.1 Abstraction Functions

Suppose T 0 is an implementation type of type T . A value of T 0 is called a concrete value

of T if it represents a value of T . Values of T are called abstract values.

To prove the implementation satis�es the speci�cation of T , one needs a link between T 0

and T . This is usually characterized by a so-called abstraction function3[Hoa72, Sha81,

LG86, PM90, Par90]4,

absF T : T 0 �! T

which maps concrete values to abstract values.

Two methods, descriptive or constructive, could be used to de�ne abstraction functions.

In the descriptive method, usually a mathematical theory is chosen to be the model of T .

absF T is declaratively de�ned by a mapping from concrete values to objects of the theory.

In this method, for the implementation of Stack shown in Figure 2, one may choose the

mathematical concept sequences to be the model of stacks and then de�ne the abstraction

function as a mapping from an array to a sequence by5

A typical stack is a sequence he1 ; : : : ; eni
absF Stack : Record �! Sequence

absF Stack(r) = hfetch(fetch:buf(r); 1) ; : : : ; fetch(fetch:buf(r); fetch:ptr(r))i

In the constructive method, on the other hand, absF T is explicitly de�ned by functions

of T and T 0. The abstraction function in Figure 2 is de�ned using this method. For

comparison, we present it here again:

absF Stack(r: Record[buf:Array[Ele], ptr:Nat]) = abs1(fetch.buf(r), fetch.ptr(r))
where

abs1(a:Array[Int], n:Nat) =
if n=0 then

new
else

push(abs1(a,n-1), fetch(a,n))
end

end

where comparison \=" as in \n = 0" and subtraction \�" as in \n� 1" are functions of

type Nat.

Hoare[Hoa72] and Shaw[Sha81] use the descriptive method to de�ne abstraction func-

tions; Partsch[Par90] uses the constructive method; and Liskov and Guttag[LG86] mainly

use the descriptive method, though they touch on the constructive method once; Parnas

and Madey[PM90] do not mention how to describe abstraction functions.

3
It is called representation function in references[Hoa72, Sha81].

4
Details of how to prove the correctness of ADT implementations through abstraction functions can be

found in references[Hoa72, Sha81, LG86, Par90].

5
In conventional notations, this would be absF Stack(r) = hr:buf [1] ; : : : ; r:buf [r:ptr]i.

7



3.2 A Notation for De�ning Abstraction Functions

This subsection describes our notation for writing abstraction functions. It is based on the

constructive method. Appendix A gives a formal description of its syntax.

In our notation, a function f | an abstraction function or an auxiliary function (see

Subsubsection 3.2.3 for details about auxiliary functions) | is de�ned by

f(x1 : T1; : : : ; xn : Tn) = FunctionDef , n � 0

where T1; : : : ; Tn are types, and FunctionDef is either a composition de�nition or a condi-

tional de�nition, which is described below.

3.2.1 Composition De�nition

FunctionDef is a composition de�nition if it has the form

f 0(a1; : : : ; am) , m � 0

where f 0 and a1 ; : : : ; am may be the function on the left hand side (recursive de�nition),

constructors of the type in question, functions of the implementation type, or auxiliary

functions.

The abstraction function absF Stack in Figure 2, for example, is de�ned by a composi-

tion de�nition consisting of abs1 | an auxiliary function, and fetch:buf and fetch:ptr |

functions of the implementation type Record.

The notation does not allow non-constructors of the type in question. This is due to

our purpose of generating abstractors from abstraction functions, which will be explained

in Section 4.

3.2.2 Conditional De�nition

A function may be de�ned by a collection of several di�erent function de�nitions, each

associated with a condition. This is called a conditional de�nition, formed by keywords if,

elsif, and else, as shown below:

if B1 then

f1
elsif B2 then

f2
...

elsif Bn then

fn
else

fn+1
end

where B1; : : : ; Bn are Boolean functions, f1; : : : ; fn+1 are function de�nitions, and \elsif"

and \else" clauses are optional.

As an example, abs1 in absF Stack is de�ned by a conditional de�nition, where two

conditions, n = 0 and n 6= 0, are used.

8



3.2.3 Auxiliary De�nition

A function de�nition with k (k � 1) auxiliary functions has the form

f(x1 : T1; : : : ; xn : Tn) = FunctionDef

where

aux1(x1;1 : T1;1; : : : ; x1;n1 : T1;n1) = FunctionDef1
and

aux2(x2;1 : T2;1; : : : ; x2;n2 : T2;n2) = FunctionDef2
...

and

auxk(xk;1 : Tk;1; : : : ; xk;nk : Tk;nk) = FunctionDefk
end

where aux1 ; : : : ; auxk must appear in FunctionDef .

Auxiliary functions are de�ned in the same notation. FunctionDefi (1 � i � k) is either

a composition de�nition or a conditional de�nition. It may even contain its own auxiliary

functions; thus auxiliary de�nitions can be nested.

Using auxiliary functions, one may improve clarity of de�nitions and may easily de�ne

some functions which are otherwise di�cult to de�ne.

For example, instead of de�ning push by

push(s:Stack, e:Ele) = store.buf(store.ptr(s, fetch.ptr(s)+1),
store(fetch.buf(store.ptr(s, fetch.ptr(s)+1)),

fetch.ptr(store.ptr(s, fetch.ptr(s)+1)),
e

)
)

one may de�ne it by

push(s:Stack, e:Ele) = store.buf(s1, store(fetch.buf(s1), fetch.ptr(s1), e))
where s1 = store.ptr(s, fetch.ptr(s)+1)

which is much clearer.

As another example, consider types Set and Bin tree, shown in Figure 10 at page 23

and Figure 11 at page 24 respectively. Suppose Set is implemented by Bin tree, where

each node of a tree stores one element of a set. If function union is allowed to be used, the

abstraction function could be de�ned by

absF Set(t:Bin tree) =
if isnew(t) then

new
else

insert(union(absF Set(left(t)), absF Set(right(t))), value(t))
end

However, since union is not a constructor, it is not allowed to be used in the de�nition

of absF Set. To solve this problem, we introduce an auxiliary function abs1 as follows:

9



abs1(t:Bin tree, s:Set) =
if isnew(t) then

s
else

abs1(right(t), insert(abs1(left(t),s), value(t)))
end

Using abs1, we can easily de�ne absF Set by:

absF Set(t:Bin tree) = abs1(t, empty)
where

abs1(t:Bin tree, s:Set) =
if isnew(t) then

s
else

abs1(right(t), insert(abs1(left(t),s), value(t)))
end

end

4 Abstractors

So far, we have described the application of abstractors in communicating ADT values and a

notation for writing abstraction functions. In this section, we give a de�nition of abstractors

and show how to derive abstractors from abstraction functions.

4.1 Abstractors

In order to de�ne abstractors, we �rst need to de�ne construction terms. For a type T , the

set of its construction terms, Term T , is the smallest set of strings which satis�es:

1. If f :�! T is a constructor of T , then the symbol f is in Term T .

2. If f : T1�: : :�Tn �! T is a constructor of T , then for every t1 2 Term T1; : : : ;tn 2
Term Tn, the string f(t1,: : :,tn) is in Term T .

Thus, a construction term is a string built from alphabets including symbols \(", \)",

\,", constructor symbols of T , and construction terms of base types of T . To distinguish

construction terms from other expressions, in the sequel, we use the typewriter font for

them.

The abstractor of T, denoted by abs T , is a function

abs T : T �! Term T

which takes as input a value and produces as output a construction term whose evaluation

yields the value. We assume the abstractors of base types already exist. For simplicity, if

T 0 is a base type, we use x to represent abs T 0(x).

Formally, abs T can be speci�ed in the following way: for every constructor of T

cons : T1 � : : :� Tn �! T

de�ne an equation

abs T (cons(x1; : : : ; xn)) = cons(abs T1(x1), : : :,abs Tn(xn))

10
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Figure 5: An abstract stack

For example, the abstractor of Stack can be speci�ed by

abs Stack : Stack �! Term Stack

abs Stack(new) = new

abs Stack(push(s; e)) = push(abs Stack(s),e)

where \push(abs Stack(s),e)" is a concatenation of the string \push(", the string returned

by abs Stack(s), and the string \,e)".

Consider the stack shown in Figure 5 which has 12 at the top and 10 at the bottom.

Taking this stack as an input, abs Stack will return the construction term:

push(push(push(new,10),11),12)

4.2 General Strategies for Generating Abstractors

Basically, abstractors can be generated from speci�cations or from implementations. For a

given type T , in generation from speci�cations, a generator analyzes the speci�cation of T
and derives the abstractor, which is composed purely of calls on the functions of T. The
abstractor is independent of any particular implementation and, therefore, can be used by

all of implementations of T . Thus, in this method, only one abstractor is needed for a given

type.

For example, the abstractor of Stack generated from its speci�cation would be like

abs Stack(v:Stack) =
if isnew(v)

new

else

push(abs Stack(pop(v)),top(v))

11



Here abs Stack consists only of functions of Stack | isnew, pop, and top; it does not

assume any particular implementation, so can be viewed as a built-in function of Stack and

be exported to the outside.

In generation from implementations, the generator analyzes the relationship between T
and a particular implementation type and derives the abstractor for that implementation.

Thus, one abstractor is required for each implementation of a type.

As an example, the abstractor for the implementation of Stack given in Figure 2 would

be like

abs Stack(r: Record[buf:Array[Ele], ptr:Nat]) = abs1(fetch.buf(r), fetch.ptr(r))
where

abs1(a:Array[Ele], n:Nat) =
if n=0 then

new

else

push(abs1(a,n-1), fetch(a,n))
end

end

Since abs T involves functions of the implementation type Record | fetch:buf and

fetch:ptr, it can only be used by this implementation. We may view it as a hidden function

of the implementation.

This paper focuses on generation from implementations; those interested in details of

generation from speci�cations, please see reference [HL92]. In the next subsection, we shall

show how to produce the abstractor of an implementation from its abstraction function.

4.3 Transforming Abstraction Functions into Abstractors

Given an implementation of T , suppose its implementation type is T 0. Recall that the

abstraction function absF T converts concrete values into abstract values, which will be

ultimately expressed in terms of functions of T . Since our notation does not allow non-

constructor functions of T to be used in the de�nition of absF T , the resulting abstract

values are actually represented in terms of constructors of T , that is, construction terms.

Thus, by replacing every call on a constructor in absF T with the corresponding string,

absF T becomes abs T .

Below is an algorithm to transform an abstraction function into an abstractor.

Algorithm: Transforming an abstraction function into an abstractor.

Input: The text of an abstraction function absF T .

Output: The text of the corresponding abstractor abs T .

For every auxiliary function heading in absF T

Replace every occurrance of x : T (if any) with x : Term T .

For every function de�nition in absF T

Replace every call on a constructor cons(a1; : : : ; an)

(suppose cons : T1 � � � � � Tn �! T ) with a string cons(abs T1(a1) , � � � , abs Tn(an)).

As an example, given the abstraction function absF Set in Subsection 3.2.3, the above

algorithmwill produce the abstractor abs Set (based on the implementation type Bin tree):
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Figure 6: Relationship between abstraction functions and abstractors

absF Set(t:Bin tree) = abs1(t, empty)
where

abs1(t:Bin tree, s:Term Set) =
if isnew(t) then

s
else

abs1(right(t), insert(abs1(left(t),s),abs Ele(value(t))))
end

end

Figure 6 shows the relationship between an abstraction function and the corresponding

abstractor. Any input to the abstraction function (a concrete value) can be an input to the

abstractor; any output from the abstraction function (a abstract value) has a corresponding

construction term (an output from the abstractor). Thus, for a pair of input and output

of the abstraction function, there exists a pair of input and output of the abstractor. The

abstraction function and abstractor are naturally related to each other.

4.4 An Example

Let us look at an example of the computation process of abstractors. Consider a concrete

stack shown in Figure 7. Its construction term for the stack is

push(push(push(new,10),11),12)

Now we show that given the concrete stack, abs Stack de�ned in Subsection 4.2 will return

this construction term.

Denoting the concrete stack by r, we have
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abs Stack(r)

f by the de�nition of abs Stack g

= abs1(fetch:buf(r); fetch:ptr(r))

f by fetch:ptr(r) = 3 g

= abs1(fetch:buf(r); 3)

f by the else clause of abs1 g

= push(abs1(fetch:buf(r); 3� 1), fetch(fetch:buf(r); 3))

f by fetch(fetch:buf(r); 3) = 12 g

= push(abs1(fetch:buf(r); 2),12)

f by the else clause of abs1 g

= push(push(abs1(fetch:buf(r); 2� 1), fetch(fetch:buf(r); 2)),12)

f by fetch(fetch:buf(r); 2) = 11 g

= push(push(abs1(fetch:buf(r); 1),11),12)

f by the else clause of abs1 g

= push(push(push(abs1(fetch:buf(r); 1� 1), fetch(fetch:buf(r); 1)),11),12)

f by fetch(fetch:buf(r); 1) = 10 g

= push(push(push(abs1(fetch:buf(r); 0),10),11),12)

f by the if clause of abs1 g

= push(push(push(new,10),11),12)

5 Discussions and Conclusions

As far as we know, in the literature, abstraction functions are only used in proving the

correctness of implementations and in helping understand implementations. In this paper,
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we explore a new use of abstraction functions | in generating abstractors. Moreover, the

generation is quite simple.

We also propose a notation for writing abstraction functions, which has not been seen

in the literature.

Our approach does not place an excessive burden on the user. In the literature, much

work calls for the user to provide the abstraction function for every implementation of a

type. For example, abstraction functions are an integral part of Alphard programs[Sha81];

they are an essential piece of information contained in internal module documents[PM90];

and they are strongly recommended to be provided as comments in CLU programs[LG86].

In addition, de�ning abstraction functions itself should not be a problem to the user, since

when designing an implementation of a type, he at least in his mind has the relationship

between the implementation type and the type to be implemented.

In systems which use construction terms as exchange representations to communicate

ADT values, since abstraction functions can be easily transformed into conversion routines

(abstractors), the user is freed from the burden of writing complex conversion routines that

translate ADT values from one representation to another.

Our notation requires abstraction functions to be de�ned in purely functional style.

This may sacri�ce performance for clarity. One possible direction of future work would be

in exploring ways to transform abstraction functions from functional style to imperative

style, so as to improve the performance.

Acknowledgments We wish to thank Tianling Lu for her many helpful comments on two

earlier drafts of this paper, which, among other things, make the presentation much clearer.
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A The Syntax of the Notation for Specifying Abstrac-

tion Functions

This section describes the syntax of the speci�cation language for abstraction functions.

We use a variant of Backus-Naur-Form. The particular di�erences are

1. [X] means X is optional.

2. fXg denotes zero or more repetitions of X.

3. Items enclosed in single quotes ` ' are terminals.

The syntax is as follows.

FunctionDef ::= Id `=' Exp [AuxiliaryDef]

Exp ::= CompositionExp

j ConditionExp

CompositionExp ::= Id [`(' CompositionExp f`,' CompositionExpg `)']

ConditionExp ::= `if' CompositionExp `then' CompositionExp

f`elsif' CompositionExp `then' CompositionExpg
[`else' CompositionExp]

`end'

AuxiliaryDef ::= `where' FunctionDef f`and' FunctionDefg `end'

Id ::= Letter fLetter j Digit j ` 'g

Letter ::= `A' j : : : j `Z' j `a' j : : : j `z'

Digit ::= `0' j : : : j `9'

B Example Abstraction Functions

This section presents example abstraction functions for some common implementations of

several types.

For the ease of reading, we use the conventional notation to write functions of types

Array and Record. In particular, we use A[i] to access the element of array A with index i

and R:f to access the �eld f of record R.

B.1 Set

Here we shall consider two implementations of Set; its speci�cation is given in Figure 10 at

page 23.

16



B.1.1 A Record Representation of Set

Suppose Set is represented by

Representation Set=Record[buf:Array[Ele], size:Nat]

The elements of a set are stored in buf at indexes 1; 2; : : : ; size; and size is initialized

to 0.

The abstraction function is as follows.

absF Set(r:Record[buf:Array[Ele], size:Nat]) = abs1(r.buf, r.size)
where

abs1(a:Array[Ele], n:Nat) =
if n=0 then

empty
else

insert(abs1(a,n-1), a[n])
end

end

B.1.2 Another Record Representation of Set

Suppose Set is represented by

Representation Set=Record[buf:Array[Ele], low:Nat, high:Nat]

The elements of a set are stored in buf at indexes low; low + 1; : : : ; high; initially, low

and high are set to be equal.

The abstraction function is as follows.

absF Set(r: Record[buf:Array[Ele], low:Nat, high:Nat]) = abs1(r.buf, r.low, r.high)
where

abs1(a:Array[Ele], l:Nat, h:Nat) =
if l=h then

empty
else

insert(abs1(a, l+1, h), a[l])
end

end

B.2 Bin tree

For the speci�cation of Bin tree, see Figure 11 at page 24.

B.2.1 A Record Representation of Bin tree

Suppose Bin tree is represented by

Representation Bin tree=Record[data:Ele, left:Bin tree, right:Bin tree]

where data stores the data item of the root of a tree, and left and right point to the left

subtree and the right subtree respectively.

The abstraction function would be
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absF Bin tree(r: Record[data:Ele, left:Bin tree, right:Bin tree])=
if isnewRec(r) then

newTree
else

maketree(r.data, abs1(r.left), abs1(r.right))
end

B.2.2 An Array Representation of Bin tree

Suppose Bin tree is represented by

Representation Bin tree=Array[Ele]

Initially, the root of a tree is at index 1 in the array; and, for a subtree with root at

index i, the roots of its left and right subtrees are at 2� i and 2� i+ 1 respectively.

We assume the elements of the array are initialized to a special value, say \null". The

abstraction function would be

absF Bin tree(a:Array[Ele]) = abs1(a, 1)
where

abs1(a:Array[Ele], n:Nat) =
if A[n]=null then

newTree
else

maketree(a[n], abs1(a, 2*n), abs1(a, 2*n+1))
end

end

B.3 Graph

To save space, we do not give a speci�cation of Graph here. We assume the constructors of

Graph are

� newGraph: creates an empty graph.

� addNode(g : Graph; n : Nat): returns a graph which consists of the graph g and the

node n if n was not in g, otherwise returns g.

� addEdge(g : Graph; n1 : Nat; n2 : Nat): returns a graph which consists of the graph

g and an edge between n1 and n2 if no edge between n1 and n2 was in g, otherwise

returns g.

B.3.1 An Adjacency Matrix Representation of Graph

An adjacency matrix A is a square matrix of boolean values, where A[i; j] = True means

there is an edge from node i to node j, and A[i; j] = False means there is not.

Assume Array1 is a two dimensional array type. The representation of Graph by adja-

cency matrix is

Representation Graph=Array1[Boolean]
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Suppose the nodes of a graph are numbered from 1 to max. The abstraction function

would look like

absF Graph(a: Array1[Boolean]) = abs1(a, max)
abs1(a:Array1[Boolean], n:Nat) = rows(a,n,n,nodes(n))
where

rows(a:Array1[Boolean], m:Nat, n:Nat, g:Graph) =
if m=0 then

g
else

columns(a, m, n, rows(a,m-1,n,g))
end

where

columns(a:Array1[Boolean], m:Nat, n:Nat, g:Graph) =
if n=0 then

g
elsif a[m,n]=true then

addEdge(columns(a,m,n-1,g),m,n)
else

columns(a,m,n-1,g)
end

end

and

nodes(n:Nat) =
if n=0 then

newGraph
else

addNode(nodes(n-1), n)
end

end

where nodes(n) returns

addNode(: : :addNode(newGraph; 1) : : :n)

and columns(a;m; n; g) returns

addEdge(: : :addEdge(g;m; n1) : : :m; ni)

whenever a[m;n1]; : : : ; a[m;ni] are true for 0 < n1 < : : : < ni � n.

B.3.2 An Adjacency List Implementation of Graph

Now consider another representation of Graph, adjacency list, where a graph is represented

as a list of nodes, each of which maintains a list of its neighbours. The representation would

be

Representation Graph=Record[nd:Node, next:Graph]
where Node=Record[id:Nat, nbours:Node]

The abstraction function would be like
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absF Graph(r: Record[nd:Node, next:Graph]) = edges(nodes(newGraph,r),r)
where

edges(g:Graph, r:Record[nd:Node, next:Graph]) =
if isnewRec(r) then

g
else

edges(edges1(g, r.nd, r.nd.nbours), r.next)
end

where

edges1(g:Graph, head:Node, nbs:Node) =
if isnewRec(nbs) then

g
else

edges1(addEdge(g, head.id, nbs.id), head, nbs.nbours)
end

end

and

nodes(g:Graph, r:Record[nd:Node, next:Graph]) =
if isnewRec(r) then

g
else

nodes(addNode(g, r.nd.id), r.next)
end

end

where nodes(g; r) returns

addNode( : : : addNode(g; r:nd:id) : : : r:next: � � �:next:nd:id)

and edges1(g; head; nbs) returns

addEdge( : : : addEdge(g; head:id; nbs:id) : : : head:id; nbs:nbours � � �nbours:id)

C Speci�cation of Several Types

Figures 8 through 11 present the speci�cations of Array, Record, Set and Bin tree respec-

tively.
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Speci�cation

Array

Parameters

Ele: Type

Declaration

Array[Ele]

Base types

Ele, Nat

Functions

newArray: ! Array
store: Array � Nat � Ele ! Array
fetch: Array � Nat ! Ele

Constructors

newArray, store

Equations

fetch(store(a,n1,e), n2) =

�
e if n1 = n2,

fetch(a, n2) otherwise.

Figure 8: Speci�cation of Array
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Speci�cation

Record

Parameters

f1; : : : ; fn: Identi�er
Declaration

Record[f1 : T1; : : : ; fn : Tn]

T1; : : : ; Tn: Type

Base types

Boolean, T1; : : : ; Tn

Functions

newRec: ! Record
isnewRec: Record ! Boolean
store.fi: Record � Ti ! Record
fetch.fi: Record ! Ti

Constructors

newRec, store.fi

Equations

fetch.fi(store.fj(r,v)) =

�
v if i = j,

fetch.fi(r) otherwise.
isnewRec(newRec) = true
isnewRec(store.fi(r, v)) = false

Figure 9: Speci�cation of Record
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Speci�cation

Set

Parameters

Ele: Type

Declaration

Set[Ele]

Base types

Boolean, Ele

Functions

empty: ! Set
isempty: Set ! Boolean
insert: Set � Ele ! Set
has: Set � Ele ! Boolean
union: Set � Set ! Set

Constructors

empty, insert

Equations

has(empty, e) = true

has(insert(s, e1), e2) =

�
true if e1 = e2,
has(s, e2) otherwise.

union(s, empty)) = s
union(s1, insert(s2, e)) = insert(union(s1, s2), e)

Figure 10: Speci�cation of Set
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Speci�cation

Bin tree

Parameters

Ele: Type

Declaration

Bin tree[Ele]

Base types

Boolean, Ele

Functions

newTree: ! Bin tree
maketree: Bin tree � Ele � Bin tree ! Bin tree
left : Bin tree ! Bin tree
right: Bin tree ! Bin tree
data: Bin tree ! Ele
isnew: Bin tree ! Boolean

Constructors

newTree, maketree
Equations

left(maketree(l, e, r)) = l
right(maketree(l, e, r)) = r
data(maketree(l, e, r)) = e
isnew(newTree) = true
isnewTree(maketree(l, e, r)) = false

Figure 11: Speci�cation of Bin tree
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