
Technical Report No. 93-354

EDGE-DISJOINT SPANNING TREES ON THE STAR NETWORK WITH APPLICATIONS TO FAULT
TOLERANCE

by
Paraskevi Fragopoulou and Selim G. Akl

Department of Computing & Information Science
Queen's University

Kingston, Ontario, Canada

November 1993

This research was supported by the Telecommunications Research Institute of Ontario and by the Natural
Sciences and Engineering Research Council of Canada.

Abstract

Data communication and fault tolerance are important issues in multiprocessor systems. One way to

achieve fault tolerant communication is by exploiting and e�ectively utilizing the disjoint paths that exist

between pairs of source, destination nodes. In this paper we construct a structure, called the multiple edge-

disjoint spanning trees, on the star network, denoted by Sn. This is used for the derivation of an optimal

single node broadcasting algorithm, which o�ers a speed up of n� 1 compared to the straightforward single

node broadcasting algorithm that uses a single breadth �rst spanning tree. It is also used for the derivation

of fault tolerant communication algorithms. As a result, fault tolerant algorithms are presented for four

basic communication problems: the problem of a single node sending the same message to all other nodes

or single node broadcasting, the problem of simultaneous single node broadcasting from all nodes or multin-

ode broadcasting, the problem of a single node sending distinct messages to each one of the other nodes

or single node scattering and �nally the problem of simultaneous single node scattering from all nodes or

total exchange. Fault tolerance is achieved by sending multiple copies of the message through a number of

disjoint paths. These algorithms operate successfully in the presence of up to n � 1 faulty nodes or edges

in the system. They also o�er the exibility of controlling the degree of fault tolerance, depending on how

reliable the network is. As pointed out in [28], the importance of these algorithms lies in the fact that

no knowledge of the faulty nodes or edges is required in advance. All of the algorithms presented make

the assumption that each node can exchange messages of �xed length with all of its neighbors simultane-

ously at each time step, i.e. the all-port communication assumption, and that communication is bidirectional.

Key words and phrases: communication algorithm, edge-disjoint, fault tolerance, interconnection net-

work, optimality, parallel algorithm, spanning tree, star network.

Figure 1: (a) The S3 network. (b) The S4 network: 4 interconnected S3 networks.

1 Introduction

The star network was proposed in [1] as \an attractive alternative to the n-cube" topology for interconnecting

processors in parallel computers. Since its introduction, the network received considerable attention. Let

us denote by Vn the set of n! permutations of symbols f1; 2; :::; ng. A star interconnection network on

n symbols, denoted by Sn = (Vn; ESn), is an undirected graph with n! nodes. Each node i = i1i2:::in

is connected to n � 1 nodes that are obtained by transposing the �rst with the kth symbols of i, i.e.

(i1i2:::ik�1ikik+1:::in; iki2:::ik�1i1ik+1:::in) 2 ESn , for 2 � k � n, Fig.1. We call these n � 1 connection

dimensions. Thus each node is an endpoint of n�1 edges through dimensions 2; 3; :::; n. Sn enjoys a number

of properties desirable in interconnection networks. These include node and edge symmetry, maximal fault

tolerance, and strong resilience. Because of its symmetry, the network is easily extensible, can be decomposed

in various ways and allows for simple routing algorithms. In addition Sn is superior to Cn (the n-cube) with

respect to two key properties: degree (number of edges at each node), and diameter (maximum distance

between any two nodes) [1]. The degree of Sn is n� 1, i.e. sublogarithmic to the number of its nodes while a

hypercube with �(n!) nodes has degree �(logn!) = �(n logn), i.e. logarithmic to the number of its nodes.

The same can be said for the diameter of Sn which is b3(n�1)

2
c. The network was shown to be Hamiltonian

[24], and e�cient algorithms for sorting [23] and Fourier transform computation [10, 11], were developed on

it.

Data communication and fault tolerance are important issues in multiprocessor systems, in which pro-

cessors are connected to each other according to a speci�c topology. In order for a network of processors to

be candidate for parallel processing, it must lend itself to the derivation of optimal communication and fault

tolerant algorithms. Working towards this direction in this paper, we construct the multiple edge-disjoint

spanning trees structure on the star interconnection network. We say that a node h of Sn is the root of

multiple edge-disjoint spanning trees, denoted by EDTh, if each of the nodes adjacent to h is the root of a

tree that spans all nodes of Sn except h and all of these trees are edge-disjoint. This structure is useful for

3

the construction of optimal communication and fault tolerant communication algorithms and has been used

before for other popular interconnection networks such as the hypercube [16, 18] and the cube connected

cycles [15] networks.

Using the multiple edge-disjoint spanning trees structure we derive an optimal algorithm for the single

node broadcasting problem and optimal fault tolerant algorithms for the single node broadcasting, multinode

broadcasting, single node scattering and total exchange problems under the all-port communication assump-

tion on Sn. Single node broadcasting is the problem where a node wishes to transmit the same message to

all other nodes. Multinode broadcasting is the problem of simultaneous single node broadcasting of the same

message from every node to all other nodes. Single node scattering is the problem of a single node sending

distinct messages to each one of the other nodes. Finally, total exchange is the problem of each node sending

distinct messages to every other node. The optimal single node broadcasting algorithm derived o�ers a speed

up of n� 1 over the straightforward algorithm that uses a single breadth �rst spanning tree. The basic idea

is to split the original message into n � 1 packets of equal size, each of which is broadcast independently

through a di�erent edge-disjoint spanning tree. Each node receives part of the message through a di�er-

ent disjoint path from the source node and as a consequence the network resources are fully utilized. To

achieve fault tolerant communication multiple copies of the same message are send through the edge-disjoint

spanning trees. As a consequence each node receives a copy of the message through a number of disjoint

paths from the source node and the reliability of the algorithm is increased. The algorithms presented can

operate successfully in the presence of up to n � 1 faulty nodes or edges in the system. They also o�er the

exibility of controlling the degree of fault tolerance depending on the required reliability, by forcing the

same message through a speci�c number of edge-disjoint subtrees. As pointed out in [28], the importance

of these algorithms lies in the fact that no knowledge of the faulty nodes or edges is required in advance.

In all of the algorithms the assumption that each node can exchange messages of �xed length with all of

its neighbors at each time step, i.e. the all-port communication assumption, is adapted. Communication is

assumed to be bidirectional. Other data communication algorithms and properties on Sn can be found in

[1, 4, 5, 13, 14, 22, 25, 26, 27]. Fault tolerant algorithms and properties on Sn using di�erent approaches

can be found in [2, 8, 9, 17, 19, 29].

This paper is organized as follows: Following the introduction to the subject in section 1, notations and

de�nitions that are used throughout the paper are introduced in section 2. Section 3 presents the multiple

edge-disjoint spanning trees structure on the star network. In section 4 we demonstrate several applications

of this structure in the areas of data communication and fault tolerance. More speci�cly, lower bounds for all

the algorithms presented are derived in subsection 4:1. The optimal single node broadcasting algorithm ofM

messages under the all-port assumption is presented in subsection 4:2. Finally, the fault tolerant algorithms

for the single node broadcasting, multinode broadcasting, single node scattering and total exchange problems,

under the all-port assumption again, are presented in subsections 4:3 to 4:6 respectively. We conclude in

section 5, along with a summary of the results and some suggestions for further research.

4

2 Notations and de�nitions

In what follows, node i is labeled by permutation i1i2:::in. By In we denote the sorted permutation on the n

symbols f1; 2; :::; ng. Calligraphic letters are used for sets. We denote by N the set of symbols f1; 2; :::; ng.

Symbols i, j and h are used for nodes of Sn. By dim(i; j) we denote the dimension of edge (i; j). Two paths

between a pair of nodes are parallel if they are node (and as an extension edge) disjoint. A misplaced symbol

of a node is a symbol that does not occupy its correct position.

Skn�1, 2 � k � n, is the subnetwork induced by all nodes of Sn with symbol 1, in the kth position of their

label. It is well known that Skn�1, 2 � k � n, is an Sn�1 de�ned on symbols f2; :::; ng, [1]. For notation

purposes, in what follows, we use the symbol S1
n�1, to denote the set of (n � 1)! nodes of Sn with symbol 1

in the �rst position of their label. It is known that S1
n�1 is a collection of (n � 1)! isolated nodes.

De�nition 1: In the cycle notation of a node each symbols position is that occupied by the next symbol

(cyclically) in the cycle (the position of a symbol is de�ned with respect to the sorted permutation In) [20].

Cycles with only one symbol are excluded from the cycle notation of a node. For example node 341526 has

cycle notation (13)(245).

In what follows for node i, we denote by ci, si, the number of cycles and the number of symbols that

belongs to those cycles, respectively, in the cycle notation of i. The minimumdistance of a node i from node

In has been shown to be [1]:

dIn(i) =

�
ci + si; if i1 = 1;
ci + si � 2; otherwise

We now de�ne two operations on nodes of the star network, namely the translation and the rotation

operations, that will be of primary importance for the construction of the multiple edge-disjoint spanning

trees on Sn and the description of the fault tolerant communication algorithms.

De�nition 2: Consider a node h of the star network. We de�ne Th, the translation with respect to h, of

a node i as:

Th(i) = h � i

(this operation is often referenced as permutation composition). By translation of a network with respect to h

we mean that each node of the network is translated with respect to h. The inverse translation with respect

to h, denoted by T�1
h , of a node i, is de�ned as:

T�1
h (i) = h�1

� i

Lemma 1: Let i, j and h represent nodes of Sn. Then (i; j) and (Th(i); Th(j)) are edges of the same

dimension.

Proof: This becomes obvious if we analytically express (i; j) and (Th(i); Th(j)) as:

(i1i2:::ik�1ikik+1:::in; iki2:::ik�1i1ik+1:::in)

(hi1hi2 :::hik�1hikhik+1 :::hin; hikhi2 :::hik�1hi1hik+1 :::hin)

Clearly if (i; j) is an edge of dimension k then (Th(i); Th(j)) is also an edge of dimension k. 2

De�nition 3: Let us de�ne the function r from N to N as:

r(k) =

�
k; if k = 1
(k � 1)mod(n � 1) + 2; otherwise

5

(notice that r maps f1; 2; 3; :::; n� 1; ng to f1; 3; 4; :::; n; 2g). The rotation of a node i 2 Sn, denoted by R,

is de�ned as:

R(i) = r(i1)r(in)r(i2):::r(in�1)

or equivalently i0 = R(i) so that i0r(k) = r(ik). By Rk = R �Rk�1 we denote k applications of rotation. By

rotation of a network we mean that rotation is applied to each node of the network.

Lemma 2: Let i and j be nodes of Sn and i0 = R(i) and j0 = R(j) be the nodes obtained from i and j,

respectively, by application of a rotation:

1. If (i; j) is an edge of dimension k, 2 � k � n, then (i0; j0) is an edge of dimension r(k). As an

extension to this, the edges obtained after 1; 2; :::; n�2 applications of rotation on (i; j) have dimensions

k+ 1; k+2; :::; n; 2; :::k� 1, respectively. With this observation we conclude that the n� 1 edges, each

obtained as a rotation of its previous one, are all of di�erent dimensions.

2. If i 2 Skn�1, 1 � k � n, then i0 2 S
r(k)
n�1.

3. The rotation operation preserves the distance between nodes of Sn, or equivalently, dIn(i) = dIn(i
0).

Proof: We'll prove each part separately:

1. If we analytically express (i; j) and (i0; j0) as:

(i1i2:::ik�1ikik+1:::in; iki2:::ik�1i1ik+1:::in)

(r(i1)r(in):::r(ik�2)r(ik�1)r(ik):::r(in�1); r(ik)r(in):::r(ik�2)r(ik�1)r(i1):::r(in�1))

we notice that if (i; j) is an edge of dimension k, then (i0; j0) is an edge of dimension r(k). This is true

because from the de�nition of rotation the position of symbol r(ik) in i
0 is r(k).

2. If i 2 Skn�1, 1 � k � n, then ik = 1. From the de�nition of r, if ik = 1 then i0r(k) = r(ik) = r(1) = 1.

As a result i0 2 S
r(k)
n�1.

3. We must prove the following: (a) if i1 = 1 then i01 = 1, else if i1 6= 1 then i01 6= 1, (b) si = si0 , and

(c) ci = ci0 . From part 2 of this lemma (a) is easily derived. We know from the de�nition of rotation

that i0
r(k)

= r(ik). This means that if symbol ik occupies position k in i then symbol r(ik) occupies

position r(k) in i0. As a consequence if cycle (ik1 ; ik2; :::; ikl) belongs to the cycle notation of i then

cycle (r(ik1); r(ik2); :::; r(ikl)) belongs to the cycle notation of i0 and we conclude that si = si0 and

ci = ci0 . 2

To summarize, the translation and the rotation operations preserve the distance between nodes of Sn.

The rotation operation maps every edge in dimension d to an edge in dimension r(d) = (d�1)mod(n�1)+2.

Application of rotation k times, or Rk, maps every edge in dimension d to an edge in dimension rk(d) =

(d � 2 + k)mod(n � 1) + 2. The translation operation preserves the dimension of every edge. Finally the

topology of Sn, or a subgraph of Sn, remains unchanged under translation or rotation.

De�nition 4: A group of nodes for which each one is derived from its previous one by application of a

rotation is called a necklace

Lemma 3: Necklaces have the following properties:

6

1. Each node i 2 Skn�1, 2 � k � n, belongs to a necklace that includes n� 1 distinct nodes.

2. Each node i 2 S1
n�1 belongs to a necklace that includes at most n � 1 distinct nodes.

3. All nodes of a necklace have the same minimum distance from In.

Proof: We prove each part separately.

1. Node i 2 Skn�1, 2 � k � n, has i1 6= 1. From the de�nition of r, the n � 1 nodes derived from i by

consecutive rotations have �rst symbols i1; i1 + 1; :::; n; 2; :::; i1� 1. So the n� 1 nodes that belong to

a necklace of this type start with di�erent symbols and as a consequence are di�erent. Also a necklace

of this type contains exactly n � 1 nodes. From the de�nition of r, it is true that rn�1(k) = k. If

i0 is produced by i after n � 1 rotations then i0k = rn�1(ik) = ik, 1 � k � n, and we conclude that

i0 = Rn�1(i) = i. For example node 4123 of S4 belongs to necklace (4123; 2413; 3421).

2. Node i 2 S1
n�1 has i1 = 1. From the de�nition of r, all nodes derived from i by consecutive rotations

start with symbol 1. If i0 is produced by i after n�1 rotations then i0k = rn�1(ik) = ik, 1 � k � n, and

we conclude that i0 = Rn�1(i) = i. However it is possible that i0 = Rk(i) = i, after k < n�1 rotations.

For example node 13254 of S5 is mapped to itself after only two and not n � 1 = 4 applications of

rotation, R2(13254) = 13254, and belongs to a necklace that contains only two nodes (13254; 15432),

while node 12435 belongs to a necklace that contains n� 1 = 4 nodes (12435; 12354; 15342; 13245).

3. From part 3 of lemma 2 this is easily derived. 2

From part 3 of lemma 3 we conclude that the nodes of Sn at each distance from In are grouped into

necklaces. For example, the necklaces of S4 at each distance from I4 are given below enclosed in parentheses:

dI4 = 0 : (1234)
dI4 = 1 : (2134; 3214; 4231)
dI4 = 2 : (3124; 4213; 2431) (4132; 2314; 3241)
dI4 = 3 : (3142; 4312; 2341) (4123; 2413; 3421) (1243; 1432; 1324)
dI4 = 4 : (2143; 3412; 4321) (1342) (1423)

The size of a necklace of Sn is always a divisor of n � 1.

De�nition 5: An unfolded necklace is a group of exactly n � 1 nodes, each obtained as a rota-

tion of its previous one. Unfolded necklaces can contain the same node more than once. For example

(13254; 15432; 13254; 15432) is an unfolded necklace of S5.

The de�nitions of the rotation operation and the necklace will be of primary importance for the con-

struction of the multiple edge-disjoint spanning trees and for the description of the fault tolerant algorithms

on Sn. Both of these de�nitions have been developed in analogy to de�nitions with similar properties that

exist for the hypercube interconnection network. The application of rotation on a node of Sn is analogous

to the application of a right cyclic shift operation on a node of the hypercube. The de�nition of necklace for

nodes of Sn is analogous to similar groups de�ned for nodes of the hypercube in [18]. The term necklace was

initially used in [21] for similar groups of nodes in the shu�e-exchange graph. An interesting observation is

that although the de�nitions in [18] were motivated by speci�c properties of the hypercube topology, similar

de�nitions, with the same properties, can be derived for other networks, like the star network, which has a

structure that is fundamentally di�erent from that of the hypercube.

7

Figure 2: (a) A schematic representation of SPTIn . (b) The SPTI4 .

3 Construction of the multiple edge-disjoint spanning trees

We say that node h of Sn is the root of multiple edge-disjoint spanning trees, denoted by EDTh , if each of

the nodes adjacent to h is the root of a tree that spans all nodes of Sn except h and all of these trees are

edge-disjoint. In this section we construct EDTIn rooted at node In of Sn. The EDTh, rooted at any other

node h of Sn, will be obtained by applying the operation of translation with respect to h on EDTIn

Before we proceed to the construction of the EDTIn , we construct a balanced shortest path tree, rooted

at node In, that includes all nodes of S
k
n�1, 2 � k � n, denoted by SPTIn . For the de�nition of the SPTIn

we need the following: Denote by Ck, 1 � k � n, the set of dimensions f2; 3; :::; ng� fkg (C1 is the set of

dimensions f2; 3; :::; ng). Assume node i 2 Skn�1, 2 � k � n. If we move from i along any of the dimensions

in Ck, the resulting node belongs to the same substar Skn�1 that i belongs. We split Ck into two subsets

C
1
k;i = fc 2 Ck : ic = cg [

8<
:

fc : ic = kg; if k is the �rst misplaced symbol cyclically
to the right of symbol 1 in i (excluding i1),

;; otherwise

and C
2
k;i = Ck � C

1
k;i. Also let pi = i1 if i1 6= k, else let pi be such that ipi is the �rst misplaced symbol

cyclically to the right of symbol 1 in i (excluding i1).

In what follows the kth subtree of a spanning tree STh rooted at node h, is de�ned to be the subtree

rooted at the neighbor of h over dimension k, and is denoted by TSTh
k .

De�nition 6: The shortest path tree SPTIn rooted at node In of Sn is de�ned through the following

parent and children functions:

parentSPT (i; In) =

�
;; if i = In,
ipii2:::ipi�1i1ipi+1:::in; if i 2 Skn�1; 2 � k � n

childrenSPT (i; In) =

�
ici2:::ic�1i1ic+1:::in; 8c 2 C1; if i = In;

ici2:::ic�1i1ic+1:::in; 8c 2 C
1
k;i; if i 2 Skn�1; 2 � k � n

It can be easily seen that the parentSPT and childrenSPT functions are consistent. A schematical repre-

sentation of SPTIn along with SPTI4 can be seen in Fig. 2.

Lemma 4: The SPTIn has the following characteristics:

8

1. All nodes of Skn�1, 2 � k � n, belong to subtree T
SPTIn
k .

2. It is a shortest path tree.

Proof: We prove each part separately.

1. We'll prove that if i 2 Skn�1, 2 � k � n, then its parent ipi i2:::in also belongs to Skn�1, except if i is a

node adjacent to In in which case its parent is In. To show this we must prove that pi 6= k for all nodes

that are not adjacent to In, which is true from the de�nition of pi. If i1 6= k then pi = i1(6= k). If

i1 = k then pi is such that ipi is the �rst misplaced symbol cyclically to the right of symbol 1 (position

k) in i, excluding symbol i1. In this case pi = k if the only misplaced symbols in i are symbols i1 = k

and ik = 1, which concludes that node i is adjacent to In.

2. We'll prove that if i 2 Skn�1, 2 � k � n, then dIn(ipi i2:::in) = dIn(i)�1, or that the parent of each node

in SPTIn is closer to In than the node itself. This can be veri�ed from a close look to the de�nition of

pi. If i1 6= k then pi = i1, and the �rst symbol of i is moved to its correct position. If i1 = k then pi is

such that ipi is the �rst misplaced symbol (excluding i1) cyclically to the right of symbol 1 in i, which

has the e�ect of merging cycle (1k) with the cycle that includes symbol pi in the cycle notation of i.

From the de�nition of dIn the above follows. 2.

We now extend the de�nition of SPTIn , to include nodes of S1
n�1. SPTIn is extended so that each one

of its nodes has a child that belongs to S1
n�1 (except nodes that are adjacent to In). The resulting structure

is no more a spanning tree but a directed graph denoted by SPGIn .

De�nition 7: The shortest path graph SPGIn , rooted at node In of Sn is de�ned through the following

parent and children functions. By parentSPG(i; l; In) and childrenSPG(i; l; In), we denote the parent and

children nodes, respectively, of node i in subtree T
SPGIn

l .

parentSPG(i; l; In) =

�
parentSPT (i; In); if i = In or i 2 Sln�1;

ili2:::il�1i1il+1:::in; if i 2 S1
n�1 � In

childrenSPG(i; l; In) =

8<
:

childrenSPT (i; In); if i = In or i is adjacent to In;
childrenSPT (i; In) [f1i2:::ing; if i 2 Sln�1but i is not adjacent to In;

;; if i 2 S1
n�1 � In

It can be easily seen that the parentSPG and childrenSPG functions are consistent. The SPGI4 can be

seen in Fig. 3.

Lemma 5: The SPGIn has the following characteristics:

1. Each node of S1
n�1, except In, belongs n � 1 times in SPGIn , once in each of the subtrees T

SPGIn

l ,

2 � l � n.

2. For each i 2 S1
n�1 � In, there are n� 1 parallel paths that lead to node In through SPGIn , and these

paths have minimum lengths [8].

Proof: We prove each part separately.

1. According to the de�nition of parentSPG, each node i 2 S1
n�1 � In is connected to T

SPGIn

l , 2 � l � n,

through dimension l.

9

Figure 3: The SPGI4 .

2. Node i 2 S1
n�1 is connected to subtree T

SPGIn

l , 2 � l � n, through dimension l, to node i0 =

ili2:::il�1i1il+1:::in 2 Sln�1. From lemma 4, i0 is connected with a shortest path to In through subtree

T
SPTIn
l that includes only nodes of Sln�1. As a consequence, these paths are parallel since the path

through the lth subtree includes only nodes of Sln�1. Using this type of reasoning it has been proven

in [8] that these paths have minimum lengths. 2

Up to this point only nodes of S1
n�1� In belong to all subtrees T

SPGIn

l , 2 � l � n. However nodes of any

other Sln�1, 2 � l � n, belong only to subtree T
SPGIn

l . Now we further extend SPGIn so that each subtree

includes all nodes i 2 Sln�1, 2 � l � n. The resulting structure will be the multiple edge-disjoint spanning

trees, denoted by EDTIn . In order for the subtrees to be edge-disjoint, each node should be connected to

each subtree through a di�erent neighboring node and as an extension through a di�erent one of its incident

edges. Let us remind that node i 2 Sln�1, 2 � l � n, is connected to its parent in the lth subtree through

neighbor ipii2:::ipi�1i1ipi+1:::in.

De�nition 8: The EDTIn rooted at node In of Sn is now de�ned through the following parent and

children functions. By parentEDT (i; l; In) and by childrenEDT (i; l; In), we denote the parent and children

nodes, respectively, of node i in subtree T
EDTIn
l . For clarity of de�nition we distinguish among di�erent

kinds of nodes:

1. Node i 2 Skn�1, 2 � k � n, with ipi = k (the parent of i in SPGIn starts with symbol k). Node i

is connected to subtree T
EDTIn
i1

through neighbor 1i2:::in, and to any other subtree T
EDTIn
l , l 6= i1,

l 6= (k = ipi), through neighbor li2:::in. For example node 3124 of Sn is connected to subtree T
EDTI4
3

through neighbor 1324, and to subtree T
EDTI4
4 through neighbor 4123.

parentEDT (i; l; In) =

8<
:

ipi i2:::in; if l = k = ipi ; (1)
1i2:::in; if l = i1; (2)
li2:::in; otherwise (3)

childrenEDT (i; l; In) =

8<
:

ici2:::ic�1i1ic+1:::in; 8c 2 C
1
k;i [fkg; if l = k,

ici2:::ic�1i1ic+1:::in; 8c 2 C
2
k;i; if l = i1;

;; otherwise

10

Figure 4: The EDTI4 .

2. Node i 2 Skn�1, 2 � k � n, with i1 = k (node i starts with symbol k). Node i is connected to subtree

T
EDTIn
ipi

through neighbor 1i2:::in, and to any other subtree T
EDTIn
l , l 6= ipi , l 6= (k = i1), through

neighbor li2:::in. For example node 2143 of S4 is connected to subtree T
EDTI4
4 through neighbor 1243,

and to subtree T
EDTI4
3 through neighbor 3142.

parentEDT (i; l; In) =

8<
:

ipii2:::in; if l = k = i1; (4)
1i2:::in; if l = ipi ; (5)
li2:::in; otherwise (6)

childrenEDT (i; l; In) =

8<
:

ici2:::ic�1i1ic+1:::in; 8c 2 C
1
k;i; if l = k and i is adjacent to In,

ici2:::ic�1i1ic+1:::in; 8c 2 C
1
k;i [fkg; if l = k and i is not adjacent to In,

i0 = (ici2:::ic�1i1ic+1:::in); if l = i0pi0

3. Node i 2 Skn�1, 2 � k � n, with i1 6= k and ipi 6= k (neither i nor its parent in SPGIn start with

symbol k). Node i is connected to subtree T
EDTIn
i1

through neighbor 1i2:::in, and to subtree T
EDTIn
ipi

through neighbor ki2:::in. To any other subtree T
EDTIn
l , l 6= i1, l 6= ipi , l 6= k, it is connected through

neighbor li2:::in. For example node 4123 of S4 is connected to subtree T
EDTI4
4 through neighbor 1423,

and to subtree T
EDTI4
3 through neighbor 2143.

parentEDT (i; l; In) =

8>><
>>:

ipi i2:::in; if l = k; (7)
1i2:::in; if l = i1; (8)
ki2:::in; if l = ipi ; (9)
li2:::in; otherwise (10)

childrenEDT (i; l; In) =

8<
:

ici2:::ic�1i1ic+1:::in; 8c 2 C
1
k;i [fkg; if l = k,

ici2:::ic�1i1ic+1:::in; 8c 2 C
2
k;i; if l = i1;

;; otherwise

11

4. Node i 2 S1
n�1, i 6= In (nodes that start with symbol 1).

parentEDT (i; l; In) = fili2:::il�11il+1:::ing (11)

childrenEDT (i; l; In) = fli2:::ing [

�
i0 = (ici2:::ic�11ic+1:::in); if ic = c and l = i0pi0 ,

;; otherwise

5. Finally, the parent and children nodes of In are:

parentEDT (In) = ;

childrenEDT (In) = fici2:::ic�1i1ic+1:::in; 8c 2 C1g

The parentEDT and childrenEDT functions that de�ne EDTIn are consistent. The EDTI4 can be seen in

Fig. 4. Notice that each edge belongs twice in EDTIn , once in each direction, since communication is

bidirectional.

Lemma 6: The EDTIn has the following characteristics:

1. Subtrees T
EDTIn
l , 2 � l � n, are all edge-disjoint.

2. Subtree T
EDTIn
r(l)

is a rotation of subtree T
EDTIn
l , 2 � l � n (its previous subtree cyclically).

3. For each node i 2 Skn�1, 1 � k � n, there are n�1 parallel paths of almost minimum lengths that lead

to node In through EDTIn .

4. The depth of EDTIn is at most b3(n�1)

2
c + 4.

Proof: See Appendix. 2

The multiple edge-disjoint spanning trees, EDTh, rooted at any other node h of Sn can be obtained from

EDTIn , using the operation of translation with respect to h (see de�nition 1). Node i of Sn is connected to

its parent, children nodes in subtree TEDTh
l along the same dimensions that node T�1

h (i) is connected to its

parent, children nodes in subtree T
EDTIn
l . This is easily derived because connectivity and the dimension of

each edge are preserved under translation in Sn (lemma 1).

We need to pose an ordering to the children of each node in each of the subtrees T
EDTIn
k , 2 � k � n.

This will be useful in the construction of the algorithms described in the following section. We de�ne the kth

ordering of numbers f2; 3; :::; ng, denoted by �k to be such that: k + 1 �k k + 2 �k ::: �k n �k 2 �k ::: �k

k � 1 �k k. Each node arranges its children in each subtree T
EDTIn
k according to the kth ordering of the

dimensions of the edges it is connected to them. This guarantees that if node i is connected to its children

in subtree T
EDTIn
k through dimensions c1; c2; :::cl in order, then node R(i) is connected to its children in

subtree T
EDTIn
r(k)

, through dimensions r(c1); r(c2); :::; r(cl) again in order. This ordering in combination with

the fact that subtrees T
EDTIn
k , 2 � k � n, are rotations of each other guarantees that corresponding nodes

of the subtrees form unfolded necklaces. For example the nodes enclosed in rectangulars of the same kind in

Fig. 4 form unfolded necklaces. Also corresponding edges of the subtrees are rotations of each other and as

consequence all of di�erent dimensions (lemma 6). For example the dotted edges in Fig. 4 are rotations of

each other and of di�erent types. The ordering is carried by translation to EDTh rooted at any other node

h of Sn.

12

4 Applications

The multiple edge-disjoint spanning trees structure, de�ned in the previous section is used to derive optimal

communication and fault tolerant communication algorithms on the star network. More speci�cly we derive

an optimal single node broadcasting algorithm. We also derive optimal fault tolerant algorithms for four

basic communication problems in interconnection networks, namely the single node broadcasting, multinode

broadcasting, single node scattering and total exchange problems. All of the algorithms operate under the

all-port communication assumption. Before we proceed to the description of the algorithms, we derive lower

bound for the time and the number of message transmissions required for each of them.

4.1 Lower Bounds

Broadcasting on an interconnection network is the problem where a node wishes to send the same message to

all other nodes in the network. To broadcastM messages from a node of Sn, by pipelining the communication

from the root towards the leaves along any b
3(n�1)

2
c depth, breadth �rst spanning tree, under the all-

port communication assumption, the number of time steps required is M + b
3(n�1)

2
c � 1, which is not

optimal. Since Sn is a regular network with degree n� 1, the lower bound for the single node broadcasting

algorithm of M messages assuming all ports of a node can be used simultaneously for message transmission

is d M
n�1

e + b
3(n�1)

2
c. To achieve this lower bound the M messages are grouped into n � 1 packets of

equal size, each of which is communicated over a di�erent edge of the source node and is pipelined down

a di�erent edge-disjoint subtree rooted at a node adjacent to the source node. Since each node receives

each of the M messages once, the minimum number of message transmissions required for an optimal single

node broadcasting algorithm is M (n!� 1). In the fault tolerant single node broadcasting algorithm the M

messages are pipelined down each one of the of the n � 1 edge-disjoint spanning trees rooted at the nodes

adjacent to the source node. The time required for this algorithm is M + b
3(n�1)

2
c. Since each node receives

each of theM messages through n�1 parallel paths, the minimumnumber of message transmissions required

is M (n!� 1)(n� 1).

Multinode broadcasting on an interconnection network is the problem where each node of the network

wishes to send a message to all other nodes. If each node wishes to broadcast M messages, then each node

must receive a total ofM (n!�1) messages. As a consequence the minimumnumber of message transmissions

required is Mn!(n!� 1). Under the all-port assumption all n!(n � 1) edges of the network can be used for

message transmissions at each time step. Thus the minimum time required for the algorithm to complete

is dM(n!�1)

n�1
e. The lower bounds for the fault tolerant multinode broadcasting algorithm are easily derived

from the lower bounds for the multinode broadcasting with a multiplication by factor n � 1.

Single node scattering on an interconnection network is the problem where a node wishes to send a

di�erent message to each one of the other nodes. If the source node wishes to send M messages to each one

of the other nodes, M (n!�1) di�erent messages must be transmitted by the source node. Under the all-port

assumption all the n � 1 edges incident to the source node can be used for message transmissions at each

time step and as a consequence the minimum time required for the algorithm to complete is dM(n!�1)

n�1
e. The

number of message transmissions required can be found as follows: A message destined to a speci�c node

must travel as many edges as the shortest distance from the source to this node. If we sum the shortest

13

distances from the source to each node, this will be the minimumnumber of message transmissions required

for this problem:
b 3(n�1)

2
cX

k=1

kjNkj = n!

Pb 3(n�1)
2

c
k=1 kjNkj

n!
= n!d

jNkj is the number of nodes at a distance k from the source and d has been shown to be [3]:

d = n+
2

n
+Hn � 4

Hn is the n
th harmonic number: Hn = 1+ 1

2
+ 1

3
+:::+ 1

n
. Thus the minimumnumber of message transmissions

required for a single node scattering algorithm on Sn is:

Mn!(n+
2

n
+Hn � 4)

In the fault tolerant single node scattering algorithm the source node transmits the M (n!�1) messages to all

of its neighbors simultaneously. Each of the n� 1 edge-disjoint spanning trees rooted at the nodes adjacent

to the source node are used for a single node scattering algorithm. The number of message transmissions

required isM (n!�1)(n�1)+Mn!(n+ 2
n
+Hn�4)(n�1). Since the source node must transmitM (n!�1)(n�1)

messages the time required for this algorithm is M (n!� 1).

Total exchange on an interconnection network is the problem where each node wishes to send a distinct

message to every other node, in other words, every possible pair of nodes exchange distinct messages. The

fault tolerant total exchange algorithm is equivalent to n! di�erent fault tolerant single node scattering

algorithms, one from each node of Sn. Thus the minimum number of message transmissions required is

Mn!(n!� 1)(n� 1) +M (n!)2(n+ 2
n
+Hn� 4)(n� 1). Under the all-port assumption n!(n� 1) edges can be

used for message transmission at each time step simultaneously. Thus the minimum time required for the

algorithm to complete is M (n!� 1) +Mn!(n+ 2
n
+Hn � 4).

All the lower bounds were derived for degree of fault tolerance n�2. This means that each node receives

each message through n � 1 parallel paths. The lower bounds for the algorithms with controlled degree of

fault tolerance will be derived in the following sections along with the description of the algorithms.

Table 1 below summarizes the lower bounds for all of the above problems, with degree of fault tolerance

n� 2, and M messages transmitted to each node. By tn we denote the quantity n!(n+ 2
n
+Hn � 4).

problem time number of transmissions

single node broadcasting d
M
n�1

e + b
3(n�1)

2
c M (n!� 1)

fault tolerant single node broadcasting M + b
3(n�1)

2
c M (n � 1)(n!� 1)

fault tolerant multinode broadcasting M (n!� 1) M (n� 1)n!(n!� 1)

fault tolerant single node scattering M (n!� 1) M (n� 1)(n!� 1) +M (n� 1)tn
fault tolerant total exchange M (n!� 1) +Mtn M (n� 1)n!(n!� 1) +M (n� 1)n!tn

Table 1: Lower bounds on the star network.

The algorithms derived here for all of the above problems are optimal in terms of time and number of

message transmissions. Some of the methods used in this sections to derive lower bounds for the commu-

nications problems under consideration are similar to the methods used in [7] to derive lower bounds for

similar problems on the hypercube network.

14

4.2 Optimal single node broadcasting

In a single node broadcasting algorithmone node wishes to transmit a single message or a group of messages to

each other node. To broadcastM messages from a node of Sn, by pipelining the communication from the root

towards the leaves along any b3(n�1)

2
c depth, breadth �rst spanning tree, under the all-port communication

assumption, the number of time steps required is M + b
3(n�1)

2
c � 1, which is not optimal. Since Sn is a

regular network with degree n�1, the lower bound for the single node broadcasting algorithm ofM messages

assuming all ports of a node can be used simultaneously for message transmission is d M
n�1

e+ b
3(n�1)

2
c. This

lower bound can be achieved if the M messages are grouped into n � 1 packets, each of size M
n�1

. Each of

the packets is communicated over a di�erent edge of the source node h and is pipelined down a di�erent

edge-disjoint subtree of the EDTh rooted at the source node. As soon as a node receives a message from

its parent node in subtree T
EDTh
k , 2 � k � n, saves a copy, and forwards the message to its children

nodes in the same subtree. The result is that each node receives each of the n � 1 packets of the message

through a di�erent parallel path from the source node. The time required for this algorithm to complete is

at most d M
n�1

e+b
3(n�1)

2
c+3, which is almost optimal, since the depth of the multiple edge-disjoint spanning

trees structure is at most b3(n�1)

2
c + 4. The number of message transmissions required for the algorithm is

M (n! � 1), since each node receives each of the M messages once, which is the minimum possible. Using

this algorithm the resources of the network are fully utilized since all communication edges contribute to the

distribution of the information.

4.3 Fault tolerant single node broadcasting

The multiple edge-disjoint spanning trees structure can be used to derive a fault tolerant single node broad-

casting algorithm under the all-port communication assumption. Assume that the source node h, wishes to

broadcast M messages to all the other nodes. Node h sends the messages it wishes to broadcast through

all its incident edges simultaneously and these are pipelined down each of the n � 1 edge-disjoint subtrees

rooted at the nodes adjacent to h. As soon as a node receives a message from its parent node in subtree

T
EDTh
k , 2 � k � n, saves a copy and forwards the message to its children nodes in the same subtree. Using

this algorithm each of the nodes of Sn receives the same message through n�1 parallel paths. If up to n�2

node or edge faults occur in the system that block the message from passing we are still guaranteed that each

node receives a copy of the message and as a consequence the algorithm is n� 2 fault tolerant. If we assume

that the system has faults that alter the contents of the messages instead of just blocking or destroying it,

the fault tolerance degree of the algorithm decreases since an election algorithm is required at each node in

order to select the intact message. A brief discussion on the election algorithms can be found in [28]. The

time required for this algorithm to complete using the multiple edge-disjoint spanning trees structure is at

mostM + b
3(n�1)

2
c+3, which is almost optimal, since the depth of the multiple edge-disjoint spanning trees

is at most b
3(n�1)

2
c+ 4. The number of message transmissions required is M (n!� 1)(n� 1) since each node

receives each of the M messages n� 1 times, which is the minimum possible.

Using a similar technique we can control the degree of fault tolerance of the single node broadcasting

algorithm. Assume that the required degree of fault tolerance is x� 1 � n� 2. This means that each node

must receive each message through x parallel paths, or in other words that each message must be pipelined

15

down at least x edge-disjoint subtrees rooted at the nodes adjacent to the source node. However the number

of available edge-disjoint subtrees is n�1. In order to achieve maximumutilization of the network resources

the M messages are grouped into n�1
x

packets, each of size M
(n�1)=x

= Mx
n�1

(x must divide n � 1 for this to

work properly). Each of the n�1
x

packets is pipelined down x edge-disjoint subtrees. As a consequence, all

of the n � 1 (xn�1
x

= n � 1) edge-disjoint subtrees are used for message transmission. The result is that

each node receives each of the n�1
x

packets through x of its incident edges, and as an extension through

x parallel paths from the source node, and as a consequence the fault tolerance degree of the algorithm is

x � 1. The time required for the algorithm is at most Mx
n�1

+ b
3(n�1)

2
c + 3 which is almost optimal, since

the depth of the multiple edge-disjoint spanning trees is at most b3(n�1)

2
c + 4, and in addition we have

the exibility of controlling the degree of fault tolerance based on how reliable the system is. The number

of message transmissions required is M (n! � 1)x which is again optimal, since each node receives each of

the M messages x times. To illustrate the algorithm assume that node 12345 of S5, which is the root of

n � 1 = 4 edge-disjoint subtrees T
EDTI5
k , 2 � k � 5, whishes to broadcast M = 4 messages with degree

of fault tolerance x � 1 = 1 (this means that up to one faulty node or edge should be tolerated by the

algorithm). The message of size M is split into n�1
x

= 4
2
= 2 packets m1 and m2, each of size Mx

n�1
= 2. Each

of the packets is pipelined down x = 2 edge-disjoint subtrees i.e. m1 down T
EDTI5
2 , T

EDTI5
3 and m2 down

T
EDTI5
4 , T

EDTI5
5 . As a consequence, each node receives each packet through two parallel paths and the fault

tolerance degree of the algorithm is one.

4.4 Fault tolerant multinode broadcasting

In a multinode broadcasting algorithm, each node wishes to transmit a single message, or a group of messages

to each one of the other nodes. As a consequence each of the nodes should be the root of multiple edge-

disjoint spanning trees. The EDTIn can be replicated at any other node h of Sn using the operation of

translation with respect to h, as it was explained at the end of section 3 (see de�nition 1). Fault tolerance

can be achieved if each node receives each message through n � 1 parallel paths. However in this case we

have to guarantee that no conicts arise during the execution of the algorithm, since all nodes are sources of

messages. Under the all-port assumption n(n � 1) edges are available on Sn at each time step for message

transmission. This means that the messages originating from a speci�c node should be transmitted through

at most n�1 edges, at each time step. Let us denote by Lk(h) the set of edges on which messages originating

at node h are transmitted at time step k of the algorithm. For each k, Lk(h) is obtained from Lk(In) using

the operation of translation with respect to h (if (i; j) 2 Lk(In) then (Th(i); Th(j)) 2 Lk(h)) (see de�nition

1). The following lemma is enough to guarantee that no conicts arise during the execution of the algorithm.

Lemma 7: If for each k, the edges in Lk(In) are all of di�erent dimensions, then for each k, the sets

Lk(h), where h ranges over all nodes of Sn, are disjoint.

Proof: Assume two di�erent edges (i; j) 6= (i0; j0) 2 Lk(In) for some k, and take the edges (Th(i); Th(j)) 2

Lk(h) and (Th0 (i
0); Th0 (j

0)) 2 Lk(h
0) which are obtained by (i; j) and (i0; j0), respectively, under translation

with respect to two di�erent nodes of Sn, h and h0. Also assume that (Th(i); Th(j)) = (Th0 (i
0); Th0 (j

0)).

Since the dimension of each edge is preserved under translation (lemma 1), this means that dim(i; j) =

dim(Th(i); Th(j)) = dim(Th0 (i
0); Th0 (j

0)) = dim(i0; j0) which contradicts our assumption that (i; j) and

16

(i0; j0) are two di�erent edges of Lk(In). 2

The fault tolerant multinode broadcasting algorithm on Sn, assuming each node wishes to broadcast M

messages, proceeds as follows:

1. Each source node sends the M messages it wishes to broadcast to all of its neighbors simultaneously.

2. As soon as a node receives a group of M messages from its parent in subtree TEDTh
k , it saves a copy,

and forwards the messages to its leftmost child in the same subtree. However, if the node is a leaf of

subtree TEDTh
k , it sends an acknowledgement to its parent node in the subtree.

3. When a node receives an acknowledgement from one of its children nodes in subtree TEDTh
k , it forwards

theM messages it received from its parent in this subtree to its next child node in the subtree. However,

if the node has no more children in this subtree, it sends an acknowledgement to its parent node in the

subtree.

The algorithm terminates when each source node receives acknowledgements from all its neighbors. This

algorithm corresponds to a depth �rst traversal of the edges in each of the edge-disjoint subtrees. This means

that at each time step of the algorithm corresponding edges of the subtrees, TEDTh
k , 2 � k � n, rooted at

the nodes adjacent to h, are used simultaneously for message transmission. Since corresponding edges of the

n � 1 subtrees of EDTIn are all rotations of each other, they are all of di�erent dimensions (lemma 6) and

the requirement of lemma 7 for conict avoidance is satis�ed by the algorithm.

The time required for this algorithm to complete is M (n!� 1) which is optimal. The number of message

transmissions required is Mn!(n!�1)(n�1) which is the minimumpossible, since each node receives each of

the M (n!� 1) messages n� 1 times. The way the algorithm was constructed, the degree of fault tolerance

is n � 2 which means that each message is transmitted through all of the edge-disjoint subtree rooted at

the nodes adjacent to each source node. Controlling the degree of fault tolerance is possible by a technique

similar to the one described in subsection 4.3.

4.5 Fault tolerant single node scattering

In a single node scattering algorithm one node wishes to transmit distinct messages to each one of the other

nodes. The single node scattering algorithm on Sn, under the all-port assumption, can become fault tolerant

using the multiple edge-disjoint spanning trees. A message destined to a speci�c node is transmitted through

each of the edge-disjoint subtrees rooted at the nodes adjacent to the source node. In each subtree, messages

destined to nodes that are the furthest from the source are transmitted �rst.

If each node is the destination ofM messages, the time required for this algorithmto complete isM (n!�1),

which is optimal, since each edge incident to the source node constitutes a bottleneck forM (n!�1) messages.

The number of message transmissions required is M (n!� 1)(n� 1)+O(Mtn(n� 1)) which is asymptotically

optimal, because the lengths of the n�1 parallel paths between two nodes of Sn are not all equal the length

of a shortest path between the two nodes [8]. Controlling the degree of fault tolerance is possible using a

technique similar to the one described in subsection 4.3.

17

4.6 Fault tolerant total exchange

In a total exchange algorithm each node wishes to transmit distinct messages to each other node. As a

consequence, each of the nodes should be the root of multiple edge-disjoint spanning trees. The EDTIn can

be replicated at any other node h of Sn using the operation of translation with respect to h (see de�nition

1). Fault tolerance can be achieved if each node receives each message through n � 1 parallel paths. As in

the fault tolerant multinode broadcasting algorithm, we have to guarantee that no conicts arise during the

execution of the algorithm, since all nodes are sources of messages, or in other words we have to guarantee

that the requirement of lemma 7 is satis�ed.

The way node In transmits the messages through the edge-disjoint subtrees rooted at its neighbors is the

following: For each node i of Sn, In sends the messages destined to nodes Rk�2(i), 2 � k � n, respectively

through subtrees T
EDTIn
k , 2 � k � n, simultaneously. As soon as a group of messages reaches its destination

another group is send from In. Nodes R
k�2(i), 2 � k � n, form an unfolded necklace of nodes (see de�nition

5) at a speci�c level of EDTIn , since subtrees T
EDTIn
k , 2 � k � n, are all rotations of each other (lemma

6). As a consequence the n� 1 paths that lead from In to nodes Rk�2(i), 2 � k � n, respectively through

subtrees T
EDTIn
k , 2 � k � n, are all rotations of each other. This means that the n � 1 edges at each level

of the paths are of di�erent dimensions and the requirement of lemma 7 for conict avoidance is satis�ed. If

at a speci�c instance of the algorithm node In transmits messages to nodes Rk�2(i), 2 � k � n, respectively

through subtrees T
EDTIn
k , 2 � k � n, simultaneously, then any other node h of Sn transmits messages to

nodes Th(R
k�2(i)), 2 � k � n, respectively through subtrees TEDTh

k , 2 � k � n, simultaneously. This is a

simple application of the operation of translation with respect to h.

IfM messages must be transmitted to each node from each other node the time required for the algorithm

to compete is M (n!� 1) +O(Mtn) which is asymptotically optimal. The number of message transmissions

required is Mn!(n!� 1)(n � 1) + O(Mn!tn(n � 1)) which is again asymptotically optimal. This algorithm

is only asymptotically optimal because the lengths of the n � 1 parallel paths between two nodes of Sn

are not all equal to the length of a shortest path between the two nodes [8]. The way the algorithm was

described the degree of fault tolerance is n� 2 which means that each message is transmitted through each

di�erent edge-disjoint subtree rooted at the nodes adjacent to each source node. Controlling the degree of

fault tolerance is possible by a technique similar to the one described in subsection 4.3.

5 Conclusions

We presented several algorithms on the star interconnection network, in the areas of data communication

and fault tolerance. New de�nitions like that of the rotation operation and the necklace for nodes of Sn were

introduced to facilitate the construction of multiple edge-disjoint spanning trees on Sn. As a result a multiple

edge-disjoint spanning trees structure of optimal depth was constructed on the star interconnection network.

Using this structure an optimal single node broadcasting algorithm and optimal fault tolerant algorithms for

the single node broadcasting, multinode broadcasting, single node scattering and total exchange problems

on the star network were presented. All of the algorithms operate under the all-port assumption and are

optimal in terms of time and number of message transmissions. Constructing multiple edge-disjoint spanning

trees on the star network that would o�er optimal solutions to the above problems under the assumption

18

that each node can exchange a message of �xed length with only one of its neighbors at each time step, i.e.

the one-port communication assumption, is a problem that remains open.

We now provide a comparison of the algorithms presented in this paper for the four communication

problems under consideration on the star network, with algorithms for the same problems, under exactly the

same assumptions, on the popular hypercube network. Tables 2 and 3 below give the number of message

transmissions and the communication time required for each of the problems on the Sn and the hypercube

network of dimension k, denoted by Ck, respectively. For the fault tolerant communication algorithms the

degree of fault tolerance is assumed to be x.

problem time number of transmissions

single node broadcasting d
M
n�1

e+ b
3(n�1)

2
c M (n!� 1)

fault tolerant single node broadcasting d
Mx
n�1

e+ b
3(n�1)

2
c Mx(n!� 1)

fault tolerant multinode broadcasting d
Mx(n!�1)

n�1
e Mxn!(n!� 1)

fault tolerant single node scattering d
Mx(n!�1)

n�1
e Mx(n!� 1) +Mxtn

fault tolerant total exchange d
Mx(n!�1)

n�1
e+ d

Mxtn
n�1

e Mxn!(n!� 1) +Mxn!tn

Table 2: Lower bounds on the star network of dimension n.

problem time number of transmissions

single node broadcasting d
M
k
e + k M (2k � 1)

fault tolerant single node broadcasting d
Mx
k
e + k Mx(2k � 1)

fault tolerant multinode broadcasting d
Mx(2k�1)

k
e Mx2k(2k � 1)

fault tolerant single node scattering d
Mx(2k�1)

k
e Mx(2k � 1) +Mx2k�1k

fault tolerant total exchange d
Mx(2k�1)

k
e +Mx2k Mx2k(2k � 1) +Mx22k�1k

Table 3: Lower bounds on the hypercube network of dimension k.

In table 4 below the performances of the two networks are compared. Since the star network is de�ned

for numbers of nodes which are factorials, while the hypercube is de�ned for powers of two, the comparison

cannot be exact. In the comparison below a hypercube network with O(2k) = O(n!) nodes and degree

O(k) = O(logn!) = O(n logn) is assumed.

From table 4 we notice that whenever the performance of an algorithm depends on the degree of the

network, as for example the communication times of the fault tolerant multinode broadcasting, single node

scattering and total exchange algorithms, the hypercube network performs better than the star network by

a factor of logn. On the other hand, whenever the performance of an algorithm depends on the diameter

of the network, or the lengths of the shortest paths between nodes, as for example the number of message

transmissions of the fault tolerant single node scattering and total exchange algorithms, the star network

performs better by a factor of logn. The communication times of the single node broadcasting and the fault

tolerant single node broadcasting algorithms depend on both the degree and the diameter of the networks

and this is reected at the comparison of their performances. In any other case the performance of the two

19

networks is the same. However we should not forget that the star network has smaller degree resulting in

processors with a smaller number of ports and as a consequence smaller cost.

problem net time number of transmissions

single node broadcasting Sn O(M
n
+ n) O(Mn!)

Cn O(M
n logn

+ n logn) O(Mn!)

fault tolerant single node broadcasting Sn O(Mx
n

+ n) O(Mxn!)

Cn O(Mx
n logn

+ n logn) O(Mxn!)

fault tolerant multinode broadcasting Sn O(Mxn!
n

) O(Mx(n!)2)

Cn O(Mxn!
n logn

) O(Mx(n!)2)

fault tolerant single node scattering Sn O(Mxn!
n

) O(Mxn! +Mxn!n)

Cn O(Mxn!
n logn

) O(Mxn! +Mxn!n logn)

fault tolerant total exchange Sn O(Mxn!
n

+Mxn!) O(Mx(n!)2 +Mx(n!)2n)

Cn O(Mxn!
n logn

+Mxn!) O(Mx(n!)2 +Mx(n!)2n logn)

Table 4: Comparison of star and hypercube performances.

References

[1] S.B. Akers, D. Harel, and B. Krishnamurthy, \The Star Graph: An Attractive Alternative to the

Hypercube", in Proceedings of the International Conference on Parallel Processing, St. Charles, IL, pp.

393-400, 1987.

[2] S.B. Akers, and B. Krishnamurthy, \The Fault Tolerance of Star Graphs", in Proceedings of the Inter-

national Conference on Supercomputing, San Francisco, CA, pp. 270-276, 1987.

[3] S.B. Akers, and B. Krishnamurthy, \A Group Theoretic Model for Symmetric Interconnection Net-

works", IEEE Transactions on Computers, vol. c-38, no. 4, pp. 555-566, 1989.

[4] S.G. Akl, and K. Qiu, \A Novel Routing Scheme on the Star and Pancake Networks and its Applica-

tions", Parallel Computing, vol. 19, no. 1, pp. 95-101, 1993.

[5] P. Berthom�e, A. Ferreira, and S. Perennes, \DecomposingHierarchical Cayley Graphs, with Applications

to Information Dissemination and Algorithm Design", Technical Report no. 92-32, Laboratoire de l'

Informatique du Parall�elism, Ecole Normale Superi�eure de Lyon, Lyon, France, 1992.

[6] D.P. Bertsekas, and J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods, Engle-

wood Cli�s, NJ, Prentice Hall, 1989.

[7] D.P. Bertsekas, C. Ozveren, G.D. Stamoulis, P. Tseng, and J.N. Tsitsiklis, \Optimal Communication

Algorithms for Hypercubes", Journal of Parallel and Distributed Computing, vol. 11, pp. 263-275, 1991.

[8] K. Day, and A. Tripathi, \A Comparative Study of Topological Properties of Hypercubes and Star

Graphs," to appear in the IEEE Transaction on Parallel and Distributed Systems.

20

[9] M. Dietzfelbinger, S. Madhavapeddy, and I.H. Sudborough, \Three Disjoint Path Paradigms in Star

Networks", in Proceedings of the IEEE Symposium on Parallel and Distributed Processing, Dallas, TX,

pp. 400-406, 1991.

[10] P. Fragopoulou, \Parallel Algorithms for the Fourier and Other Mathematical Transforms," Master's

Thesis, Department of Computing and Information Science, Queen's University, Kingston, ON, 1990.

[11] P. Fragopoulou, and S.G. Akl, \A Parallel Algorithm for Computing Fourier Transforms on the Star

Graph," in Proceedings of the International Conference on Parallel Processing, St. Charles, IL, vol. III,

pp. 100-106, 1991, to appear in the IEEE Transactions on Parallel and Distributed Systems.

[12] P. Fragopoulou, and S.G. Akl, \Optimal Communication Algorithms on the Star Interconnection Net-

work", to appear in the Proceedings of the �fth IEEE Symposium on Parallel and Distributed Processing,

Dallas, TX, 1993.

[13] P. Fragopoulou, and S.G. Akl, \Optimal Communication Algorithms on Star Graphs Using Spanning

Tree Constructions", Technical Report no. 93-346, Department of Computing and Information Science,

Queen's University, Kingston, ON, 1993, to appear in the Journal of Parallel and Distributed Computing.

[14] P. Fraigniaud, E. Lazard, \Methods and Models of Communication in Usual Networks" Technical Re-

port, Laboratoire de l' Informatique du Parall�elism, Ecole Normale Superi�eure de Lyon, Lyon, France,

1991.

[15] P. Fraigniaud, and C.T. Ho, \Arc Disjoint Spanning Trees on Cube Connected Cycles Network", in

Proceedings of the International Conference on Parallel Processing, St. Charles, IL, vol. I, pp. 225-229,

1991.

[16] P. Fraigniaud, \Fault-tolerant Gossiping on Hypercube Multicomputers", in Proceedings of the

EDMCC2, Munchen, France, pp. 463-472, 1991.

[17] L. Gargano, U. Vaccaro, and A. Vozella, \Fault Tolerant Routing in the Star and Pancake Intercon-

nection Network", Dipartimento di Informatica ed Applicazioni, Universita di Salerno, Baronissi, SA,

Italy.

[18] S.L. Johnson, and C.T. Ho, \Optimum Broadcasting and Personalized Communication in Hypercubes",

IEEE Transactions on Computers, vol. c-38, no. 9 , pp. 1249-1268, 1989.

[19] J. Jwo, S. Lakshmivarahan, and S.K. Dhall, \Characterization of Node Disjoint (parallel) Paths in Star

Graphs", in Proceedings of the Fifth International Parallel Processing Symposium, pp. 404-409, 1991.

[20] D.E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, MA, 1973.

[21] F.T. Leighton, Complexity Issues in VLSI: Optimal Layouts for the Shu�e-Exchange and Other Net-

works, MIT Press, 1983.

[22] V.E. Media, and D. Sarkar, \Optimal Broadcasting on the Star Graph", IEEE Transactions on Parallel

and Distributed Systems, vol. 3, no. 4, pp. 389-396, 1992.

21

[23] A. Menn, and A.K. Somani. \An E�cient Sorting Algorithm for the Star Graph Interconnection Net-

work", in Proceedings of the International Conference on Parallel Processing, St. Charles, IL, vol. III,

pp. 1-8, 1990.

[24] M. Nigam, S. Sahni, and B. Krishnamurthy, \Embedding Hamiltonians and Hypercubes in Star Inter-

connection Graphs", in Proceedings of the International Conference on Parallel Processing, St. Charles,

IL, pp. 340-343, 1990.

[25] K. Qiu, S.G. Akl, and I. Stojmenovi�c, \Data Communication and Computational Geometry on the Star

and Pancake Networks", in Proceedings of the IEEE Symposium on Parallel and Distributed Processing,

Dallas, TX, 1991.

[26] K. Qiu, P. Fragopoulou, and S.G. Akl, \On the Tree Structure of the Star Graph", Technical Report no.

93-349, Department of Computing and Information Science, Queen's University, Kingston, ON, 1993.

[27] K. Qiu, and S.G. Akl, \On the Properties of Breadth First Spanning Tree of the Star Graph", Technical

Report no. 93-350, Department of Computing and Information Science, Queen's University, Kingston,

ON, 1993.

[28] P. Ramanathan, and K.G. Shin, \Reliable Broadcast in Hypercube Multicomputers", IEEE Transaction

on Computers, vol. c-37, no. 12, pp. 1654-1657, 1988.

[29] S. Sur, and P.K. Srimani, \A Fault Tolerance Routing Algorithm in Star Graphs", Technical Report

no. 90-108, Department of Computer Science, Colorado State University, Ft. Collins, CO, 1990.

Appendix

Lemma 6: The EDTIn has the following characteristics:

1. Subtrees T
EDTIn
l , 2 � l � n, are all edge-disjoint.

2. Subtree T
EDTIn
r(l)

is a rotation of subtree T
EDTIn
l , 2 � l � n (its previous subtree cyclically).

3. For each node i 2 Skn�1, 1 � k � n, there are n�1 parallel paths of almost minimum lengths that lead

to node In through EDTIn .

4. The depth of EDTIn is at most b3(n�1)

2
c + 4.

Proof: We prove each part separately:

1. From the de�nition of the parentEDTIn function, we see that each node of Sn is connected to each

di�erent subtree T
EDTIn
l , 2 � l � n, through a di�erent neighboring node, and as an extension

through a di�erent one of its incident edges. This concludes that subtrees T
EDTIn
l , 2 � l � n, are all

edge-disjoint.

2. We have to prove that if node i of Sn has parent node j in subtree T
EDTIn
l , 2 � l � n, then node R(i),

obtained from i by a rotation, has parent node R(j) in subtree T
EDTIn
r(l)

.

From the de�nition of rotation we make the following observations:

22

(a) If node i 2 Skn�1, then node i0 = R(i) 2 S
r(k)
n�1 (lemma 2, part 2).

(b) pi0 = r(pi).

If i 2 Skn�1 and i1 6= k then pi = i1. In this case i0 2 S
r(k)
n�1 and i

0
1 = r(i1) 6= r(k), and we conclude

that pi0 = i01 = r(i1) = r(pi).

If i 2 Skn�1 and i1 = k then pi is such that ipi is the �rst misplaced symbol cyclically to the right

of symbol 1 (position k) in i (excluding i1). In this case i0 2 S
r(k)
n�1 and i

0
1 = r(i1) = r(k), then pi0

is such that i0pi0 is the �rst misplaced symbol cyclically to the right of symbol 1 (position r(k))

in i0 (excluding i01). From the de�nition of pi, im = m for all m cyclically between positions k

and pi in i. From the de�nition of rotation i0r(m) = r(im) = r(m) for all r(m) cyclically between

positions r(k) and r(pi) in i
0. So the �rst misplaced symbol cyclically to the right of symbol 1 in

i0 is in position r(pi), and we conclude that pi0 = r(pi).

(c) i0pi0 = i0r(pi) = r(ipi).

In what follows we use the notation k0 = r(k) and l0 = r(l). We now show how the parent nodes of i

and i0 (j and j0 respectively) in subtrees l and l0, respectively, can be obtained from the de�nition of

the parentEDT function. For clarity we distinguish again among di�erent kinds of nodes.

(a) If i 2 Skn�1 with ipi = k, then i0 2 Sk
0

n�1 with i0pi0 = k0 (i0pi0 = r(ipi) = r(k) = k).

parentEDT (i; l; In) =8<
:

j = (ipi i2:::in); if l = k;

j = (1i2:::in); if l = i1;

j = (li2:::in); otherwise

)

)

)

parentEDT (i0; l0; In) =8<
:

j0 = (i0pi0 i
0
2:::i

0
n); if l0 = k0;

j0 = (1i02:::i
0
n); if l0 = i01;

j0 = (l0i02:::i
0
n); otherwise

(l0 = r(l) = r(k) = k0)
(i01 = r(i1) = r(l) = l0)

(b) If i 2 Skn�1 with i1 6= k and ipi 6= k, then i0 2 Sk
0

n�1 with i01 6= k0 (i01 = r(i1) 6= r(k) = k) and

i0pi0 6= k0 (i0pi0 = r(ipi) 6= r(k) = k).

parentEDT (i; l; In) =8>><
>>:

j = (ipi i2:::in); if l = k;

j = (1i2:::in); if l = i1;

j = (ki2:::in); if l = ipi ;

j = (li2:::in); otherwise

)

)

)

)

parentEDT (i0; l0; In) =8>><
>>:

j0 = (i0pi0 i
0
2:::i

0
n); if l0 = k0;

j0 = (1i02:::i
0
n); if l0 = i01;

j0 = (k0i02:::i
0
n); if l0 = i0pi0 ;

j0 = (l0i02:::i
0
n); otherwise

(l0 = r(l) = r(k) = k0)
(i01 = r(i1) = r(l) = l0)
(i0pi0 = r(ipi) = r(l) = l0)

(c) If i 2 Skn�1 with i1 = k, then i0 2 Sk
0

n�1 with i
0
1 = k0 (i01 = r(i1) = r(k) = k0).

parentEDT (i; l; In) =8<
:

j = (ipi i2:::in); if l = k;

j = (1i2:::in); if l = ipi ;

j = (li2:::in); otherwise

)

)

)

parentEDT (i0; l0; In) =8<
:

j0 = (i0pi0 i
0
2:::i

0
n); if l0 = k0;

j0 = (1i02:::i
0
n); if l0 = i0pi0 ;

j0 = (l0i02:::i
0
n); otherwise

(l0 = r(l) = r(k) = k0)
(i0pi0 = r(ipi) = r(l) = l0)

(d) If i 2 S1
n�1, i 6= In, then i0 2 S1

n�1 and i0 6= In.

parentEDT (i; l; In) = (j = ili2:::in)) parentEDT (i0; l0; In) = (j0 = i0l0 i
0
2:::i

0
n)

We should now prove that j0 = R(j). Another way to prove this is that if edge (i; j) is of dimension d

then edge (i0; j0) is of dimension r(d). We have the following cases:

23

(a) j = ipi i2::in, and j0 = i0pi0 i
0
2:::i

0
n.

Edge (i; j) is of dimension pi and edge (i0; j0) is of dimension pi0 . However pi0 = r(pi) and we

conclude that j0 = R(j).

(b) j = 1i2:::in, and j0 = 1i02:::i
0
n.

The dimension of edge (i; j) is k because i 2 Skn�1. The dimension of edge (i0; j0) is k0 because

i0 2 Sk
0

n�1. But k
0 = r(k) and we conclude that j0 = R(j).

(c) j = ki2:::in, and j
0 = k0i02:::i

0
n.

The dimension of edge (i; j) is d so that id = k. The dimension of (i0; j0) is d0 such that i0d0 = k0.

From the de�nition of rotation we know that i0d0 = k0 = r(k) = r(id) = i0r(d)) d0 = r(d) and we

conclude that j0 = R(j).

(d) j = li2:::in, and j0 = l0i02:::i
0
n.

The proof is the same as in (c).

3. In what follows we characterize the paths that lead from node i of Sn to In through each of the subtrees

T
EDTIn
l , 2 � l � n. For clarity we distinguish again among di�erent kinds of nodes. The labels above

the arrows show which parts of the parentEDT function could be applied each time (de�nition 8).

(a) For node i 2 Skn�1, 2 � k � n, with ipi = k, the paths have the following forms:

i
(1)
! ipii2:::in

(4)
! shortest path through nodes Skn�1 of T

EDTIn
k

(4)
! In

i
(2)
! 1i2:::in

(11)
! shortest path through nodes Si1n�1 of T

EDTIn
i1

(4)
! In

i
(3)
! li2:::in

(2;8)
�! 1i2:::in

(11)
! shortest path through nodes Sln�1 of T

EDTIn
l

(4)
! In (l 6= i1; l 6= (ipi = k))

All of these paths are parallel since they go through di�erent substars Sn�1 of Sn and of minimum

lengths.

(b) For nodes i 2 Skn�1, 2 � k � n, with i1 = k, the paths have the following forms:

i
(4)
! ipii2:::in

(7)
! shortest path through nodes Skn�1 of T

EDTIn
k

(4)
! In

i
(5)
! 1i2:::in

(11)
! shortest path through nodes S

ipi
n�1 of T

EDTIn
ipi

(4)
! In (i not adjacent to In)

i
(6)
! li2:::in

(2;8)
�! 1i2:::in

(11)
! shortest path through nodes Sln�1 of T

EDTIn
l

(4)
! In (l 6= ipi ; l 6= (i1 = k))

All of these paths are parallel since they go through di�erent substars Sn�1 of Sn and of minimum

lengths.

(c) For node i 2 Skn�1, 2 � k � n, with i1 6= k and ipi 6= k, the paths have the following forms:

i
(7)
! ipi i2:::in

(1;7)
�! shortest path through nodes Skn�1 of T

EDTIn
k

(4)
! In

i
(8)
! 1i2:::in

(11)
! shortest path through nodes Si1n�1 of T

EDTIn
i1

(4)
! In

The path through neighbor i0 = ki2:::in of i has one of the following forms:

If ipi = i0pi0 then (parent nodes of i and i0 start with the same symbol)

i
(9)
! ki2:::in

(5)
! 1i2:::in

(11)
!

,! shortest path through nodes S
ipi
n�1 of T

EDTIn
ipi

(4)
�! In (path 1)

24

If ipi 6= i0pi0 then (parent nodes of i and i0 start with di�erent symbols)

i
(9)
! ki2:::in

(6)
! ipi i2:::in

(2;8)
�! 1i2:::in

(11)
!

,! shortest path through nodes S
ipi
n�1 of T

EDTIn
ipi

(4)
�! In (path 2)

Finally,

i
(10)
! li2:::in

(2;8)
! 1i2:::in

(11)
! shortest path through nodes Sln�1 of T

EDTIn
l

(4)
! In (l 6= i1; ipi ; k)

All these paths are parallel since they go through di�erent substars Sn�1 of Sn and are of minimum

possible lengths. Path 2 has length two more than path 1 which is the minimum length path that

goes through nodes S
ipi
n�1 of T

EDTIn
ipi

. However in some cases path 2 must be used to guarantee

that all subtrees are edge-disjoint.

(d) Finally, for nodes i 2 S1
n�1, i 6= In, the paths have the following forms:

i
(11)
! li2:::in

(1;4;7)
�! shortest path through nodes Sln�1 of T

EDTIn
l

(4)
! In

All of these paths are parallel since they go through di�erent substars Sn�1 of Sn and of minimum

lengths.

4. The depth of SPTIn is b3(n�2)

2
c + 1. This is because each of the subtrees T

SPTIn
k , 2 � k � n, is a

shortest path tree in Skn�1 and b
3(n�2)

2
c is the diameter of Sn�1 [1]. The depth of SPGIn , which is

de�ned as an extension of SPTIn , is b
3(n�2)

2
c + 2 for obvious reasons. The EDTIn is constructed as

an extension of SPGIn . From part 3 of this lemma, each node of Skn�1, 2 � k � n, is connected to In

through subtree T
EDTIn
l (k 6= l) with a path of the form i! : : :! 1i2:::in ! : : :! In. From part 3 of

this lemma we know that the path from i to 1i2:::in has length at most three (path 2). So the depth of

EDTIn is less or equal to the depth of SPGIn+3 = b
3(n�2)

2
c+2+3 � b

3(n�1)

2
c�1+2+3 � b

3(n�2)

2
c+4.

This depth is almost optimal because it is greater only by one from the best up to now estimate of the

fault diameter of Sn [2] which is the lower bound for the depth of EDTIn .

Form this lemma we notice that not only the EDTIn is of almost minimumdepth but that the n�1 parallel

paths that lead from each one of the nodes of Sn to In are also of minimum length except in one case. In

this case n� 2 of the paths are of minimum length and one of the paths (path 2) has length two more than

the corresponding minimum path. This structure leads to algorithms that are optimal not only in terms of

communication time, but also in term of message transmissions as we will see in section 4. 2.

25

