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Abstract

In this paper we consider three fundamental communicationproblems on the star interconnection network:

the problem of simultaneous broadcasting of the same message from every node to all other nodes, or

multinode broadcasting, the problem of a single node sending distinct messages to each one of the other

nodes, or single node scattering, and �nally the problem of each node sending distinct messages to every

other node, or total exchange. All of these problems are studied under two di�erent assumptions: the

assumption that each node can transmit a message of �xed length to one of its neighbors and simultaneously

it can receive a message of �xed length from one of its neighbors (not necessarily the same one) at each

time step, or single link availability (SLA), and the assumption that each node can exchange messages of

�xed length with all of its neighbors at each time step, or multiple link availability (MLA). In both cases

communication is assumed to be bidirectional. The cases where the originating processor wishes to send only

one or more than one message to each one of the other processors are distinguished when necessary. Lower

bounds are derived for these problems under the stated assumptions, and optimal algorithms are designed in

terms both of time and number of message transmissions. Although the algorithms derived for the �rst two

problems require the minimum amount of the above resources, the algorithm designed for the total exchange

problem is optimal only to within a multiplicative factor. All the communication algorithms presented in

this paper are based on the construction of spanning trees with special properties on the star graph to �t

di�erent communication needs. A special framework is developed to facilitate the construction of these trees.

The scheduling disciplines that lead to optimal results in each case are described.

Key words and phrases: communication algorithm, interconnection network, parallel algorithm, spanning

tree, star graph.



1 Introduction

When algorithms execute on a parallel computer, processors are often required to exchange information. It

is well known that the overhead associated with this interprocessor communication is the major drawback

of parallel computers in which processors are linked by an interconnection network. Surprisingly, the com-

munication problems arising during the execution of many algorithms are not arbitrary but fall into certain

categories that de�ne communication patterns. It is important to �nd ways to e�ciently execute those

communication patterns. In this paper we are concerned with three major communication problems for the

star interconnection network, namely the multinode broadcasting, the single node scattering and the total

exchange problems. Multinode broadcasting is the problem of simultaneous broadcasting of the same message

from every node to all other nodes, single node scattering is the problem of a single node sending distinct

messages to each one of the other nodes and total exchange is the problem of each node sending distinct

messages to every other node. All of these problems are studied under the following two major assumptions:

1) the Single Link Availability, or SLA assumption, meaning that in one time step a node can send a message

of �xed length over one of its incident links and at the same time it can receive a message of �xed length

from one of its incident links (not necessarily the same link), and 2) the Multiple Link Availability, or MLA

assumption, meaning that in one time step a node can send (receive) messages of �xed length to (from) all

of its incident links simultaneously. Information is transferred along the links of the network in packets. The

size of all the packets is equal to one and it takes unit time to transmit a packet over a link. Communication

is assumed to be bidirectional meaning that in one time step one packet can be transmitted along a link in

each direction. Unless otherwise speci�ed, in all of the algorithms presented, it is assumed that each node

has one packet to send to every other node. The multinode broadcasting, single node scattering and total

exchange problems are respectively the same as the all-to-all broadcasting, one-to-all and all-to-all person-

alized communication problems, as addressed in [16] for the hypercube network. Also the single link and

multiple link availability assumptions are respectively the same as the one-port and all-port communication

models [16].

A common approach to implement communication algorithms on interconnection networks is to embed

spanning trees with special properties on those networks. The root of the tree is the origin of the messages.

The links of the embedded tree are used for message transmission. All of the algorithms presented in this

paper are based on the construction of spanning trees with special properties and the use of appropriate

scheduling disciplines to achieve optimal results.

The three communication problems described above are not new, and have been previously studied for

a number of interconnection networks such as the hypercube [11, 16]. However it is the �rst time they are

considered on the star graph (de�ned below). The multinode broadcasting problem on the star graph under

the assumption that messages of arbitrary length can be exchanged between two adjacent processors at each

time step has been studied in [9, 20]. Another class of spanning trees, called edge-disjoint spanning trees,

that reduce the communication time of the single node broadcasting problem on the star network and o�er

many applications in the area of fault tolerant communication algorithms have been constructed in [14]. The

problem of generalized routing on star graphs was �rst addressed in [23]. Other communication algorithms

on the star graph can be found in [1, 7, 9, 20, 25, 26, 30].
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Figure 1: The 4-star: 4 interconnected 3-stars

The n-star graph, denoted by Sn, has n! nodes. Each of the nodes is labeled with a di�erent permutation

of n distinct symbols (without loss of generality, we henceforth use the set of symbols f1; 2; :::; ng to label

the nodes of Sn). Each node of Sn is connected to those nodes that can be obtained by interchanging its

�rst with its ith symbols, 2 � i � n. In this way, every node is an endpoint of n � 1 links as shown in

Fig.1 [1]. As shown in [1, 2], Sn enjoys a number of properties desirable in interconnection networks. These

include node and link symmetry, maximal fault tolerance, and strong resilience. Because of its symmetry,

the graph is easily extensible, can be decomposed in various ways and allows for simple routing algorithms

[24, 28]. The graph was shown to be Hamiltonian in [4, 17, 22], and e�cient algorithms for sorting [21] and

Fourier transform computation [12, 13], were developed on it. Various other algorithms have been developed

on the star graph in [5, 6, 8, 27, 29]. In addition Sn is superior to Cn (the n-cube) [3] with respect to two

key properties: degree (number of links at each node), and diameter (maximum distance between any two

nodes) [2]. The degree of Sn is n � 1, i.e. sublogarithmic to the number of its nodes while a hypercube

with �(n!) nodes has degree �(logn!) = �(n logn), i.e. logarithmic to the number of its nodes. The same

can be said for the diameter of Sn which is b
3(n�1)

2
c. The star as well as the hypercube networks belong to

the family of Cayley graphs. It is also known that Sn can be decomposed into n subgraphs Sn�1 by �xing

each di�erent symbol in one particular position 2 to n [1]. If we �x a speci�c symbol in the last position we

observe that there are (n� 1)! nodes that constitute an Sn�1. For example if the symbol in the last position

is held �xed with any symbol, then we get (n � 1)! nodes (i.e. an Sn�1) for every one of the n symbols.

Thus the nodes of the Sn can be partitioned into n groups each containing (n � 1)! nodes and each being

isomorphic to Sn�1 as shown in Fig.1. If this decomposition is recursively applied to the resulting substars,

Sn can be decomposed into n!=k! substars Sk, 1 � k � n� 1.

This paper is organized as follows. In section 2 lower bound are derived for all of the above problems under
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the stated assumptions. Section 3 describes two separate algorithms for the multinode broadcasting problem

under the MLA assumption. The �rst of these is based on the construction of Hamiltonian paths on the

star graph. The second algorithm uses a technique previously developed for the hypercube interconnection

network in [11]. Due to the completely di�erent structure of the star graph, however, the implementation

is nontrivial. It also leads to the interesting observation that although the technique developed in [11] was

motivated by speci�c properties of the hypercube topology, it can actually be used in other networks, having

little or no resemblance to the hypercube. In section 4 the multinode broadcasting problem under the SLA

assumption is solved using a Hamiltonian cycle. In section 5, we develop two algorithms for the single node

scattering problem under the MLA assumption. The technique used in the �rst algorithm resembles partially

the one developed in [11] for the hypercube and uses all the de�nitions and proofs presented in section 2 to

make the technique applicable to the star graph. In the second algorithm a simpler technique is presented

that leads to asymptotically optimal results. In section 6 an algorithm is given for the single node scattering

problem under the SLA assumption. In section 7 and 8 we give algorithms for the total exchange problem

under the MLA and the SLA assumptions respectively. Finally, a summary of the results obtained in this

paper is presented in section 9 along with some suggestions for further research.

2 Lower bounds

Multinode broadcasting on an interconnection network is the problem where each node wishes to send the

same message to all other nodes. In a multinode broadcasting algorithm on Sn, each node must receive a

total of n! � 1 messages, one from each one of the other nodes. As a consequence the minimum number

of message transmissions required for the algorithm to complete is n!(n!� 1). Under the SLA assumption

n! links are available at each time step. This means that the minimum time required for the algorithm to

complete is n!� 1. Under the MLA assumption all n!(n� 1) links can be used for message transmissions at

each time step. This means that the minimum time required for the algorithm to complete is dn!�1
n�1

e.

Single node scattering on an interconnection network is the problem where a speci�c node wishes to send

a di�erent message to each one of the other nodes. In a single node scattering algorithm on Sn, n! � 1

di�erent messages must be transmitted by the origin of messages. Under the SLA assumption the origin can

transmit only one message at each time step and the minimum time required for the algorithm to complete

is n!� 1. However under the MLA assumption all the n� 1 links incident to the origin of the messages can

be used simultaneously at each time step and as a consequence the minimum time required for the algorithm

to complete is dn!�1
n�1

e. The number of message transmissions required can be found as follows: A message

destined for a speci�c node must travel as many links as the shortest distance from the origin to this node.

If we sum the shortest distances from the origin to each node, this will be the minimum number of message

transmissions required for this problem:

b 3(n�1)
2

cX
k=1

kjDkj = n!

Pb 3(n�1)
2

c
k=1 kjDkj

n!
= n!d

jDkj is the number of nodes at a distance k from the origin and d has been shown to be [2]:

d = n+
2

n
+Hn � 4
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Hn is the nth harmonic number: Hn = 1 + 1
2
+ 1

3
+ ::: + 1

n
. As a consequence the minimum number of

message transmissions required for a single node scattering algorithm on Sn is:

n!(n+
2

n
+Hn � 4)

Total exchange on an interconnection network is the problem where each node wishes to send a distinct

message to every other node, in other words, every possible pair of nodes exchange distinct messages.

The total exchange algorithm is equivalent to n! di�erent single node scattering algorithms, one from each

one of the nodes in Sn. As a consequence the minimum number of message transmissions required is

(n!)2(n+ 2
n
+Hn� 4). Under the SLA assumption n! links are available at each time step. This means that

the minimum time required for the algorithm to complete is n!(n+ 2
n
+Hn�4). Under the MLA assumption

n!(n� 1) links can be used for message transmission at each time step simultaneously. This means that the

minimum time required for the algorithm to complete is d
n!(n+ 2

n
+Hn�4)

n�1
e.

If we denote by tn the quantity n!(n+ 2
n
+Hn� 4), then the above lower bounds are summarized in the

table below:

problem number of transmissions time(SLA) time(MLA)

multinode broadcasting n!(n!� 1) n!� 1 d
n!�1
n�1

e

single node scattering tn n!� 1 d
n!�1
n�1

e

total exchange n!tn tn d
tn
n�1

e

The algorithms derived here for all of the above problems are optimal in terms of time and number of message

transmissions. The methods used in this section to derive lower bounds for the communication problems

under consideration are straightforward and similar to the methods used in [11] to derive lower bounds for

the same problems on the hypercube network.

3 Multinode broadcasting under the MLA assumption

We will present two di�erent ways to embed spanning trees on the star graph that both lead to optimal

multinode broadcasting algorithms under the MLA assumption, in terms both of time and of number of

message transmissions. The �rst such spanning tree is based on the construction of Hamiltonian paths on

the star graph. The second is based on a speci�c technique for tree construction that has been previously

used for other interconnection networks (i.e. the hypercube), and that can be modi�ed for the star graph.

Before we proceed to the construction of the multinode broadcasting algorithm we list the characteristics

that a broadcasting algorithm from a single node of the star graph should have. We choose this node to

be node 12:::n. We then show how this broadcasting algorithm can be replicated to each other node of the

star graph and the conditions that are necessary to ensure that the concurrent execution of broadcasting

algorithms from all nodes of the star graph constitutes an optimal multinode broadcasting algorithm. The

broadcasting algorithm from node 12:::n must have the following characteristics:

1. The message from node 12:::n must reach all nodes of Sn.

2. To minimize the number of message transmissions a node must not receive the same message more

than once.
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3. To guarantee that the multinode broadcasting algorithm obtained terminates in d
n!�1
n�1

e time steps, at

each time step the message (from node 12:::n) must reach n� 1 new nodes.

4. The n � 1 nodes that receive the message (from node 12:::n) at the same time step must be directly

connected to nodes that have received this message at a previous time step.

De�nition 1: The type of a link (x; y) of Sn, denoted by t(x; y), 2 � t(x; y) � n, is de�ned to be the

position of the symbol that we need to exchange with the �rst symbol of node x in order to get node y.

De�nition 2: Consider a node q = q1q2:::qn of the star graph. We de�ne Fq, the translation with re-

spect to q, as the bijection from the set of the n! permutations of the symbols f1; 2; :::; ng to itself:

Fq(x) = q � x

(this operation is often referenced as permutation composition). For example, if q = 312 then Fq(213) = 132.

By translation of a graph with respect to q we mean that each node of the graph is translated with respect

to q. The inverse translation with respect to q, denoted by F�1
q , is de�ned as:

F�1
q (x) = q�1

� x

Let us denote by Li(q) the set of links on which the message from node q is transmitted at time step i,

1 � i � d
n!�1
n�1

e, of the algorithm. For each i, Li(q) is obtained from Li(12:::n) by translation under q (this

means that if (x; y) 2 Li(12:::n) then (Fq(x); Fq(y)) 2 Li(q)).

Theorem 1: If the sets of links Li(12:::n), 1 � i � d
n!�1
n�1

e, form a single node broadcasting algorithm

from node 12:::n, then the sets of links Li(q), 1 � i � d
n!�1
n�1

e, de�ne a single node broadcasting algorithm

from node q of the star graph.

Proof: We prove that if (x; y) 2 Li(12:::n) is a link then (Fq(x); Fq(y)) 2 Li(q) is also a link. This is

an immediate consequence of the fact that the translation operation induces an automorphism of a Cayley

graph. More analytically this becomes obvious if we write (x; y) and (Fq(x); Fq(y)) as:

(x1x2:::xi�1xixi+1:::xn; xix2:::xi�1x1xi+1:::xn)

(qx1qx2 :::qxi�1qxiqxi+1 :::qxn; qxiqx2:::qxi�1qx1qxi+1 :::qxn)

Clearly if (x; y) is a link then (Fq(x); Fq(y)) is also a link of the same type. Since the spanning tree rooted

at node 12:::n covers all the nodes of the star graph and Fq is a bijection, the spanning tree rooted at node

q also covers all the nodes of the star graph. 2

This theorem guarantees that if a single node broadcasting algorithm from node 12:::n exists (in other

words link sets Li(12:::n), 1 � i � d
n!�1
n�1

e, are speci�ed) then the link sets Li(q) for all i, 1 � i � d
n!�1
n�1

e,

that form a single node broadcasting algorithm from node q, can be easily derived, for all nodes q of Sn.

However our objective is to create a multinode broadcasting algorithm. If we can guarantee that the

broadcasting algorithms from all nodes of Sn can be executed simultaneously con
ict free, then our objective

is achieved. In other words we want for each i, 1 � i � d
n!�1
n�1

e, the sets Li(q) where q ranges over all the

nodes of the star graph to be disjoint. The following theorem gives a necessary condition so that the above

is true (this theorem is proved in [11] for the hypercube; here we show that it also holds for the star graph,

the proof we use is similar).
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Figure 2: Multinode broadcasting under the MLA assumption (algorithm 1): (a) Sp anning tree construction

(b) Spanning tree construction on S4

Theorem 2: If the links in each Li(12:::n) are all of di�erent types, then for each i, the sets Li(q), where

q ranges over all possible permutations of symbols f1; 2; :::; ng, are disjoint.

Proof: Assume two di�erent links (x; y) 6= (x0; y0) 2 Li(12:::n) for some i, and take the links (Fq(x); Fq(y)) 2

Li(q) and (Fq0(x
0); Fq0(y

0)) 2 Li(q
0) which are obtained by (x; y) and (x0; y0) respectively using trans-

lation under two di�erent nodes of Sn, q and q0. Also assume that (Fq(x); Fq(y)) = (Fq0(x
0); Fq0(y

0)).

Since the link type is preserved under translation (theorem 1), this means that t(x; y) = t(Fq(x); Fq(y)) =

t(Fq0(x
0); Fq0(y

0)) = t(x0; y0) which contradicts our assumption that (x; y) and (x0; y0) are two di�erent links

of Li(12:::n). 2

3.1 Algorithm 1

We are now ready to describe a multinode broadcasting algorithmunder the MLA assumption. The algorithm

is composed of two phases. The �rst phase of the algorithm is based on the construction of a spanning tree

of depth (n� 1)! rooted at each node of the star graph. The tree rooted at node x1x2:::xn is responsible for

transferring the message broadcast from this node to all other nodes except those that start with symbol

x1. The second phase of the algorithm completes the broadcasting of information. The two phases of the

algorithm are described separately in what follows.
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3.1.1 Phase 1

We �rst need some de�nitions.

De�nition 3: It is well known that each permutation can be de�ned by its cycle notation. In a cycle

notation each symbol's position is that occupied by the next symbol in the cycle (cyclically) [18]. Cycles

have two or more symbols, singletons are not considered to be cycles. For example the cycle notation of

341526 is (13)(245).

De�nition 4: Two cycle notations are said to be equivalent if they correspond to the same permutations.

De�nition 5: Let us de�ne the function:

r(i) =

�
i; if i = 1

(i � 1)mod(n� 1) + 2; otherwise

with domain and range f1; 2; :::; ng. We de�ne R the cycle rotation of a node x so that for every cycle

(xi1xi2 :::xij) that belongs to the cycle notation of x, cycle (r(xi1)r(xi2):::r(xij)) belongs to the cycle notation

of R(x). By Rj = R�Rj�1 we denote j applications of cycle rotation. By cycle rotation of a graph we mean

that cycle rotation is applied to each node of the graph.

Theorem 3: If x and y represent nodes of Sn, and x0 and y0 are produced by x and y respectively under

cycle rotation then:

1. If x and y are connected then x0 and y0 are also connected (in other words connectivity is preserved

under cycle rotation in Sn).

2. If (x; y) (the link connecting nodes x and y) is a link of type t(x; y) then (x0; y0) is a link of type

t(x0; y0) = (t(x; y)� 1)mod(n � 1) + 2.

Proof: See Appendix A. 2

We are now ready to describe the construction of the depth (n� 1)! spanning tree rooted at node 12:::n

of the star graph and spanning all other nodes except those starting with symbol 1. This tree will follow all

the appropriate requirements so that the tree rooted at any other node q can be obtained under translation

with respect to q.

There are n�1 links of types 2; 3; :::; n leaving node 12:::n. Let Ti, 2 � i � n, denote the subtree rooted at

the node connected to 12:::n over the link of type i. Subtree Ti is de�ned to be a Hamiltonian path of length

(n� 1)! spanning the nodes of that substar Sn�1 of Sn, which results if we �x symbol 1 at the ith position;

this substar will be denoted by Sin�1 in what follows (see Fig.2(a)). Since there are many algorithms to

construct Hamiltonian paths on the star graph [4, 17, 22] this seems to be a very easy approach to follow.

Let us recall that Li(q) denotes the set of links on which a message from node q is transmitted at time

step i of the algorithm. In order to guarantee that the sets Li(q), where q ranges over all the nodes of the

star graph, are disjoint and as a consequence the single node broadcasting algorithms can proceed con
ict

free from all nodes of Sn simultaneously, we must make sure that for each i all links in Li(12:::n) are of

di�erent types (theorem 2). The maximum number of links each set Li(q) can have is n� 1, since there are

only n� 1 di�erent link types.

Assume that T2, rooted at node 213:::n, has been constructed using a Hamiltonian path algorithm. Each

Tj , 3 � j � n, is obtained from T2 under j � 2 cycle rotations. This guarantees that for each i, the links in
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Li(12:::n) are all of di�erent types (theorem 3). The following theorem is necessary to complete the spanning

tree construction.

Theorem 4: If T2 is a Hamiltonian path starting at node 213:::n and spanning all nodes of S2
n�1,

then Tj , 3 � j � n, obtained by T2 under j � 2 cycle rotations, is a Hamiltonian path starting at node

j23:::(j � 1)1(j + 1):::n and spanning all nodes of S
j
n�1.

Proof: Since T2 contains only links of types f3; 4; :::; ng, Tj will contain only links of types f2; 3; :::; (j�

1); (j + 1); :::; ng (theorem 3). Starting at node j23:::(j � 1)(j + 1):::n, and following links with types

f2; 3; :::; (j � 1); (j + 1); :::; ng only, symbol 1 stays �xed at position j. In other words all the nodes visited

belong to S
j
n�1.

We now have to show that Tj visits all nodes of S
j
n�1, or in other words no node in S

j
n�1 is visited more

than once. There is an one-to-one and onto function between the link types of T2 and those of Tj , 3 � j � n,

which is the following:

tj(i) = (i + j � 4)mod(n� 1) + 2; 3 � j � n; 2 � i � n

Since the star graph is link symmetric and the nodes traversed by path T2 are distinct this implies that the

nodes traversed by each other path Tj are also distinct. This completes the proof that Tj is a Hamiltonian

path for S
j
n�1. 2

In what follows we refer to this tree by spanning tree based on rotated Hamiltonian paths. Subtree Ti of

this spanning tree is a Hamiltonian path on nodes of Sin�1 and each subtree is a cycle rotation of its previous

one cyclically.

The same tree can be reproduced under translation (theorem 1) so that it is rooted at every node of the

star graph and all trees can be simultaneously used at each time step without collision. We now describe

how these trees can be used by allowing each node to store the minimum amount of information for the

structure of the trees. All nodes must use all of the n� 1 available links they have at each time step. Since

no collisions arise during the execution of the algorithm, at each time step i, node x belongs to n�1 di�erent

spanning trees rooted at n� 1 di�erent nodes of the star graph. Let y and z be two of those nodes. If Tj(y)

and Tk(z) are the speci�c subtrees of the spanning trees rooted at nodes y and z, respectively, to which x

belongs, then j 6= k. In other words, if T2 is speci�ed and in time step i of the algorithm a node forwards a

message received by links iinp to link iout then for each j, 3 � j � n, it also forwards a message received by

tj(iinp) to tj(iout).

Since there are (n � 1)(n � 1)! nodes that the broadcast message must reach at this �rst phase of the

algorithm, the time required is (n � 1)!. An example of a spanning tree on S4 can be seen in Fig.2(b). At

this point each node x1x2:::xn has received all broadcast messages except those from nodes that start with

symbol x1. This is taken care of by the second phase of the algorithm described below.

3.1.2 Phase 2

Each node x1x2:::xn must now receive (n � 1)! � 1 additional messages coming from nodes that start with

symbol x1. Each node x1x2:::xn is connected to n� 1 other nodes xix2:::xi�1x1xi+1:::xn that have received

all messages coming from nodes that start with symbol x1. So the messages that x1x2:::xn must receive
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Figure 3: Multinode broadcasting under the MLA assumption (algorithm 2): Spanni ng tree construction

on S4

should be received uniformly in d
(n�1)!�1

n�1
e time steps from all of its n�1 incident links. A rule that uniformly

distributes the messages over the n� 1 links is the following:

Rule 1: Node x1x2:::xn receives from its neighbor with �rst symbol xi, a message broadcast from

node x1 � xi, where xi 2 f1; 2; :::; ng � fx1g, and � represents any permutation of the (n � 2)! symbols

f1; 2; :::; ng� fx1; xig.

Using this rule node x receives (n � 2)! messages over each one of its incident links, except link with

type n over which it receives (n� 2)!� 1 messages. Since there are (n� 1)!� 1 messages that are uniformly

received by each node over n � 1 links this step requires d
(n�1)!�1

n�1
e time. So the total time required by

the algorithm is (n � 1)! + d
(n�1)!�1

n�1
e = d

n!�1
n�1

e. The number of message transmissions required by the

algorithm is n!(n!� 1). This means that this algorithm is optimal in terms of time and number of message

transmissions.

3.2 Algorithm 2

Before describing the construction of the spanning tree we need to establish some facts.
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De�nition 6: A group of nodes for which one is derived from the other under a cycle rotation in called

a necklace (the term necklace was initially used in [19] for similar groups of nodes in the shu�e-exchange

graph).

Theorem 5: A necklace has at most n� 1 distinct nodes.

Proof: A node is mapped to itself after n � 1 applications of cycle rotation. This is simple to show

because rn�1(i) = i, for all i 2 f1; 2; :::; ng and the cycle notations of nodes x and Rn�1(x) are the same.

However we say at most n � 1 because an equivalent cycle notation can result after only j < n � 1 cycle

rotations. For example node 14325 of S4, with cycle notation (24), is mapped to its self only after 2 (and not

n � 1 = 4) cycle rotations, because the node obtained after 2 cycle rotations has cycle notation (42) which

is equivalent to (24). The size of a necklace is a divisor of n� 1. 2

Theorem 6: Each node that does not start with symbol 1 belongs to a necklace that has exactly n� 1

nodes.

Proof: Each node that does not start with symbol 1 has a cycle that includes symbol 1. This cycle is

mapped to itself only after n � 1 applications of R since 1 does not change under cycle rotation. 2

Theorem 7: Let x0 be obtained by applying R to node x of Sn (x0 = R(x)) then, the distance of x0

from node 12:::n equals the distance of x from node 12:::n.

Proof: In what follows we use cx and sx to denote the number of cycles in the cycle notation of node x,

and the number of symbols that belong to these cycles, respectively (see de�nition 3).

If node x starts with symbol 1, then its distance from node 12:::n is: cx+sx [1]. If x starts with a symbol

other than one, then its distance from node 12:::n is cx+ sx � 2. If x0 is obtained from x by application of a

cycle rotation then x0 has the same cycle structure as x and we conclude that cx = cx0 and sx = sx0 . Also if

x starts with symbol 1 then x0, also starts with symbol 1. To see this, note that since 1 does not belong to

any of the cycles in x, it does not belong to any of the cycles in x0 either, because any symbol in f2; :::; ng

is mapped to symbols in f2; :::; ng through r (see de�nition 5), and x0 starts with a symbol other than 1 as

well. If x starts with a symbol other than 1, which means that symbol 1 belongs to the cycle notation of

x, then 1 also belongs to the cycle notation of x0, since 1 is mapped to itself through r (see de�nition 5).

The reason r maps 1 to itself is to guarantee that distances between nodes of Sn are preserved under cycle

rotation. That was necessary since nodes that start with symbol 1 and nodes that do not, have di�erent

formulas to express the distance. 2

Given a star graph node, there are many di�erent ways to proceed to another node that is closer to node

12:::n. In each case one of the following rules can be applied:

Rule 2: For nodes that start with symbol 1, there is more than one way to proceed. If the number of

symbols contained in the cycle notation of the node is k, then there are k di�erent ways: move 1 to any of

the k positions not occupied by their correct symbols.

Rule 3: For nodes that start with a symbol other than 1 and have only one cycle in their cycle notation,

there is only one way to proceed: move the symbol in the �rst position to its proper position.

Rule 4: For nodes that start with a symbol other than 1 and have more than one cycle, there are two

di�erent ways to proceed:

(a) Move the symbol in the �rst position to its proper position. In this case either the number of
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cycles remains the same and the number of symbols that belong to the cycles is reduced by one,

or the number of cycles is reduced by one and the number of symbols that belong to the cycles

is reduced by two but symbol 1 comes to the �rst position of the node. The last case arises when

there is a cycle of the form (x; 1) with two symbols only and we move x to its proper position.

(b) If there are k symbols that belong to cycles that do not include symbol 1 then we can move along

any link de�ned by these symbols. This reduces the number of cycles by one (two cycles are

merged into one) without reducing the number of symbols in the cycles.

At this point we have described the necessary framework for the construction of the spanning tree that

satis�es all the requirements to form an optimal multinode broadcasting algorithm. The algorithm presented

here is motivated by the one presented in [11] for the hypercube interconnection network. An important

contribution of this work is to show that the same technique can be adapted to construct spanning trees on

the star graph which has a structure that is fundamentally di�erent from that of the hypercube.

The nodes of Sn are grouped into b
3(n�1)

2
c di�erent sets Dk, 0 � k � b

3(n�1)

2
c. Set Dk contains all nodes

of Sn that are at distance k, 0 � k � b
3(n�1)

2
c, from node 12:::n. The nodes in each set Dk are further

grouped into subsets Nk1; Nk2; :::; Nklk. Each Nkj is a di�erent necklace. For 1 � k � n � 1, Nk1 is the

necklace produced by the node that has cycle notation (k+ 1; k; :::;2; 1); for n � k � 3n�4
2

, and n even, and

for n � k �
3n�5
2

, and n odd, we pose the restriction that Nk1 is the necklace produced by the node that

has cycle notation (n; n� 1)(n � 2; n � 3):::(i; i� 1):::(:::; 2;1). This cycle notation can be seen as follows:

arrange all the n symbols in reverse order and group in cycles k + 1� n pairs of symbols from left to right.

The symbols remaining to the right are grouped into a single cycle. The distance from this node to node

12:::n is: c + s � 2 = k + 2 � n + n � 2 = k. We name the nodes corresponding to these cycle notations

generator nodes (this corresponds to the nodes used in [19] to distinguish one node of a necklace from nodes

in the shu�e-exchange graph). It is obvious from the way the �rst necklace in each Dk was created that it

includes exactly n� 1 nodes (theorem 6). The necessity for these restrictions will become apparent later.

Each node is now associated with a distinct number m(x) in the order: (12:::n)N11N21N22N31:::

N3l3 :::Nk1:::Nklk:::Nb3(n�1)
2

c1
:::N

b3(n�1)
2

cl
b
3(n�1)

2
c

. We further associate each node with number v(x) so that:

v(x) = [(m(x)� 1)mod(n� 1)]+ 2. It is clear that 0 � m(x) � n!� 1 and 2 � v(x) � n (except of v(12:::n)

which is 0). The nodes are now cyclically shifted within each necklace so that the following are satis�ed:

1. For necklaces that have nodes that do not start with symbol 1 and do not form Nk1, for any k, we

distinguish between the following cases:

(a) If the nodes have only one cycle then the �rst node x is chosen so that the �rst symbol in the

node is v(x) (rule 3).

(b) If the nodes have more than one cycles then the �rst node x is chosen so that either the �rst

symbol in the node is v(x) (rule 4(a)), or v(x) belongs to one of the cycles of the node that does

not include symbol 1 (rule 4(b)).

2. For necklaces that include nodes that start with symbol 1 the �rst node x is chosen so that v(x) belongs

to one of the cycles of the node (rule 2).
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3. For necklaces that form Nk1 we distinguish between two cases:

(a) For k � n� 1 nodes in Nk1 have only one cycle. The generator node of this necklace is moved to

position with v(x) equal to the �rst symbol of the node (rule 3).

(b) For k � n nodes in Nk1 have more than one cycles. The rightmost cycle always includes symbol

1. The generator node of this necklace is moved to position with v(x) the smallest symbol in the

second cycle from the right (rule 4(b)). This has the e�ect of merging the two rightmost cycles

into a single cycle with its symbols sorted from left to right.

The rest of the nodes within each necklace are arranged so that each node is obtained by its preceding

one (cyclically) under a single cycle rotation.

There are now d
n!�1
n�1

e clusters of n � 1 nodes each, which have v(x)'s equal to 2; 3; :::; n in sequence.

We name them Ci, 1 � i � d
n!�1
n�1

e. Ci is the set of nodes that receive a message broadcast from node

12:::n at time step i of the algorithm. The set of links connected to nodes of cluster Ci that have types

2; 3; :::n respectively are the ones used for message transmission at time step i of the algorithm. Since the

set of n � 1 links used at time step i of the algorithm are all of di�erent types, the tree can be replicated

using translation at any other node of Sn, and all trees can be used simultaneously con
ict free to form

a multinode broadcasting algorithm (theorem 2). Let the spanning tree obtained by this construction be

denoted by MBST (to stand for Multinode Broadcast Spanning Tree).

Theorem 8: Spanning tree MBST satis�es the requirements of a multinode broadcasting algorithm

because:

1. All n � 1 links that are used for message transmission at each step of the algorithm are of di�erent

types.

2. Node x0 produced by x following a link of type v(x) is one link closer to node 12:::n; this guarantees

that the path from the root of the tree to x has minimum length.

3. If x0 is produced by x following a link of type v(x) then m(x)�m(x0) � n� 1; this guarantees that x0

receives the message before x.

Proof: See Appendix B. 2

An example of a spanning tree on S4 is shown in Fig.3.

4 Multinode broadcasting under the SLA assumption

A multinode broadcasting algorithm under the SLA assumption is easy to construct on any interconnection

network if this has been proven to be Hamiltonian, which means that a Hamiltonian cycle can be constructed

on this network. The star graph has been proven to be Hamiltonian and several Hamiltonian cycles have

been constructed on it [4, 17, 22]. This method has been used before to construct multinode broadcasting

algorithms under the SLA assumption on other interconnection networks such as the hypercube [10].

Suppose that a Hamiltonian cycle of length n! has been constructed on Sn and a speci�c direction has

been de�ned on it so that each node i knows its next and previous nodes on the Hamiltonian cycle, inext
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and iprev, respectively, with respect to the prede�ned direction. In the �rst time step of the algorithm each

node i transmits the message it wants to broadcast to node inext. In each subsequent time step each node i

transmits the message it received in the previous time step from node iprev to node inext.

The algorithm completes in n!� 1 steps. This is true because the message initiated at step 1 by node i,

has traversed n! � 1 links down the Hamiltonian cycle after n! � 1 steps and has reached node iprev. The

number of message transmissions required is n!(n!� 1) since at each time step one message is send by each

of the n! nodes. Therefore the algorithm is optimal in terms of time and number of message transmissions.

5 Single node scattering under the MLA assumption

We will work towards the construction of a spanning tree with some special properties that lead to an

optimal single node scattering algorithm under the MLA assumption. Let r be the node wishing to transmit

messages. Assume that T is the desirable tree rooted at node r, and Ti is the subtree of T rooted at the

neighbor of r over the link of type i. The rule that r uses to transmit information to the nodes of the subtrees

is the following:

Rule 5: Send messages to all subtrees simultaneously. Send messages to nodes that are the furthest

from the root �rst. Break ties arbitrarily.

The time required for the algorithm to complete if rule 5 is used equals the number of nodes in the largest

of the subtrees Ti, 2 � i � n. In order for the algorithm to be optimal the largest subtree Ti must have

at most dn!�1
n�1

e nodes. In other words T must be as balanced as possible, meaning that the di�erence in

the number of nodes of any two subtrees of the root should not be more than one. In addition in order for

the algorithm to need the minimum number of message transmissions, each path from r to any node must

be as short as possible, i.e. T must be a shortest path tree (often referenced as breadth �rst tree). If we

construct a spanning tree rooted at node 12:::n with these properties, each other tree rooted at node q could

be obtained using translation with respect to q.

We will present two di�erent techniques to construct trees with the above characteristics on the star

graph. Below, we describe each of these techniques separately.

5.1 Algorithm 1

As mentioned earlier the key to creating an optimal single node scattering algorithm on the star graph under

the MLA assumption is to built a balanced, shortest path spanning tree rooted at the node that wishes to

scatter the messages. We show how a tree rooted at node 12:::n and having these characteristics can be

obtained. The following two rules describe how the parent of each node is de�ned:

Rule 6: Nodes that do not start with symbol 1, and have only one cycle in their cycle notation, are

connected to their parents following the link de�ned by their �rst symbol (rule 3).

Rule 7: Nodes that do not start with symbol 1, and have more than one cycle in their cycle notation,

are connected to their parents following the link de�ned by one of the symbols belonging to a cycle that does

not contain symbol 1 (rule 4(b)).

By following these rules the parent of each node is one link closer to node 12:::n than the node itself

(theorem 8), to guarantee that the path from the root of the tree to each node has minimum length. In

15



Figure 4: Single node scattering under the MLA assumption (algorithm 1): Spanning tree construction on

S4

addition if a node belongs to some substar Sin�1 of Sn, its parent belongs to the same substar and all nodes

of Sin�1, 2 � i � n belong to subtree Ti of the root.

At this point T is a balanced shortest path tree that spans all nodes of Sn except those starting with

symbol 1. The only problem now is to �nd a way to equally distribute all the nodes that start with symbol

1 among the subtrees, so that T becomes a balanced, shortest path tree that spans all nodes of Sn.

The technique described in subsection 3.2 for all nodes of the star graph will now be applied only to

nodes that start with symbol 1. The nodes of Sn starting with symbol 1 are grouped into di�erent sets

Dk, 3 � k � b
3(n�1)

2
c. Set Dk contains all nodes of Sn, staring with symbol 1, at distance k from node

12:::n. The nodes in each set Dk are further grouped into subsets Nk1; Nk2; :::; Nklk. Each Nkj is a di�erent

necklace. The nodes within each necklace are arranged so that each node is obtained by its preceding one

(cyclically) under a single cycle rotation. Each node is associated with a distinct number m(x) in the order:

N31; N41; :::; N4l4; :::; Nk1; :::; Nklk; :::; Nb3(n�1)
2

c1
; :::; N

b
3(n�1)

2
cl
b
3(n�1)

2
c

. We de�ne for each node the number

v(x) = [(m(x)� 1)mod(n� 1)]+ 2. Clearly, 1 � m(x) � (n� 1)!� 1 and 2 � v(x) � n. We rotate the nodes

within each Nkj so that a node x has v(x) that belongs to the cycle notation of the node (rule 2). Node

x0 obtained by x after following a link of type v(x) is one link closer to node 12:::n (theorem 8). Since all

nodes start with symbol 1, starting from x and following a link of type v(x) the resulting node x0 belongs

to that subgraph Sn�1 of Sn having symbol 1 �xed at position v(x), or S
v(x)

n�1, and also to subtree Tv(x)

of T . From the way the v(x)'s were created there are at most d
(n�1)!�1

n�1
e nodes for each possible value of

v(x) 2 f2; 3; :::; ng. This means that the (n�1)!�1 nodes that start with symbol 1 are distributed as equally

as possible among subtrees Ti, 2 � i � n, and as a consequence T is as balanced as possible. An example of

a tree for a single node scattering algorithm under the MLA assumption on S4 is shown in Fig.4.
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5.2 Algorithm 2

The shortest path, balanced spanning tree obtained by Algorithm 1 has the disadvantage that it is di�cult

to de�ne the parent and children functions for nodes that start with symbol 1. We now describe a shortest

path tree which is balanced to within a constant factor (meaning that the ratio of the number of nodes

between any pair of subtrees of the root is not more than a constant) and for which we can de�ne the parent

and children functions in a straightforward way. We start with some de�nitions.

De�nition 7: The generator node of a necklace is de�ned as follows:

1. For necklaces that contain nodes that start with a symbol other than 1, node x = x1x2:::xn with x2 = 1

is the generator node.

2. For necklaces that contain nodes that start with symbol 1, the generator node can be found as follows:

take the cycle in each node that contains symbol 2 (if this exists) and bring it to the form in which 2 is

the leftmost symbol. Pick as generator node the one that has the smallest such cycle in lexicographic

order.

De�nition 8: The displacement of a node x in a necklace, denoted by d(x), is the number of cycle

rotations required to obtain node x from the generator node of this necklace. (This notion was initially

introduced in [19] for nodes of the shu�e-exchange graph.)

De�nition 9: The period of a node x, denoted by p(x), is the number of nodes contained in the necklace

x belongs to.

De�nition 10: The ith ordering, 2 � i � n, of symbols 1; 2; 3; :::; n is the ordering �i so that:

1 �i i �i i + 1 �i ::: �i n �i 2 �i ::: �i i� 1.

De�nition 11: Given a sequence of numbers, a left minimum is a number that is the smallest among

all the numbers to its left in the sequence.

De�nition 12: The canonical cycle notation of a node that starts with a symbol other than 1, and

has more than one cycle in its cycle notation, is de�ned as follows: for a node that has symbol 1 in the ith

position, rotate the symbols within each cycle so that the smallest symbol according to the ith ordering is

the rightmost symbol of the cycle. Then arrange the cycles in decreasing ordering (again according to the

ith ordering) of the rightmost symbols in the cycles.

We are now ready to de�ne a shortest path spanning tree, balanced to within a constant factor, and

rooted at node 12:::n of Sn.

De�nition 13: A shortest path spanning tree, balanced to within a constant factor, and rooted at node

12:::n of Sn, is de�ned by its parent and children functions:

parent(i; 12:::n) =

8>>>>>>><
>>>>>>>:

;; if i = 12:::n,

i0 = (iji2:::ij�1i1ij+1:::in); if i1 = 1 and d(i) = d(i0) = j � 2,

iji2:::ij�1i1ij+1:::in; if i1 6= 1, i has one cycle and i1 = j,

iji2:::ij�1i1ij+1:::in; if i1 6= 1, i has more than one cycles and j is the

rightmost symbol of the second cycle from the left in

the canonical cycle notation of i (this move has the

e�ect of merging the two rightmost cycles).
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Figure 5: Single node scattering under the MLA assumption (algorithm 2): Spanning tree construction on

S4

children(i; 12:::n) =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

;; if i1 = 1,

iji2:::ij�1i1ij+1:::in; 2 � j � n; if i = 12:::n,

i0 = (iji2:::ij�1i1ij+1:::in); if ij = 1 and d(i) = d(i0) = j � 2,

iji2:::ij�1i1ij+1:::in; 8j � 2 : ij = j (i1 6= 1),

iji2:::ij�1i1ij+1:::in; 8 j � 2 which belong to the cycle of i that con-

tains symbol 1 (i1 6= 1), and is left minimum

according to the kth ordering (when ik = 1),

if this cycle is written in the form that has

symbol 1 in the rightmost position (symbols

that are cyclically adjacent to symbol 1 are

excluded).

It is easy to see that these two functions are consistent.

Theorem 9: The tree of de�nition 13 has the following properties:

1. All nodes of Sin, 2 � i � n, belong to the (i � 1)th subtree of the root.

2. All nodes with displacement d belong to the (d+ 1)th subtree of the root.

3. All nodes that start with symbol 1 are leaves.

4. It is a shortest path tree.

5. The tree is balanced to within a constant factor.

Proof: Parts 1; 2; 3, and 4 of the theorem can be trivially proved from the way the parent and children

functions are de�ned. Part 5 can be proved as follows: If we had only nodes that belong to full necklaces

in the tree then this would be perfectly balanced. This is because each of the n� 1 nodes of a full necklace

belongs to a di�erent subtree. The nodes that create the imbalance are the ones that belong to nonfull

necklaces. As we have already proven only nodes that start with symbol 1 can belong to nonfull necklaces

(theorems 5, 6). If we take the extreme case in which all nodes that start with symbol 1 belong to the �rst
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subtree, then the �rst subtree contains all the nodes of S1
n�1 and S2

n�1, i.e. 2(n � 1)! � 1 nodes, and the

jth, 2 � j � n � 1 subtree contains all the nodes of S
j+1
n�1, i.e. (n � 1)! nodes, which means that even in

this extreme case the tree is balanced to within a constant factor. In reality the imbalance is much smaller

among the subtrees. 2

In order to achieve optimal time for a single node scattering algorithm under the MLA assumption, we

must have a tree which is as balanced as possible. If we use the shortest path, balanced tree, described

in subsection 5.1, the size of the largest subtree is dn!�1
n�1

e and optimal time is achieved. However, if we

use the shortest path tree, balanced to within a constant factor, which is easier to describe through the

parent and children functions, optimal time can be achieved to within a constant factor, i.e. O(dn!�1
n�1

e),

since there is a constant imbalance among the subtrees. In both cases the minimum number of message

transmissions is achieved since we have shortest path trees. The scheduling discipline used in this algorithm

for the transmission of messages is de�ned by rule 5.

This tree can be de�ned at any other node r of the star graph as follows:

De�nition 14: A shortest path tree, balanced to within a constant factor, and rooted at an arbitrary

node r of Sn, is de�ned by its parent and children functions. If we de�ne by c = F�1
r (i) and c0 = F�1

r (i0),

the inverse translation with respect to r of i and i0 respectively, then:

parent(i; r) =

8>>>>><
>>>>>:

;; if i = r,

i0 = (iji2:::ij�1i1ij�1:::in); if c1 = 1 and d(c) = d(c0) = j � 2,

iji2:::ij�1i1ij+1:::in; if c1 6= 1, c has one cycle and c1=j,

iji2:::ij�1i1ij+1:::in; if c1 6= 1, c has more than one cycles and j is the rightmost

symbol of the second cycle from the left in the canonical

cycle notation of c.

children(i; r)=

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

;; if c1 = 1,

iji2:::ij�1i1ij+1:::in; 2 � j � n; if i = r,

i0 = (iji2:::ij�1i1ij+1:::in); if cj = 1 and d(c) = d(c0) = j � 2,

iji2:::ij�1i1ij+1:::in; 8j � 2 : cj = j (c1 6= 1),

iji2:::ij�1i1ij+1:::in; 8 j � 2 which belong to the cycle of c that contains

symbol 1 (c1 6= 1), and is left minimum according to

the kth ordering (when ck = 1), if this cycle is written

in the form that has symbol 1 in the rightmost posi-

tion (symbols that are cyclically adjacent to symbol

1 are excluded).

It is easy to see that these two functions are consistent. A shortest path, balanced to within a constant

factor tree on S4 is shown in Fig.5

In a single node scattering algorithm under the MLA assumption, things change slightly when the origin

of the messages r wants to transmitM distinct messages to each one of the other nodes. In this case although

a minimum number of message transmissions can be achieved using either of the above trees, since these

are shortest path trees, none of these can lead to optimal results in terms of time. If we use the shortest

path tree that is as balanced as possible, then certain subtrees have one node more than others and as a

consequence the root will have to transmit M more messages to these subtrees. So the time required is

Md
n!�1
n�1

e. If we use the shortest path tree, balanced to within a constant factor, the time required for the

algorithm to complete is even larger, namely O(Md
n!�1
n�1

e). This means that optimality is achieved only to

within a constant factor.
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The minimum time we can achieve in this case is d
M(n!�1)

n�1
e. The only tree that can lead to optimal

results is the shortest path, perfectly balanced tree with repeated nodes de�ned as follows:

De�nition 15: A shortest path, perfectly balanced tree with repeated nodes, rooted at node 12:::n of

Sn, is de�ned by its parent and children functions:

parent(i; 12:::n) =

8>>>>>>>><
>>>>>>>>:

;; if i = 12:::n,

i0 = (iji2:::ij�1i1ij+1:::in); if i1 = 1 and d(i0) = d(i) + k � p(i) = j � 2, for some

k : 0 � k � n�1
p(i)

� 1,

iji2:::ij�1i1ij+1:::in; if i1 6= 1, i has one cycle and i1 = j,

iji2:::ij�1i1ij+1:::in; if i1 6= 1, i has more than one cycles and j is the

rightmost symbol of the second cycle from the left in

the canonical cycle notation of i.

children(i; 12:::n) =

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

;; if i1 = 1,

iji2:::ij�1i1ij+1:::in; 2 � j � n; if i = 12:::n,

i0 = (iji2:::ij�1i1ij+1:::in); if ij = 1 and d(i) = d(i0) + k � p(i0) = j � 2,

for some k : 0 � k � n�1
p(i0)

� 1,

iji2:::ij�1i1ij+1:::in; 8j � 2 : ij = j (i1 6= 1),

iji2:::ij�1i1ij+1:::in; 8 j � 2 which belong to the cycle of i that con-

tains symbol 1 (i1 6= 1), and is left minimum

according to the kth ordering (when ik = 1),

if this cycle is written in the form that has

symbol 1 in the rightmost position (symbols

that are cyclically adjacent to symbol 1 are

excluded).

It is easy to see that these two functions are consistent.

Theorem 10: The tree in de�nition 15 has the following properties:

1. All nodes of Sin�1, 2 � i � n, belong to the (i� 1)th subtree.

2. Nodes that belong to necklaces with period p appear n�1
p

times in the tree. Since a node can appear

in the tree more than once (it has more than one parent nodes) we can say that in reality we have a

directed graph.

3. Nodes with displacement d that belong to necklaces with period p belong to the subtrees ip + (d+ 1)

for 0 � i � n�1
p

� 1.

4. All nodes that start with symbol 1 are leaves.

5. It is a shortest path tree.

6. It is a perfectly balanced tree.

7. Subtree i can be obtained from subtree (i � 1) under a cycle rotation.

Proof: This theorem can be trivially proved from the way the parent and children functions of the tree

are de�ned. 2

In this case all subtrees have exactly the same number of nodes, and one node can belong to more than

one subtree. If one node belongs to k di�erent subtrees then M
k

of the messages destined to this node are
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Figure 6: Single node scattering under the MLA assumption when M messages must be communicated to

each node: Spanning tree construction on S4

transferred over the links of each subtree. In order for M
k

to be integer for each k = n�1
p
, where p is the

period of any necklace, M must be a multiple of n�1. If this tree is used, the messages are evenly distributed

to all subtrees and the time required for the algorithm to complete is d
M(n!�1)

n�1
e which is optimal.

The tree can be de�ned at any other node of the star graph as follows:

De�nition 16: A shortest path, perfectly balanced tree with repeated nodes, and rooted at an arbitrary

node r of Sn, is de�ned by its parent and children functions. If we de�ne by c = F�1
r (i) and c0 = F�1

r (i0),

the inverse translation with respect to r of i and i0 respectively, then:

parent(i; r) =

8>>>>>>>><
>>>>>>>>:

;; if i = r,

i0 = (iji2:::ij�1i1ij�1:::in); if c1 = 1 and d(c0) = d(c) + k � p(c) = j � 2, for some

k : 0 � k � n�1
p(c)

� 1,

iji2:::ij�1i1ij+1:::in; if c1 6= 1, c has one cycle and c1=j,

iji2:::ij�1i1ij+1:::in; if c1 6= 1, c has more than one cycles and j is the rightmost

symbol of the second cycle from the left in the canonical,

cycle notation of c.

children(i; r)=

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

;; if c1 = 1,

iji2:::ij�1i1ij+1:::in; 2 � j � n; if i = r,

i0 = (iji2:::ij�1i1ij+1:::in); if cj = 1 and d(c) = d(c0) + k � p(c0) = j � 2, for

some k : 0 � k � n�1
p(c0)

� 1,

iji2:::ij�1i1ij+1:::in 8j � 2 : cj = j (c1 6= 1),

iji2:::ij�1i1ij+1:::in; 8 j � 2 which belong to the cycle of c that contains

symbol 1 (c1 6= 1), and is left minimum according

to the kth ordering (when ck = 1), if the cycle is

written in the form that has symbol 1 in the right-

most position (symbols that are cyclically adjacent

to symbol 1 are excluded).

It is easy to see that these two functions are consistent. A shortest path, perfectly balanced tree with

repeated nodes on S4 is shown in Fig.6
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6 Single node scattering under the SLA assumption

Any of the shortest path trees constructed in section 5 can be used for a single node scattering algorithm,

if the SLA assumption is followed. In this case each message follows the shortest path to its destination

since we have a shortest path tree and as a consequence the algorithm is again optimal in terms of message

transmissions. The time optimality is achieved if the messages are transmitted according to the following

rule:

Rule 8: All messages to subtree Ti�1 are transmitted before any message to subtree Ti. Within a

subtree, messages to nodes that are the furthest from the root are transmitted �rst.

The last message to subtree Tj is transmitted at time NTj � 1, where NTj =
Pj

i=1 jTij, is the sum

of the nodes in subtrees T1 to Tj. As a consequence the time required for the algorithm to complete isPn�1

i=1 jTij = n!� 1 and the algorithm is time optimal.

The spanning trees constructed for the single node scattering algorithm on the star graph can also be

used for the reverse problem, namely the single node gathering. This is the problem where a speci�c node

must receive a distinct message from each one of the other nodes. The time and communication resources

required for the single node scattering and gathering problems are the same. The only di�erence is that the


ow of information is reversed from the children to the parents.

7 Total exchange under the MLA assumption

We construct a total exchange algorithmunder the MLA assumption using the shortest path tree, balanced to

within a constant factor, and described in subsection 5.2. Although the algorithm will achieve the minimum

possible number of message transmissions the time will be optimal only to within a constant factor.

We assume that the shortest path tree, balanced to within a constant factor, is replicated at each node

of Sn. In each time step at most n� 1 di�erent links of each tree rooted at each di�erent node can be used

for message transmission. Let us denote by Li(q) the set of n� 1 links of the tree rooted at node q that are

used for message transmission at time step i of the algorithm. In order to guarantee that for each i, and for

all nodes q of Sn, the sets Li(q) are disjoint, the links in each Li(q) must be of di�erent types (theorem 2).

The rule used for the transmission of messages is:

Rule 9: Each node transmits messages destined to nodes of the same necklace simultaneously. Messages

destined to necklaces that are the closest to the root are transmitted �rst. When one group of messages

reaches its destination, another group is sent from the root.

Using this rule, the links in each Li(q) are all of di�erent types, since the paths that lead from a speci�c

node to the nodes of a necklace are cycle rotations of each other. If we denote by h the total number of

necklaces, and by d the quantity

P
b
3(n�1)

2
c

k=1
kjDkj

n!
= n+ 2

n
+Hn�4 (jDkj is the number of nodes at a distance

k from the origin, then the time required for this algorithm is: h � d � [2(n � 1)! � 1] � d = O(d tn
n�1

e) (by

tn we denote the quantity n!(n + 2
n
+ Hn � 4)). In other words the algorithm is optimal only to within a

constant factor.

In the case where each processor wants to transmit M distinct messages to each one of the other proces-

sors, the only tree that can give optimal results is the shortest path, perfectly balanced tree with repeated
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nodes. A node that belongs to a necklace with period p, belongs to k = n�1
p

di�erent subtrees and receives

M
k
of the messages from a speci�c node through each of the subtrees. The scheduling discipline used is the

following:

Rule 10: The root sends messages destined to the nodes of each necklace simultaneously. Messages

destined to necklaces close to the root are transmitted �rst. If each node must receive M di�erent messages

from a speci�c node, then the root sends Mp
n�1

groups of messages to a necklace with period p.

Under this scheduling discipline the sets of links Li(q) for each i and each node q of Sn are all of di�erent

types. This can become clear, if we notice that the paths connecting the root of a tree with the nodes of a

necklace are all cycle rotations of each other. The time and the number of message transmissions achieved

using this algorithm are dMtn
n�1

e and Mn!tn respectively, which are optimal.

8 Total exchange under the SLA assumption

The only requirement to achieve an optimal total exchange algorithm under the SLA assumption is a shortest

path spanning tree. Any of the shortest path spanning trees de�ned in the previous section can be used.

At each time step messages are transmitted along all links of the same type in Sn. If we use the shortest

path tree, balanced to within a constant factor, and traverse the link types of the shortest path to each

destination node, then this sequence of link types constitutes an optimal total exchange algorithm under the

SLA assumption. This algorithm is optimal since each message travels along a shortest path from its source

node to its destination node and in each time step the maximum number of messages is transmitted.

9 Conclusions

Tables 1, 2 and 3 summarize the problems solved in this paper, the time and number of message transmissions

achieved for each of them, and the method that leads to optimal results in each case.

1-message M -messages

SLA Method: Hamiltonian cycle Method: Hamiltonian cycle, M times

Time: n!� 1 Time: M (n!� 1)

Messages: n!(n!� 1) Messages: Mn!(n!� 1)

MLA Method: Spanning tree based Method: Spanning tree based

on rotated Hamiltonian paths on rotated Hamiltonian paths, M times

Time: d
n!�1
n�1

e Time: d
M(n!�1)

n�1
e

Messages: n!(n!� 1) Messages: Mn!(n!� 1)

Method: Spanning tree based

on technique from [11]

Time: dn!�1
n�1

e

Messages: n!(n!� 1)

Table 1: Multinode broadcasting algorithms
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1-message M -messages

SLA Method: Shortest path Method: Shortest path

spanning tree spanning tree, M times

Time: n!� 1 Time: M (n!� 1)

Messages: tn Messages: Mtn
MLA Method: Shortest path,

as balanced as possible spanning tree

Time: d
n!�1
n�1

e

Messages: tn
Method: Shortest path, Method: Shortest path,

almost balanced spanning tree perfectly balanced spanning tree

Time: O(dn!�1
n�1

e) Time: d
M(n!�1)

n�1
e

Messages: tn Messages: Mtn

Table 2: Single node scattering algorithms

1-message M -messages

SLA Method: Shortest path Method: Shortest path

spanning tree spanning tree, M times

Time: tn Time: Mtn
Messages: n!tn Messages: Mn!tn

MLA Method: Shortest path, Method: Shortest path,

almost balanced spanning tree perfectly balanced spanning tree

Time: O(d tn
n�1

e) Time: dMtn
n�1

e

Messages: n!tn Messages: Mn!tn

Table 3: Total exchange algorithms

As can be seen, the total exchange algorithm under the MLA assumption (and when only one message

needs to be transmitted by each node to each other node) is optimal only to within a constant factor. Since

communication algorithms should be as e�cient as possible, it is an interesting open problem to �nd an

algorithm that terminates in exactly d tn
n�1

e communication steps. Further, all of the above algorithms could

be investigated under di�erent communication models [15]. The assumption that one message needs one

time step to be transmitted is the simplest possible. More realistic communication models assume a linear

cost model where one message needs tc time to be transmitted and there is an overhead of � to transmit

M messages between two adjacent nodes. In other words, one communication cycle lasts t = � +Mtc time.

Finally, all of the algorithms presented in this paper could be extended to become fault tolerant.

We now provide a comparison of the algorithms presented in this paper for the three communication

problems under consideration on the star network, with algorithms for the same problems, under exactly

the same assumptions, on the popular hypercube network [10]. Tables 4 and 5 below give the number of

message transmissions and the communication time required for each of the problems for the Sn and the

hypercube network of dimension k, denoted by Ck, respectively. Table 4 is from [10].
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problem number of transmissions time(SLA) time(MLA)

multinode broadcasting n!(n!� 1) n!� 1 d
n!�1
n�1

e

single node scattering tn n!� 1 d
n!�1
n�1

e

total exchange n!tn tn d
tn
n�1

e

Table 4: Star network of dimension n

problem number of transmissions time(SLA) time(MLA)

multinode broadcasting 2k(2k � 1) 2k � 1 d
2k�1
k

e

single node scattering k2k�1 2k � 1 d
2k�1
k

e

total exchange k22k�1 k2k�1 2k�1

Table 5: Hypercube network of dimension k

In table 6 below the performances of the two networks are compared. Since the star network is de�ned

for numbers of nodes which are factorials, while the hypercube is de�ned for powers of two, the comparison

cannot be exact. In the comparison below a hypercube network with O(n!) nodes and degree O(logn!) =

O(n logn) is assumed.

problem number of transmissions time(SLA) time(MLA)

Sn Cn Sn Cn Sn Cn

multinode broadcasting O((n!)2) O((n!)2) O(n!) O(n!) O(n!
n
) O( n!

n logn
)

single node scattering O(n!n) O(n!n logn) O(n!) O(n!) O(n!
n
) O( n!

n logn
)

total exchange O((n!)2n) O((n!)2n logn) O(n!n) O(n!n) O(n!) O(n!)

Table 6: Comparison of star and hypercube performances

From table 6 we notice that whenever the performance of an algorithm depends on the degree of the

network, such as the communication times of the multinode broadcasting and the single node scattering

algorithms under the MLA assumption, the hypercube network performs better than the star network by

a factor of logn. On the other hand, whenever the performance of an algorithm depends on the diameter

of the network, or the lengths of the shortest paths between nodes, as for example the number of message

transmissions for the single node scattering and the total exchange algorithms, the star network performs

better by a factor of logn. The communication time of the total exchange algorithm under the MLA

assumption depends on both the degree and the diameter, and the performance is asymptotically the same

for both networks. In any other case the performance of both networks is the same for all the problems

under consideration. However we should not forget that the star network has smaller degree resulting in

processors with a smaller number of ports and as a consequence smaller cost.
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Appendix A

Theorem 3: If x and y represent nodes of Sn, and x0 and y0 are produced by x and y respectively under

cycle rotation then:

1. If x and y are connected then x0 and y0 are also connected (in other words connectivity is preserved

under cycle rotation in Sn).

2. If (x; y) (the link connecting nodes x and y) is a link of type t(x; y) then (x0; y0) is a link of type

t(x0; y0) = (t(x; y)� 1)mod(n � 1) + 2.

Proof: This is an immediate consequence of the fact that cycle rotation induces an automorphism on

the star graph. More analytically it can be proven as follows: Let us remind the de�nition of function r with

domain and range f1; 2; :::; ng in the de�nition of cycle rotation:

r(x) =

�
x; if x = 1

(x� 1)mod(n� 1) + 2; otherwise

If x = x1x2:::xn is a node of Sn and x0 = x01x
0
2:::x

0
n is obtained from x under cycle rotation, then the

following are true:

x0i =

8<
:

r(x1); if i = 1

r(xn); if i = 2

r(xi�1); otherwise

Assume that (x; y) is an edge of type i, and that x0 and y0 are nodes produced by x and y, respectively,

under cycle rotation; if we write (x; y) and (x; y0) as:

(x1x2:::xi�1xixi+1:::xn; xix2:::xi�1x1xi+1:::xn)

(r(x1)r(xn)r(x2):::r(xi�2)r(xi�1)r(xi):::r(xn�1); r(xi)r(xn)r(x2):::r(xi�2)r(xi�1)r(x1):::r(xn�1))

we see that when x and y di�er in the 1st and the ith positions then x0 and y0 di�er in the 1st and the

((i � 1)mod(n� 1) + 2)nd positions. As a consequence, t(x0; y0) = (t(x; y) � 1)mod(n� 1) + 2. 2
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Appendix B

Theorem 8: Spanning tree MBST satis�es the requirements of multinode broadcasting algorithm because:

1. All n�1 links that are used for message transmission at each time step of the algorithm are of di�erent

types.

2. Node x0 produced by x following a link of type v(x) is one link closer to node 12:::n; this guarantees

that the path from the root of the tree to x has minimum length.

3. If x0 is produced by x following a link with of v(x) then m(x)�m(x0) � n� 1; this guarantees that x0

receives the message before x.

Proof:

1. This is obvious from the way the v(x)'s were created.

2. By the way v(x) was mapped to each node x this follows naturally.

3. The proof for this is separated into the following parts:

(a) Each node x that belongs to some Nkj; j 6= 1, is connected through link v(x) to some node x0 in

some Nk0j0 , k
0 < k. Then m(x)�m(x0) � n� 1, since all the n� 1 nodes of Nk1 (theorem 6) are

between x and x0.

Nodes included in D
b 3(n�1)

2
c
, for n odd, however need special treatment. Each of these nodes x

starts with symbol 1 and as a consequence it is connected through v(x) to a node in D
b 3(n�1)

2
c�1

,

that does not start with symbol 1. If we impose the restriction that in each Dk all the nodes

that start with symbol 1 are after all other nodes and since it is easy to show that D
b 3(n�1)

2
c�1

has at least n � 1 nodes that start with symbol 1, this guarantees that for every x 2 D
b 3(n�1)

2
c
,

m(x) �m(x0) � n� 1.

(b) We now prove that each node x in Nk1 is connected through link v(x) to node x0 in N(k�1)1.

For 1 � k � n � 1 nodes in Nk1 have exactly one cycle. The generator node x of Nk1 has

cycle notation (k + 1; k; :::; 2; 1) and v(x) = k + 1. Starting from x and following link v(x),

the resulting node x0 has symbol k + 1 in its proper position and as a consequence its cycle

notation is (k; k � 1; :::; 2;1). But this is by de�nition the cycle notation of the generator node

of N(k�1)1. For n � k � b
3(n�1)

2
c the cycle notation of the generator node x of Nk1 has the

form (n; n� 1)(n � 2; n � 3):::(i; i� 1)(i � 2; ::::2;1) and v(x) equals the smallest symbol of the

second cycle from the left (i � 1 in this case). Starting from x and following v(x), it is easy to

see that in the cycle notation of the resulting node the two cycles to the right are merged into

one (n; n� 1)(n� 2; n� 3); :::; (i; i� 1; i� 2; :::; 2; 1). But by de�nition this is nothing more than

the cycle notation of the generator node of N(k�1)1. Since connectivity is preserved under cycle

rotation and a link type t is transformed into link type t0 = (t � 1)mod(n � 1) + 2 (theorem 3),

this guarantees that subsequent nodes x in Nk1 are connected through v(x) to subsequent nodes

x0 in N(k�1)1. In order to guarantee that for each x 2 Nk1, m(x) � m(x0) � n � 1, we have to
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prove that for each k there are at least n � 1 nodes between N(k�1)1 and Nk1. It is the same if

we prove that for each 2 � k � D
b 3(n�1)

2
c�1

, Dk includes at least 2(n� 1) nodes. We know that

D1 has n � 1 nodes and D2 has 2(n � 1) nodes. If we show that D
b 3(n�1)

2
c�1

also has at least

2(n�1) nodes this will guarantee that each Dk in between has at least 2(n�1) nodes as well. For

n odd, we take the special case of nodes that have cycle notations (1; �)(5; 6):::(n� 1; n), where �

represents one of the 3! permutations of symbols f2; 3; 4g. It is easy to show that each of these 3!

di�erent cycle notations create a di�erent necklace of n�1 nodes (theorem 6). As a consequence,

for n even, there are at least 3!(n � 1) nodes in D
b 3(n�1)

2
c�1

. With the same reasoning, we can

prove that for n odd there are at least 2!(n� 1) nodes in D
b 3(n�1)

2
c�1

. For example for n = 5 the

cycles that correspond to the above description and the necklaces they create are:

(123)(45) ! (134)(52) ! (145)(23) ! (152)(34)

(132)(45) ! (143)(52) ! (154)(23) ! (125)(34)

2
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