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Abstract

Model-based reasoning involves proving the truth of a proposition by computation

in the semantic domain. In contrast, rule-based reasoning is proving truth by means

of formal manipulation of formulas. A growing body of research in cognitive science

suggests that human spatial reasoning is model-based, rather than rule-based.

The paper begins with a cognitive perspective of model-based reasoning. A semantic

domain for spatial reasoning, based on a theory of symbolic arrays, is de�ned. A

modal logic of spatial assertions for reasoning in indeterminate worlds is then presented,

along with possible extensions that address structural hierarchy, temporal modalities,

multiple views and analogy.
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Figure 1: Spatial model of a molecular structure

1 Introduction

Psychologists have acknowledged that mental models are fundamental to human problem
solving, particularly for their predictive and explanatory power in understanding human
interactions with the environment and with others [66]. These models correspond to inter-
nalized representations that can be mentally inspected and transformed. Contemplate the

planning problem of rearranging the furniture in your living room. One approach to solving
this problem is to physically move the furniture about the room to evaluate the alterna-
tive arrangements. A less backwrenching approach is to mentally visualize and analyze the
various possibilities. Mental models can also be applied metaphorically in problem solving;
a heuristic cited by orators is to consider a speech as a voyage through a building where
objects along the way act as cues to the next topic. Although some mental models may

be specialized and require training to develop (e.g., models for reasoning about the physical
behavior of complex mechanical devices), others are more accessible and correspond to ev-
eryday problem solving (e.g., a mental map for planning a route from your bedroom to the
refrigerator).

Johnson-Laird [34] describes several types of mental models. The �rst, and most fun-

damental, is a relational model, which is a static frame consisting of tokens that represent

entities in the world and a set of relations that de�ne the physical relationships among en-
tities. A spatial model is a relational model in which the relations of interest are spatial in
nature; tokens are located within a symbolic, multi-dimensional space. For example, the

graphical depiction in Figure 1 could be considered a spatial model of a molecular struc-

ture: each entity (atomic part) within the structure is represented as a symbolic token (node
in the graph) and structural relations among entities (relative location and bonding) are

represented using spatial dimensions and links. This model is neither complete nor totally
accurate; knowledge about the bond lengths and angles, and the relative size of atoms is

not captured. However, it does explicitly depict information that can be used for reasoning

about molecular structure and interactions, while discarding irrelevant details.
Just as mental models are pervasive in human problem solving, computational models

for spatial reasoning provide a foundation for problem solving in AI. One active area of
research where models play an important role is qualitative physics [12]. Studies in this
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Figure 2: Array representation of molecular structure

problem domain focus on explaining the behavior of the physical world in qualitative terms,

rather than by exact quantitative calculations. Mental models have also been studied in the
context of mechanistic devices such as physical machines, electronic and hydraulic devices or
reactors [9]. The dynamic nature of model-based reasoning makes it particularly suited for

planning problems, since it can be used to simulate actions and events. The importance of
spatial reasoning with models encompasses many other domains, including computer vision,
robotic navigation and spatial databases.

This paper is concerned with the development of a computational methodology for spatial
reasoning with models. A knowledge representation scheme is presented in which symbolic

array data structures are used, in conjunction with imagery inspection and transformation
operations, to reason about the spatial properties of a domain. Each dimension in an array
de�nes a linear order relation among entities in the domain. The relative locations of symbols
in the array may correspond to spatial (e.g., left-of), geographic (e.g., north-of), temporal
(e.g., before) or conceptual (e.g., taller-than) relations in the world. In particular, we are

concerned with transitive relations { that is, relations r such that if r(x; y) and r(y; z)
then r(x; z): For example, the spatial model in Figure 1 could alternatively be depicted
as the symbolic array depicted in Figure 2. In this representation the spatial locations
of symbols within the array correspond to the relative locations of atoms within a three-
dimensional molecular structure. Topological relations, such as bonded-to, contained-in,

touching, etc., can also be modelled in an array representation. In the above example,
adjacency (within distance one in all dimensions) in the array denotes bonding between

atoms in the molecular structure. Reasoning at varying levels of abstraction can be achieved

in the scheme by de�ning array representations as recursive data structures; symbols in the
array can themselves denote models at a more detailed level of abstraction.

The formalism presented in this paper has evolved from research in the area of computa-
tional imagery [24, 17, 18, 52], which involves the study of AI knowledge representation and

inferencing techniques that correspond to the representations and processes for mental im-
agery. In the previously proposed scheme for computational imagery, a mathematical theory

of arrays provides a basis for representing and reasoning about visual and spatial properties
of entities in the world. Although results of cognitive studies o�ered initial motivation for

the representations and functionality of the formalism, the ultimate concerns of research in

computational imagery are expressive power, inferential adequacy and e�ciency.
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The paper presents a formal semantics for spatial reasoning with array representations

(models) of possible worlds. This semantics o�ers a basis for deductive reasoning, where

inferences are based on a semantic theory of relational deductions, rather than on a syn-

tactic theory that depends on rules of inference. Incomplete or uncertain knowledge may

result in worlds with multiple possible interpretations, where each consistent interpretation

is represented by a unique array model.

To provide a cognitive perspective of the research area, the paper begins with a discussion

of mental models and their role in spatial reasoning and problem solving. A representation

scheme for spatial reasoning using symbolic arrays is presented in Section 3. Section 4

illustrates how array representations can be incorporated in a deductive reasoning scheme

using a model-theoretic semantics. An ongoing issue in AI is how to update a knowledge base

as new information is added or as a world is transformed. Section 5 considers this issue by

demonstrating how nonmonotonicity can be addressed in the formalism. Extensions to the

representation scheme { for reasoning with hierarchical models, for temporal and analogical
reasoning, and for inspecting models from alternative perspectives { are introduced in Section
6. The paper concludes with a discussion of related work and a summary of the major

contributions of the described research.

2 Mental Models

Results of experimental studies in cognitive psychology suggest that much of human problem
solving is not achieved through rule-based reasoning, but rather through the manipulation

of mental models. That is, humans often reason by constructing and transforming a class of
representations that are structurally similar to the reality they depict. The primary purpose
of this paper is to present a computational framework for reasoning about spatial models of
the world. Although we do not suggest that the proposed representation scheme is necessarily
a model of cognition, an understanding of the underlying principles and behavior of mental

models is important to the development of AI systems for spatial reasoning and problem
solving. In particular, it is useful to discriminate between mental models and other forms of
mental representation.

This section describes the concept of mental models in terms of a set of underlying

principles. It also discusses the role of mental models in human reasoning and relates models

to representations for logic and mental imagery.

2.1 Principles of Mental Models

Although there does not appear to be an agreed on account for what constitutes a mental

model, Johnson-Laird [34] has proposed some weak constraints on these representations:

� Mental models, and the machinery for constructing and interpreting them, are com-

putable and �nite.

� A description of a single state of a�airs is represented by a single mental model. In-

determinacies are directly represented only if their use does not result in exponential

growth in the number of models.
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� The structure of a mental model is isomorphic to the structure of the state of a�airs

it represents; a model is constructed from tokens corresponding to the entities in the

world.

Johnson-Laird asserts that models are akin to how people perceive the world, yet may be

incomplete or simpli�ed. Moreover, mental models are speci�c, and can be used to represent

relations concerning space or time. Inferences are drawn, not through the application of

formal rules, but through the construction and inspection of alternative models that are

used to validate or refute a putative conclusion.

Problem solving with spatial models is often associated with the reasoning abilities of

mental imagery. A large body of experimental data has been generated and theories proposed

concerning the representations involved in imagery. These theories fall into three categories:

1) theories that suggest that image representations are analog or picture-like [37, 60], 2) the-

ories that liken image representations to linguistic descriptions [54], and 3) those that suggest
that there may exist multiple image representations, corresponding to di�erent task demands

[11]. Johnson-Laird proposes, as a resolution to the imagery debate, that there exist three
kinds of representation involved in imagery: a propositional representation, a mental model
and a visual image. What distinguishes a mental model from other forms of representation is
the degree of speci�city, which can be measured by the amount of information that is made
explicit by the representation. Mental models are less speci�c than visual representations {

they may discard features such as shape and size { yet they are more speci�c than propo-
sitional representations. A knowledge representation scheme for computational imagery has
previously been proposed [24]. This scheme includes a semantic network representation for
long-term memory, corresponding to Johnson-Laird's propositional representation, and two
working-memory representations corresponding to the mental model and the visual repre-
sentation. Computational imagery involves tools and techniques for visual-spatial reasoning,

where image depictions are generated or recalled from long-term memory and then manipu-
lated, transformed, scanned, associated with similar forms (constructing spatial analogies),
and so forth.

2.2 Reasoning with Mental Models

One purpose of a mental model is to simulate and thus predict and/or plan for the behavior

of a system. Humans are adept at reasoning about space, yet it is not well understood how
this is accomplished. Forbus [12] suggests that it is not through logical theorem proving or
through algebraic calculations, but through diagrammatic reasoning, that we achieve this

competence. He states that the spatial structure of a diagram allows us to use our perceptual

apparatus to inspect and interpret models in a way that is analogous to how we inspect and
interpret entities in the world. He further conjectures that people can reason with less

detailed representations than diagrams { representations that symbolically describe places
and relationships among these places.

Theories of inference based on mental models have suggested that the processing of syl-

logisms can be achieved by the inspection of symbolic spatial models [31]. In such theories,
a model is constructed in which tokens corresponding to entities in the world are mapped

along an axis corresponding to comparative dimensions such as taller-than/shorter-than or
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older-than/younger-than. For example, the description \John is taller than Mary and Mary

is taller than Jane" could be represented as an array John Mary Jane , where the left-of

relation in the array corresponds to the transitive taller-than relation among entities in the

world. Using this model, questions such as Is John taller than Jane? can be answered by

applying inspection operations analogous to those used in visual inspection. Although it

is possible to construct a logical description and rules of inference for syllogistic reasoning,

experimental results suggest that mental models that incorporate array representations in-

crease the e�ciency and accuracy of problem solving involving transitive inferences [59, 38].

Several recent studies have focussed on the mental models resulting from textual de-

scriptions of scenes and how these can be used to retrieve spatial information. Denis [10]

presents experimental results that support a stage of text processing that represents a model

of the world in terms of the spatial con�guration among entities. In his study, subjects were

presented with spatial descriptions such as:

In the extreme north-west part there is a mountain. To the east, there is a forest. To the east

of the forest, there is a lake. In the extreme south-west part, there is a meadow. To the east

of the meadow, there is a cave. To the east of the cave, there is a desert.

which is representable as an array of the form:

mountain forest lake

meadow cave desert
.

Denis suggests that the cognitive advantage to such a model in linguistic text processing is
that \it allows readers to make inferences without necessary recourse to computations based
on formal logic".

Experiments carried out by Taylor and Tversky [68] presented subjects with both route
and survey descriptions of spatial domains. Their �ndings included the fact that the subjects

constructed mental models that were su�ciently abstract to allow inferences from alternative
perspectives. They propose that the advantage of such a representation lies in its exibility,
since it supports exploration of a world from unique points of view as well as adaptation
resulting from change in the environment. Other studies by Tversky [70, 71] provide evidence
that spatial mental models might be distorted by an alignment with existing landmarks or
frames of reference. For example, when college students were asked to choose a correct map

of America from two possibilities, the majority chose the incorrect version which was altered

so that South America appeared directly below North America. Related experiments show
that people incorrectly believe that Reno is east of San Diego, based on the knowledge of

the relative locations of their respective states [65].
Johnson-Laird [35] cites three fundamental di�erences between reasoning with mental

models and reasoning with logical representations:

� Model-based reasoning is semantic: it relies on the construction and inspection of

alternative models, where each model represents a unique state of a�airs. Logic-based

reasoning is generally syntactic: conclusions are formed by applying rules of inference
to syntactic forms in order to derive new forms.
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� In mental models, symbolic tokens correspond to individual entities; models do not

contain variables. Much of logical reasoning is based on the instantiation of generalized

terms containing variables.

� Whereas logical forms mirror the structure of discourse, mental models are structured

to mirror the relations among entities.

Furthermore, Johnson-Laird suggests that the principles involved in mental models have se-

rious advantages for computational reasoning. In particular, they allow for the integration of

deductive and nonmonotonic reasoning: derivations occur by simple model checking (inspec-

tion of model representations) and updating of models can be achieved without the cost of

undoing previously computed deductions resulting from default reasoning. In the following

sections we support this claim by demonstrating how deduction and nonmonotinicity can be

integrated in a computational approach to model-based spatial reasoning.

3 Representation of Spatial Models

This section presents a knowledge representation scheme for model-based reasoning in which,
similar to the spatial component of computational imagery [24], symbolic arrays depict the
entities and relations in a world. The scheme was developed using a theory of arrays. Array
theory is the mathematics of rectangularly arranged, nested data objects [48]. An array
consists of zero or more items held at positions along multiple axes, where rectangular
arrangement is the concept of objects having spatial positions relative to one another in the

collection. Similar to set theory, array theory is concerned with the concepts of aggregation,
nesting and membership. An array can be considered as a multi-dimensional generalization
of the list data structure used in Lisp [32]. The representation of spatial models involves a
special class of arrays { those whose symbols and structure denote entities and their relative
locations in the domain of interest. In order to specify spatial relations, a symbol may occupy

one or more cells of an array. For example, the description { The ball and the lamp are on

the table; the lamp is to the right of the ball { could be represented as the array:

ball lamp

table table

where the symbols lamp, ball and table are mapped to the corresponding entities in the world

and the spatial relations of interest are on-top-of and right-of. For the purpose of this paper,

we employ a convention for depicting arrays where adjacent identical symbols are represented

in a single cell comprised of multiple locations in the array. For example, the above array

would be depicted as:

ball lamp

table
.

Visual information such as shape, relative distance and relative size is often discarded in

a model. However, if desired, distance and shape attributes can be preserved in the array
representation. Figure 3(a) illustrates an island map similar to the one used by Kosslyn
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Figure 3: Representations of Kosslyn's island map

and colleagues [37] to study how humans store and inspect mental maps. Much of the
information derivable through the visual inspection of the map image can also be inferred
from the symbolic array representation in Figure 3(b). Geographic directions are determined
in this representation by comparing the relative locations of entities, e.g. the hut is south-of

the lake and west-of the beach. As well, it can be determined that the tree is near the lake and
that the beach is closer to the hut than it is to the lake. Relative size and shape information
can be preserved in a representation by increasing the granularity of the array. For example,
the shape of the island map is computable from the array representation depicted in Figure
3(c).

A large collection of total, primitive functions, chosen to express fundamental properties
of arrays, are described for array theory. These functions, which subsume most of the opera-
tions of APL and Lisp, have been implemented in the programming language Nial [33]. Array
theory provides a high-level language that can be used for expressing and proving properties
of spatial models. It is currently being employed to specify the primitive operations for

constructing, transforming and inspecting array representations. Section 3.2 describes the
primitive array functions for model-based reasoning that have been implemented in Nial.

In the remainder of this section, we de�ne an approach to knowledge representation for

spatial reasoning. The scheme consists of array representations, which model the entities
and relations in the world, and a set of primitive array functions for generating, inspecting

and transforming representations.

3.1 Array Representation

An array representation is constructed so that there is a correspondence between the struc-

ture of the symbolic array and the structure of the world being modeled. More precisely, a

world is representable by an array if there exists a mapping between symbols in the array and

entities in the world that preserves the relative location of entities. Array representations
provide a basis for deductive reasoning in a spatial domain.
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We de�ne a world as a set of entities and a set of spatial relations that are de�ned on

the entities. Our de�nition assumes a �nite set P of predicate symbols that describe the

relations of interest in the world.

De�nition. A world w is de�ned as a pair < S;R > such that:

� S is a �nite set of symbols that denote the entities of interest in the world.

� R is a P -indexed set of spatial relations de�ned over the set of symbols S for the

world. Each n-ary relation in R is de�ned in terms of a set of n-tuples containing

entities in S. The notation wp is used to denote the relation in R corresponding

to predicate symbol p 2 P .

Similar to a world, an array representation contains a set of spatially organized parts.

De�nition. An array representation A is a multi-dimensional symbolic array.
The set of symbols appearing in A is denoted Sym(A). A symbol may occupy more
than one location in A, but each location contains at most one symbol.

The assumption that a location in an array contains at most one symbol corresponds to the
fact that at most one entity can occupy a single location in space. This does not preclude,
however, the concept of containment or the fact that a symbol may denote a complex entity
consisting of subentities (see Section 6).

We specify a set F of prede�ned boolean array functions to be used to inspect an array
representation. The set F is P -indexed in order to correspond to the relations in the world.
An array representation is said to be a model for a world if all of the world's relations are
representable by the corresponding array function in the set F .

De�nition.

Given a world w =< S;R > and an array representation A, an n-ary relation wp 2 R

is represented in A if and only if S = Sym(A) and for all symbols s1; :::; sn 2 S:

fp(s1; :::; sn;A) = true if and only if (s1; :::; sn) 2 wp,

where fp 2 F .

An array representation A is an array model for world w if and only if for every
relation wp 2 R, wp is represented in A.

If there exists an array model for a world w then we say that w is representable.

The mapping between worlds and array models is not one-to-one. For a given world there
exists an equivalence class of array representations that model the world. Two arrays belong
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Norway Sweden Finland

Denmark

Ireland Britain Holland Poland

Germany

Belgium Czech Slovakia

Republic

Switzerland Austria Hungary

France

? Yugoslavia ?

Italy

Portugal Spain Greece

Figure 4: Array representation of Europe

to the same equivalence class if they represent the same spatial relations. For example,
array representations ball box and ball box are equivalent with respect to the left-of
relationship.

A representable world is complete in the sense that all spatial relationships among entities

are made explicit by the relations in R, and can thus be represented by the array inspection
functions in F . To illustrate the concept of an array model, consider the representable
world described by the set S = fBritain,Portugal,Spain,...g of countries in Europe and their

set R of corresponding geographical relations indexed by the set of predicate symbols P =
fnorth-of, west-of, east-of, south-of and borders-ong. We de�ne an array model A for w

where:

� A is the array depicted in Figure 4.

� The array functions in F are de�ned to model the spatial relations in the world. For
example, the relation wwest-of is represented in A using the function fwest-of 2 F ,
which is de�ned so that an application of the form fwest-of (s1; s2;A) returns the value

true if and only if symbol s1 occurs in a location that is to the left of the left-most

occurrence of symbol s2 in the array data structure A. Similarly the relation wborders-on
is represented inA using the function fborders-on, such that fborders-on(s1; s2;A) evaluates

to true just in the case where symbols s1 and s2 are situated in adjacent cells of array
A.

It is worth noting here that an array representation explicitly depicts the absence, as well
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as the presence, of entities at relative locations. In the above example, the symbolic array

of Europe can be inspected to infer that there is no country that is directly east of Britain

and west of Holland. This property is particularly valuable for problem domains such as

planning and navigation.

3.2 Representation of Indeterminate Worlds

In the previous section we were concerned with array models for representable worlds, that

is, those that completely specify the relationships among entities. It is also possible to model

worlds that are indeterminate in the sense that the speci�ed relations may imply alternative

possible worlds (or array representations). In this section we de�ne a more general notion

of a model that encompasses both determinate and indeterminate worlds. Before doing so,

it is important to distinguish between worlds that are possible and those that are not. As

well, we introduce an extension relation between worlds.
A possible world is one that is extensible to a world that is representable. Consider the

world w =< S;R > such that S = fknife; spoon; forkg and R = fwleft-ofg: If wleft-of is a
transitive, asymmetric relation de�ned by the pairs f(spoon; fork); (fork; spoon)g, then w

is not possible since we cannot construct an array representation that preserves the relations
for w. On the other hand, if wleft-of = f(fork; knife); (knife; spoon)g, then w is possible,
and in fact determinate, since there exists a unique state of a�airs for w, represented as the
array:

fork knife spoon

The third possibility is that the world is possible, but indeterminate. Assuming the relation
wleft-of = f(fork; knife); (fork; spoon)g; there are two possible representable extensions of
w, denoted as the arrays:

fork knife spoon and fork spoon knife

In general, an extension of a world is one in which new relationships are added; and a

possible world is considered to be determinate if it has a unique representable extension. It
is indeterminate if there exists at least two distinct extensions that are representable.

De�nition:

A world w =< S;R > is extensible to a world w0 =< S;R0 >, denoted w � w0, if

and only if for all p 2 P , wp � w
0

p.

A world w is possible if there exists a world w0 such that w � w0 and w0 is repre-

sentable.

A world w is determinate if and only if it is possible and for all representable worlds

w0; w00 if w � w0 and w � w00 then w0 = w00.

A world w is indeterminate if it is possible and not determinate, that is, there exists
representable worlds w0 and w00 such that w � w0, w � w00 and w0 6= w00:
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We now extend the notion of array model to include indeterminate worlds. In general,

a world will be modelled by a �nite set of array representations corresponding to the repre-

sentable extensions for the world. If w is not possible, then this set will be empty; if w is

determinate then the set will contain a single representation. For indeterminate worlds the

set will contain at least two array representations. A model is also characterized by the set

F of functions that are used to inspect array functions in order to represent the relations in

the world.

De�nition:

A world w is modelled as a pair < W;F> such that W is a �nite set of array

representations and F is a P -indexed set of boolean array functions. An array rep-

resentation A is an element of W if and only if A is a unique representation (with

respect to W) for a representable extension w0 of w.

In Section 4 we will develop a semantics for model-based deduction based on the model

for a world. Truth in a model will be based on the inspection of the array representations
for a world. In particular, a formula is possibly true in a model if there exists an array
representation in W such that the formula holds. Similarly, a formula is necessarily true if
it is true for all representations in W. The semantics presented is a form of modal logic, in
which the possible worlds for the model are equated with the possible array representations
that depict the world.

The initial construction of array representations that mirrors the structure of a world is a
domain speci�c task. There are, however, some fundamental principles that can be applied to
determine the structure of the arrays and the mapping of array functions to spatial relations
in the world.

� Each transitive spatial relation in the world corresponds to an array function that
de�nes an ordering of symbols along a single dimension in the array representation.

� Transitive relations that correspond to orthogonal dimensions in the world correspond
to array functions that operate on orthogonal dimensions in an array.

� Transitive relations that correspond to the same dimension in the world correspond to
array functions that operate on the same dimension in the array.

In summary, if there exists a dependency between spatial relations in the world then the same

dependency should exist in the array representation. A world is considered n-dimensional if
n is the minimal dimensionality for a representation for a world.

3.3 Primitive Functions

Approaches to knowledge representation are distinguished by the operations that are per-
formed to carry out inferencing. Model-based reasoning with array representations is achieved

by applying functions that transform and inspect array data structures in ways that are anal-

ogous to the physical transformations and visual inspections that would be applied in the
world being modeled.
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The ball is not touching the lamp.

The ball is left of the lamp.

The lamp is on the table.

ball

The ball is on the table.

perceptual

input
descriptive

input

lamp

table

Figure 5: Initial construction of array representation

An array model for a world may initially be constructed through the interpretation of
domain speci�c perceptual input or through the understanding of linguistic descriptions (see
Figure 5). It is also possible to construct a model from existing data; algorithms have been
developed to automatically transform the three-dimensional atomic coordinate information

in molecular databases into three-dimensional array representations for the structures. The
functions for model generation, however, are not concerned with how a model is initially
generated, but with how an array representation can be constructed from model descriptions
stored in long-term memory. In the current implementation of the representation scheme,
these descriptions are represented as a collection of frames, where each frame in the knowledge

base corresponds to description of a world, or of an entity in the world.1 A frame may

store an array representation A explicitly, or as a sparse array. For example, the array
in Figure 5 could be described as the list of entity/locations: (ball,(1,1)), (lamp,(1,3)),

(table,(2,1),(2,2),(2,3)). Non-spatial attributes of entities, such as the color of the ball, can

also be stored in the frame knowledge base. The frames are organized in terms of conceptual

and parts hierarchies, as illustrated in Figure 6.
Although some of the functions for model-based reasoning are domain speci�c, many are

applicable across a variety of worlds. These functions may depend on a mapping between
the predicate symbols for the world and the de�nitions in the theory. For example, the left-

of primitive function would correspond to the fwest-of function in the geographic example

presented in Section 3.1. Table 1 describes the primitive functions for spatial reasoning
that have been speci�ed in array theory and implemented in the programming language

Nial. Note that there are functions designed to a determine the possibility and necessity

1Although the current implementation for array models is frame based, it would also be possible to
construct a logic-based approach to storing array representations[22].
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table_concept

scene_concept

LOCATION

HAS-PARTHAS-PART

INSTANCE-OF

COLOUR
red

HAS-PART

(2,1)(2,2)(2,3)(1,3)(1,1)

tablelampball

scene

LOCATIONLOCATION

INSTANCE-OF

Figure 6: Frame hierarchy for long-term memory

of a relation holding given a set of array representations. These functions can be used for

reasoning in indeterminate worlds (see Section 4).
The primitive array functions can be used to de�ne more complex inspection and trans-

formation operations for the language. For example, to determine whether one symbol is
north-west of another, where north-of and west-of are predicates for the language, one could
de�ne the Nial function:

north-west-of is operation s1 s2 A f(inspect s1 s2 A north-of) and

(inspect s1s2 A west-of)g

4 The Semantics of Spatial Deduction

Reasoning by deduction is the process of logically inferring a conclusion from a given set of
premises. For example, from the premises:

left-of(fork,spoon),

left-of(spoon,knife), and

8X8Y 8Z (left-of(X,Y) ^ left-of(Y,Z) ! left-of(X,Z)),

one can deduce left-of(fork,knife). This form of reasoning, where conclusions are derived
using the iterative application of syntactic inference rules, is referred to as proof-theoretic.
Alternatively, the validity of an argument can be demonstrated using a model-theoretic ap-

proach. Given the above premises, an array representation A can be constructed for the

world such that A = fork spoon knife . Using this representation and the primitive

inspection functions in F , we can deduce the valid conclusion left-of(fork,knife) through the

process of model inspection.
Most existing computational systems employ proof-theoretic deduction, where reasoning

is carried out by applying rules that manipulate syntactic forms of expressions. The proposed
system for spatial reasoning, however, relies on semantics, or the mapping between the

representations and the domain of interest. Conclusions are derived by applying functions
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FUNCTION MAPPING DESCRIPTION

Construction Functions:
retrieve S ! F Retrieve frame representation for given array symbol.
reconstruct S ! A Retrieve frame representation and construct array

from description.
compose A� A! A Compose two arrays into a single array that is

consistent with other two.

Inspection Functions:
left-of S � S � A! B Determines if a symbol occurs to the left of

the left-most occurrence of another symbol.
(Corresponding functions have been de�ned for right-of,
above, below,in-front,behind and adjacent.)

inspect Sn � A� Pn! B Determines if two symbols are related
by an n-ary predicate symbol p 2 P .

possible Sn � A�
� Pn ! B Determines if a relation holds in at least one of

the possible array representations.
necessary Sn � A�

� Pn ! B Determines if a relation holds in all of the array
representations.

�nd S �A � P2 ! S� Returns all symbols that are related to a symbol by
a binary predicate symbol p 2 P .

equivalent A� A� P �
! B Determines whether two arrays are equivalent with

respect to a set of predicates.

Transformation Functions:
put S � L �A! A Places a symbol at speci�ed locations in an array.
put rel S � S � A� P ! A Places a symbol relative to another symbol in an array.
move S � L �A! A Moves a symbol to a new location set.
move rel S � S � A� P ! A Moves a symbol to a location relative to another symbol

in an array.
move forward S �A! A Moves a symbol one location forward in the direction

speci�ed by current orientation for symbol.
delete S �A! A Delete a symbol from an array.
orient S �A �O! A Reorient the direction for a symbol.
rotate A� O! A Rotate an array based on the direction speci�ed by

an orientation vector.
focus S �A! A Replace a symbol with its array representation.
unfocus A! A Undo the last focus transformation.
refocus A! A Return to the original unnested array representation.

S� array symbol; S�� list of array symbols; A� array; A�
� list of arrays; Pn� n-ary predicate symbol; L�

location set; F� frame representation; O� orientation vector; B� boolean value.

Table 1: Primitive functions for model-based reasoning
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that correspond to the relevant spatial relations in the world. Thus, reasoning with array

representations can be thought of as a restricted form of model-theoretic deduction, one

which is limited to inferences that are made explicit by inspection of array representations.

The system can also be used to reason about the possible worlds resulting from uncertain or

incomplete information. This section presents a semantics for deductive reasoning in such

worlds.

4.1 Language and Semantics

A language Lw is introduced for a world w in order to formulate spatial propositions. Lw

is a modal language employing predicate symbols P and constant symbols S. The com-

pound formulas for the language are formed from the standard propositional operators, as

well as modal operators, which will be used to reason about possibility and necessity in

indeterminate worlds.

De�nition. The language Lw for a world w =< S;R > is de�ned as follows.

� Taking S as the set of constant symbols, and

� Taking P as the set of predicate symbols (Recall that the set of relations R in
w, and the corresponding set F of array functions, are indexed by the set P .),

� The formulas in Lw consist of:

{ The atomic formulas p(s1; :::; sn) where p is an n-ary predicate symbol in P
and s1; :::; sn are constant symbols in S.

{ The compound formulas, which are formed inductively from the atomic for-
mulas by means of the unary operators :;2 and 3 and the binary operators
_ and ^.

Following, we present a possible worlds semantics for spatial reasoning based on a modal

logic that accounts for the necessity and possibility of truth of a proposition. The notion
of possible world is identi�ed with an array representation that models an extensible, rep-
resentable extension of a world. Truth of an atomic formula is determined by applying

functions that inspect an array representation. A formula is necessarily true if it is true for

all representations in the model. A formula is possibly true if there exists a representation

for which it holds. In the following de�nition, a statement of the form Aj= � denotes that

the formula � is true in array representation A for the model.
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De�nition. Let Lw be the language for a world w and let <W;F> be a model for

w. The truth of formulas in Lw in an array representation A2 W is given as follows:

� For atomic formulas p(s1; :::; sn) 2 Lw,

A j= p(s1; :::; sn) if and only if fp(s1; :::; sn;A) = true.

� For all compound formulas in Lw:

Aj= � ^  if and only if Aj= � and Aj=  .

Aj= � _  if and only if Aj= � or Aj= �:

Aj= :� if and only if not Aj= �.

Aj= 2� if and only if A0 j= � for all A0 2 W.

Aj= 3� if and only if A0 j= � for some A0 2 W.

The modal logic belongs to the class S5 in the Lewis hierarchy, in fact, it extends this
system since the truth of a modal formula is independent of the array representation. In
particular, j= 2� if and only if Aj= 2� for any representation A in the model. Thus,

questions of necessity (and possibility) refer to the whole model, not just to an individual
representation. Consequently, any sequence of modalities is equivalent to the last one in the
sequence. For example, 223� is equivalent to 3�, and 32� is equivalent to 2�.

A proof system is sound with respect to a world if every formula that is valid is true
for the world. Conversely, a system is complete with respect to a world if all true relations

are provable. The properties of soundness and completeness are built into the de�nition of
the model: an atomic formula is true in a representable world if and only if it holds for the
array model of the world. In practical applications, we may wish to approximate a world
rather than model it precisely, resulting in a system that could lead to incorrect conclusions.
This does not imply that the inferencing process is unsound; rather, the knowledge used
to represent the world is imprecise. Further discussions concerning the �delity of reasoning

with model-based representations have been presented by Goebel [25].

4.2 Strategies for Model-based Reasoning

Model-theoretic deductions can be achieved using a variety of control strategies. To prove the

truth of a proposition, inference can be carried out as a three step process: 1) array represen-
tations are constructed to represent possible states of a�airs in the world; 2) transformations
are performed on the representations, corresponding to the transformations that occur in the

world (this step is optional); and 3) conclusions are formed by applying inspection functions

to the arrays. Alternative strategies can be developed for model-based reasoning, depending

on the form of the desired conclusion. Deductions that involve the possibility of truth can

be achieved by constructing a single array representation, corresponding to a possible world
in which the premises and the given formula are all true. Similarly, proving a formula invalid

requires the construction of a single array in which the premises are true and the putative

conclusion is false.
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Model-based reasoning, as an alternative to proof-theoretic deduction, has also been

considered by others, including Halpern and Vardi [28]. In their work, an agent's knowledge

is represented using a semantic model, where model checking is used to determine validity of

a formula. For cases where the number of possible worlds grows exponentially, they suggest

that heuristics could be used to focus attention on those worlds that are \most relevant" or

\most likely".

Cognitive studies suggest that humans reason with a single model, even in situations

that imply multiple states of a�airs [34, 36]. If it is discovered that the current model

does not correspond to the situation that is described then it is changed. A similar control

strategy could be developed for a computational approach to model-based spatial reasoning,

where a single array is used for reasoning and an alternative array is generated if the current

one becomes inconsistent. Although our representation scheme was motivated by our under-

standing of cognitive processes, it can overcome some of the limitations of human information

processing. Human errors occur in model-based deduction by failing to consider all possible
interpretations compatible with a given set of facts [34]. In domains where the amount of
indeterminacy is restricted, all possible array representations for a world can be generated,

transformed and inspected. Thus, no consistent interpretations are left unconsidered. The
array theory functions for spatial reasoning also facilitates parallel implementations [23]:
multiple array representations can be transformed or inspected concurrently.

In summary, the proposed representation scheme for model-based reasoning provides an
e�ective tool for performing inferences. Alternative control strategies can be constructed

for carrying out deductions by generating, transforming and inspecting array representa-
tions. For cases where the number of array models is unmanageable, heuristic, parallel or
backtracking strategies can be developed.

5 Nonmonotonic Reasoning

Proof systems such as �rst-order predicate logic were designed for monotonic reasoning: if
new axioms are added to a system then everything that was previously derivable is still
derivable. Many of the domains that involve spatial reasoning face the problems posed by
uncertain or often changing knowledge where the property of monotonicity does not hold. A

variety of logics have been developed in an attempt to accommodate nonmonotonic reasoning.

These systems typically extend existing logics to include axioms and rules of inference that
make it possible to reason with incomplete information. Reiter's default logic [56] allows

inference rules of the form: If X is provable and it is consistent to assume Y then conclude

Z. McDermott and Doyle [45] alternatively state defaults as sentences of the form: If X

holds and Y is not disprovable then Y. Concepts such as \is consistent to assume" and \is

not disprovable" can be related to the concept of \possibility" in our modal formalism. For
example, a formula B is not disprovable in world w if B is true in some array representation
in the model for w (that is, j= 3B). Two issues that have to be addressed by nonmonotonic

reasoning systems are:

� How can inferences be made in the presence of incomplete knowledge?

In the previous section we presented a formalism for making inferences in the presence
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of spatial indeterminacy. These inferences are achieved by constructing and inspecting

symbolic arrays that model the alternative interpretations arising from uncertainty or

incomplete information.

� How is the knowledge base updated when new information is added?

A knowledge base for spatial reasoning can be de�ned as the set of array representations

in the model for a world. In the remainder of this section, we address the question of

how such a knowledge base is modi�ed as the world is transformed by acquiring new

knowledge or by modifying the existing spatial relations.

5.1 Knowledge Acquisition

In spatial reasoning systems, knowledge acquisition generally involves extending the spatial

constraints for the world. Updating a model to accommodate such information is straightfor-

ward: the new world is modeled by eliminating from the knowledge base those representations
that are inconsistent with the added information. Consider, for example, the indeterminate
world described by the formulas left-of(a,b), left-of(a,c), left-of(a,d) and left-of(b,d). This
description implies three representable worlds, which can be modelled using the following
arrays:

a b c d a c b d a b d c

A1 A2 A3

If the world is modi�ed to include the spatial relationship left-of(c,d), then the array rep-
resentation corresponding to array A3 would be eliminated from the model, since it is not
consistent with the added spatial relationship. Another way to view this is that the world
that the array representation models is no longer an extension of the current world.

The above solution (and the current formalism) assumes that acquired knowledge does

not extend the language for the world. Extending the theory to include adding information
that involves new constant or predicate symbols is generally more complex. This situation
could be addressed by reconstructing the model using the new language and including the

updated information. It may also be possible to incrementally update a model by considering
the current array representations for the world and modifying each of them individually. This
can be achieved by extending the primitive compose2 function to operate on indeterminate

worlds. The composition of two array representations would result in a set (possibly empty)

of array representations that corresponds to all of the consistent interpretations that are
subsumed by the two arrays. Consider the array structure A3 above and a new spatial

relationship left-of(d,e). The function compose would be de�ned such that:

compose( a b d c , d e ) = a b d e c a b d c e

2The complexity of an indeterminate version of the compose function would depend on the domain and
the relations that are being preserved.
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Figure 7: Representation of blocks world

5.2 Transforming a World

Spatial reasoning may involve applying transformations that result in changes to the relative
locations of entities in the world. Reasoning in the presence of change is problematic in

traditional reasoning systems, since it is necessary to consider the implications of change
on the state of a�airs. In the proposed scheme for model-based reasoning, however, the
inferences arising from transformations on a world can be derived by applying analogous
functions to the array representation: if t is a transformation that can be applied to a world
w resulting in a world w0, then we de�ne an analogous array theory function t0 such that if

t0 is applied to each of the array representations for w it would result in a set of arrays that
represent the possible worlds for w0.

To illustrate how the e�ects of change can be modeled, consider the blocks world in

Figure 7(a) and the corresponding array representation A in Figure 7(b). The blocks world
resulting from the transformation t = Move block c to the top of block a is illustrated in

Figure 7(c). This change is modeled in the array representation by applying the primitive
operation t0 =move rel to the parameter list (c; a;A; above). The function application results
in an array that represents the transformed world, as depicted in Figure 7(d). In the case

where a transformation is applied to an indeterminate world, the array operation is applied

to the array representation for each of the possible worlds. Array transformation functions

may be complex and involve knowledge of the physical model for the entities in the world.

For example, the transformation operation for push in the blocks world would have to take
into account that if the block being pushed is supporting other blocks, then the locations of
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the supported blocks are also changed by the transformation.

Modifying spatial models by adding knowledge or by applying transformations results in

a new model, which can subsequently be used for reasoning about validity. Note that it is

not necessary to examine any previous deductions to determine whether relationships need

to be deleted from the knowledge base, since the modi�ed spatial relations are determined

directly from inspection of the transformed array representations. Thus, the model-based

approach to spatial reasoning addresses the frame problem [55], which is concerned with what

relations are withdrawn or remain valid as change occurs in a world. This information is

implicit in the transformation functions for the array. In the next section, we discuss how an

ordered sequence of transformed representations can be used to model temporal reasoning

in the theory.

6 Extensions to the Model

The formalism proposed for model-based reasoning was designed to capture and reason

about the relevant spatial and structural qualities of a world. In the previous sections it was
demonstrated that the formalism is applicable to indeterminate worlds and to nonmonotonic
reasoning. In this section we introduce some potential extensions to the representation
scheme. One possible extension is to consider worlds that are hierarchically structured and
allow for reasoning at multiple levels of the decomposition hierarchy. This is achieved by
assuming that an array modelA for a world w is a recursive data structure, in which symbols

in Sym(A) may denote models of subworlds of w (i.e., worlds at a more detailed level of parts
abstraction). Extensions to the array representation for temporal and analogical reasoning,
and for viewing a model from internal perspectives are also considered. Our presentation of
these extensions does not include a rigorous reformulation of the existing semantics; rather,
it is meant to provide motivation for future research in the area.

6.1 Hierarchical Models

Results of cognitive studies suggest that mental models may be hierarchically organized and
that reasoning takes place at varying levels of structural decomposition based on a part-of

relation [46]. For example, when planning a route for a European vacation one might �rst
consider a spatial model of the countries to be visited then later focus in on the details

(regions or cities) of the individual countries. Similarly, when experts analyze the spatial
structure of a protein molecule they generally begin by considering entities and relations

at the level of secondary or tertiary structure, then subsequently attend to more detailed

models containing entities such as residues or atoms. Our formalism allows for reasoning at
multiple levels of parts decomposition through the use of nested array data structures: array
symbols may denote subarrays that correspond to the subworlds for the structured entities

in the world. Figure 8 illustrates a modi�ed representation of the previously presented array

for Europe where the symbol Britain has been replaced by a subarray that models the world

corresponding to this symbol.

A hierarchical representation explicitly depicts relations among entities at multiple levels

of the decomposition hierarchy, without having to specify inheritance laws. For example,
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Figure 8: Embedded array representation of Europe

we can compute that England is west-of Holland in the embedded array representation of
Figure 8 by extending the interpretation of the relation west-of to range over nested data

structures. More precisely, a hierarchical world w =< S;R > is a world in which the set S
may denote structured entities. For all si 2 S, if si denotes a structured entity, then there
exists a world wsi =< Ssi ; Rsi > such that:

� Ssi � S denotes the set of subentities (parts) of the entity denoted by symbol si; and

� Rsi is the set of spatial relations for the subworld denoted by si.

We assume that each subworld wsi has a model consisting of array representations. In

a hierarchical world w, the set of spatial relations R would contain structural relations
corresponding to the part-of hierarchy for the world, that is, part-of(s1; s2) is speci�ed for all

constant symbols s1 and s2 such that s1 denotes a subentity of a structured entity denoted
by s2.

The primitive focus function (see Table 1) can be used to transform an array represen-
tation by replacing a constant symbol corresponding to a structured entity by the represen-

tation for the subworld corresponding to the symbol. Figure 9 depicts the successive arrays

resulting from iteratively applying the focus function to an array model for North America.

The choice of a decomposition hierarchy for subworlds is dependent on the domain and

the task demands. It is interesting to note that certain decompositions, combined with
course-grained representations, lead to errors analogous to those displayed by humans (see

Section 2.2). For example, the hierarchy displayed in Figure 9 could be used to deduce the

false conclusion that the city Seattle, which is situated in the USA, is south-of the Canadian
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Figure 9: Successive applications of focus function
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Figure 10: Orientation vectors for a two-dimensional array

cityMontreal. Such erroneous conclusions are avoidable by designing di�erent decomposition
hierarchies, or by using �ner-grained array representations.

6.2 Multiple Views

Cognitive studies suggest that humans have the ability to inspect models from multiple
perspectives, including alternative internal perspectives { sometimes referred to as reason-
ing in egocentric space. Di�erent external views can be achieved in our scheme by apply-
ing rotational transformations to a multi-dimensional array.3 For problem domains such
as robot navigation, it is useful to reason about the world from an internal perspective,

where inferences concerning relative locations depend on a current frame of reference. This
can be achieved by extending the formalism to include functions for inspecting the array
from a particular reference location and orientation. The orientation of a reference value in
n-dimensional space can be speci�ed as an n-vector. For two-dimensional arrays, the orien-
tation vector takes on one of eight possible values, corresponding to reorientations by angles
that are multiples of 45 degrees (see Figure 10). There are 27 possible orientation vectors

for three-dimensional arrays.

Following is a description of a convention center used in experiments by Taylor and
Tversky [67]:

The entrance is on the east side of the building. As you enter, there is a water fountain on

your left, and beyond it a bulletin board. As you walk down the corridor in front of you, you

pass movie cameras on your right, then 35mm cameras. On your left is the o�ce. As you reach

the end of the corridor, the restrooms are directly ahead of you, side by side. Turn right and

continue walking; the cafeteria will be on your left. Turn right again at the end of the corridor;

the CD players will be just ahead on your left, and the televisions on your right. Farther up,

the VCRs are on the right and stereo components on your left. Turn right at the end of the

hallway; you will pass personal computers on your left hand and then �nd yourself back at the

entrance.

3Only rotations that are multiples of 90 degrees can be applied to the axes of the array using the current
implementation of the primitive rotate function.
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Figure 11: Array representation of convention center

The world described in this narrative is representable as the array depicted in Figure 11,
where the dotted arrows denote the locations visited and the corresponding orientation
vectors. Given such an array representation, inferences can be made with regards to the
current location and perspective of the frame of reference. For example, a query of the

form \If you are facing entity s what is behind you?" could be resolved by: 1) transforming
the array by moving the reference point to an empty location adjacent to the symbol s; 2)
updating the orientation vector to be directed towards the symbol s; and 3) applying the
primitive �nd function with the parameter behind to determine the entities located behind
(in the opposite direction from the orientation) the reference location. As will be discussed

in the next section, movement within a world can also be modeled in a temporal framework.

6.3 Temporal Models

As stated earlier, temporal order relations can be modeled using a single dimension in the

array representation. By varying the time dimension in such a representation, it would be

possible to track the transformations that occur in the world and reason in terms of relations
such as before, during and after. Johnson-Laird [34] de�nes a temporal model as a sequence

of spatial models. In this spirit, temporal models can be represented in an extension to the
proposed theory as one-dimensional arrays, where each element in the array denotes a discrete

snapshot of a determinate world. Relative locations in the array would depict the temporal

ordering of worlds: if array A1 is left-of array A2 then the world represented by A1 existed
before the world represented by A2. Thus, array inspection operations can be performed to
reason about before=after relations among determinate worlds. Figure 12 illustrates three

time steps resulting from transforming an array representation using primitive operations

corresponding to turn right then push desk, where the symbol \!" denotes the current
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Figure 12: Temporal model for spatial reasoning

reference location and orientation in two-dimensional space.4 Using this representation we
can infer information such as: the table is behind you before the table is to your right. If the
representation scheme for temporal reasoning stores the transformations that are applied

at each time step, then the formalism could also be used to reason about causality. For
example, the change in state reected in moving from the world represented at Time=1 to
the world represented at Time=2 was caused by the transformation turn right. Array theory
operations could also be de�ned to compare two arrays to analyze the change that results
from a transformation. Homogeneous approaches to representing time and space have been

previously proposed by others, including Guesgen and Hertzberg [26] who extend Allen's
temporal logic [1] with constraint satisfaction algorithms for spatiotemporal reasoning.

It has been suggested that the processing of transformations on mental models may occur
in parallel. Ullman [73] has proposed the concept of spatial parallelism, which corresponds to
the the same operations being applied concurrently to di�erent locations in a representation,
and functional parallelism, which occurs when di�erent operations are applied simultaneously

to the same location. These forms of parallelism can be achieved using the primitive functions
of array theory, such as the second-order function EACH, which applies an operation to all

of the arguments of an array. A function application EACH f A results in the operation f

being applied (potentially in parallel) to each symbol in the array A.

6.4 Analogical Reasoning

Model-based reasoning is not restricted to the application of deductive inferences; inductive
and analogical reasoning can also be performed using array representations. Analogical

reasoning involves the transfer of knowledge about a known world (often referred to as the

source domain) to a world that is to be explained (referred to as the target domain). The

computation of similarity is a central process of analogical reasoning; for spatial analogy this
implies determining structural or spatial similarity. The spatial similarity between two array

4Note that this could also be modelled as a three-dimensional array where the third dimension denotes
temporal ordering.
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models can be measured in terms of the symbols and relations that they have in common. It

can alternatively be measured in terms of the primitive transformations needed to bring the

two models into equivalence.5 Many types of transformations are possible, such as moving

symbols, changing the orientation of a part, deleting parts, etc.6 Given the three array

representations:

cup

fork spoon

fork

spoon cup

cup

fork spoon

A1 A2 A3

and the set of prede�ned array inspection functions F= ffleft-of ; faboveg, we could say that

array A1 is more similar toA3 than it is toA2 since the application of a single transformation,

move rel(cup; spoon;A; above) would result in an array equivalent to A3. No such simple

transformation would bring A1 and A2 into equivalence.

Research in analogical reasoning often goes under the name of case-based reasoning [57].
A case-based reasoning system retrieves and adapts previous experiences in order to derive
or criticize a solution to a new problem. An approach to molecular scene analysis that

incorporates array representations for stored cases of determined scenes is currently being
considered [20]. In this system, cases are retrieved and compared with a novel scene contain-
ing unidenti�ed parts. Spatial analogies are of key importance in guiding the search towards
a fully reconstructed model of a scene, since they can be used to anticipate the identity of
the uninterpreted entities.

An inductive inference is one that proceeds from speci�c examples to generalizations. The

I-MEM (for Image MEMory) system [8] is a spatial concept formation system that has been
developed as a framework for e�cient analogical classi�cation of images using induction.
The main premise of induction in the I-MEM system is that generalization is based on entity
or relation deletion from a spatial representation. This approach to generalization can be
de�ned for worlds and their models. Informally, a world w is a generalization of a world w0

if and only if w is extensible to w0, that is w � w0. This notion of generalization can be
implemented using models for w and w0. In particular, w is a generalization of w0 if and only
if all representations A0 in the model for w0, there exists an array representation A in the
model for w such that A is equivalent to A0.

The ability to determine spatial similarity and to carry out inductive and analogical

reasoning is particularly critical for recognition, classi�cation and learning tasks [74]. The

I-MEM system has been applied to the discovery of three-dimensional spatial concepts in
molecular databases [6] and to the classi�cation of molecular motifs (reoccurring structures

with similar spatial relations among entities) [7]. Thagard [69] has also considered analogy-
based reasoning in the development of a system that uses symbolic array representations to

help explain Dalton's atomic theory. Others have argued for the central role of imagery and

models in scienti�c problem solving and have called for research on computational approaches
to spatial analogy [47, 72].

5Two arrays are equivalent if they represent the same spatial relations.
6See Table 1 for a description of the currently implemented transformation functions.
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7 Related Research

The work described in this paper extends and enhances research in computational imagery

[24] in a number of ways:

� The spatial representation for imagery is related to cognitive studies of mental models.

� An array model is de�ned in terms of a mapping from from spatial functions in the

array representation to spatial relations in the world.

� The concept of a model, consisting of a set of array representations, is de�ned for

indeterminate worlds.

� A possible worlds semantics for model-based reasoning using array representations is

presented.

� Nonmonotonic reasoning is discussed in relation to array representations.

� Potential extensions to the formalism { for reasoning with hierarchical models, for
temporal and analogical reasoning, and for inspecting representations from multiple

perspectives { are introduced.

The concept of constructing knowledge representations that mirror the structure of the

world is not unique to the array models described in this paper. Hayes [29] discusses direct
representations in which there exist similarities between what is being represented and the
medium of the representation. Sloman [62] has also argued the pros and cons of analogical
representations, and has concluded that a variety of representation formalisms { including
those specialized for spatial reasoning { are important to AI problem solving [63]. Other hy-

brid approaches have been suggested for visual-spatial and model-based reasoning. Barwise
and Etchemendy [2] have proposed a system calledHyperproofwhich integrates diagrammatic
reasoning with sentence-based logics. Hyperproof uses both diagrams and logic notation to
teach students how to reason logically. In subsequent work, Barwise and Etchemendy [3]
present a formal semantics for reasoning with Hyperproof diagrams. Habel and colleagues

[27] have developed a hybrid system consisting of a propositional and depictorial partonomy
(organization of parts) for reasoning, where the depictorial partonomy reects the hierarchy

proposed in representations for visual processes. They suggest that the advantage of the

depictorial representation in their system is that it facilitates an e�cient attention-driven
method for reasoning. Myers and Konolige [49] treat model-based manipulations as a form
of inference within a classical logic system. More speci�cally, they store partially interpreted

sensor data using an analogical representation that interacts with a general-purpose sen-

tential language. A similar approach has been taken by Chandrasekaran and Narayanan
[5], who have proposed an architecture where analogical representations derived from visual

perception are used in combination with symbolic (propositional) representations. A tech-
nique for qualitative spatial reasoning, based on the directional orientation information made

available through perceptual processes, has been presented by Freksa and Zimmermann [14].

In this work, orientations in two-dimensional space are de�ned by the relation between a
vector and a point.
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Visual-spatial reasoning techniques have also been considered in the context of speci�c

application domains. Funt [15] represents and manipulates a visual analog of a world in order

to predict potential instabilities and collisions in a physical domain. Several others have ap-

plied diagrams or analogical representations to qualitative physics problems [12, 16, 27, 51].

For the domain of route planning, Kuipers [40] has developed a program that determines a

path between points by considering a hierarchical network of region representations. McDer-

mott and Davis [44] describe a more general representation for route planning that stores the

shapes and locations of entities in the world. Facts in this system are represented as propo-

sitions and spatial reasoning is carried out by special-purpose theorem proving modules.

Other problem domains where diagrammatic reasoning has been applied include biology,

architecture, geometry and theorem proving [50].

Research in geographical information systems and spatial databases has long been con-

cerned with the issue of representing spatial knowledge. Samet [58] has proposed a method

for storing geographic knowledge based on the recursive decomposition of space. In this
work, the term quadtree is used to describe binary array data structures that iteratively
subdivide regions into segments until blocks are obtained that consist entirely of 1s or en-

tirely of 0s. These structures (and their three-dimensional counterpart, termed octrees) are
e�ciently stored and implemented as trees, where each node of the tree corresponds to a
region in the decomposition hierarchy. Samet's data structures and algorithms for querying
spatial data bases could potentially aid in the development of e�cient implementations for
the knowledge representation scheme proposed in Section 3. An alternative approach to rea-

soning in geographic systems has been described by Papadias and Sellis [53]. In their work, a
symbolic two-dimensional array structure is used to preserve a set of spatial relations among
geographic entities. Their approach is similar to a model for geographic information systems
based on the array representation scheme proposed in this paper [19].

Spatial representations have also been considered in machine vision research. According
to Biederman [4], the representation of objects can be constructed as a spatial organization

of simple primitive volumes, called geons. The process of image analysis, as de�ned by Marr
and colleagues [43], depends on a series of representations culminating in a three-dimensional
model of the spatial relations among entities which makes explicit what is where. As in Marr's
approach to computational vision, molecular scene analysis [13] is concerned with discovering

what is present in the world and where it is spatially located. The act of determining the

structure of a molecule is an interactive process consisting of a state space search of partially
interpreted scenes, which can be represented and evaluated as three-dimensional symbolic

array models [21].
Possible worlds semantics have been used in other areas of AI research to express un-

certainty and deal with nonmonotonicity. Epistemic logic was proposed by Hintakka [30] to

reason about the knowledge and belief of agents in the world: an agent knows a formula
� exactly if � is true in all the worlds considered possible for the agent. A widely accepted
semantics for modal logics is one introduced by Kripke [39]. In a Kripke model, truth is

based on a binary accessibility relation between possible worlds. When applied to temporal

logics, possible worlds are equated with points in time and accessibility is de�ned in terms

of the linear order of time points. Thus, a formula is necessarily true for a possible world

in a temporal logic if it is true in all future (accessible) possible worlds. In the semantics
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presented in this paper, all possible worlds are accessibly to one another, implying that the

necessity and possibility of a formula is the same for all array representations in a model.

Although interest and activity in spatial and diagrammatic reasoning is escalating, re-

search in this area has focussed on logical or analogical representations, corresponding to

the propositional and visual representations proposed by Johnson-Laird [34]. What the ar-

ray formalism o�ers is an intermediate representation which is less speci�c than a visual

representation (it may discard visual details), yet less abstract than a logic representation

(spatial information is made explicit). The choice of representation depends on the demands

of a particular problem; array models are not appropriate for all spatial tasks. They are

suitable, however, for reasoning in spatial domains where inferences depend on determining

the relative location and topology of entities in the world. In the worst case, the complexity

of such inferences are limited by the size of the array being inspected.7

8 Conclusions

A characteristic of the array formalism for model-based reasoning is that it brings relevant
spatial properties to the forefront. The entities and spatial relations in the world are explicitly
denoted as symbols and relations in a multi-dimensional array. This representation provides
for a simpli�ed model of the world { one that captures salient spatial features and suppresses
unnecessary or irrelevant details. An advantage of the array representation lies in its succinct
encoding and its provision for updating and change. It can also be distinguished from

traditional logic representations by the fact that it imposes speci�city on a representation,
yet symbolic arrays are more abstract than the analogical representations that have been
developed for diagrammatic reasoning.

The described knowledge representation scheme provides a complete and sound system
that can perform under conditions involving uncertain or incomplete information. Model-

theoretic reasoning is used to make inferences about determinate or indeterminate worlds,
using a three-step process of generating, transforming and inspecting array representations
for the world. Thus, the process of constructing syntactic proofs to derive spatial infor-
mation is replaced by model checking. The non-existence of a proof can be determined
by the existence of an array representation for the model in which the formula is refuted.

Alternatively, the truth of a proposition can be veri�ed by the inability to construct a rep-
resentation that refutes the conclusion. The representation scheme provides a framework

for integrating model-theoretic deduction with nonmonotonic reasoning in which represen-
tations are updated and reinterpreted as new information is acquired or as transformations

are performed.

The array-based formalism for spatial reasoning has measurable computational advan-

tages. In particular, they can be used to develop vivid knowledge bases. Levesque [41] de�nes

a vivid knowledge base as one that is structured so that there is a one-to-one correspondence
between the entities in the world and the symbols in the knowledge base, and for each simple

relationship of interest in the world { in our case spatial relationships { there exists a corre-

7For a more detailed discussion of the computational advantages of symbolic array representations over
traditional knowledge representation schemes, see [18].
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sponding connection among symbols in the knowledge base. Levesque argues that the main

advantage of vivid knowledge bases is that they provide for e�cient worst case reasoning

behavior, since calculating what is logically implicit generally reduces to retrieving what is

explicit.

The model-based approach to reasoning can be motivated and justi�ed by human needs.

Simon [61] has suggested criteria for assessing and selecting representations based on infor-

mation content and on ease of programming. These criteria are task dependent and partially

rely on the ability of the programmer to represent the state of knowledge in the world and the

transformations and inferences that may occur. Experimental results in cognitive psychology

suggest that humans apply model-based reasoning for problem solving in a variety of do-

mains. Consequently, a formalism that captures the representations and processes associated

with model-based reasoning would facilitate the implementation of computational reasoning

systems in such problem solving domains. In particular, such systems could incorporate the

intuitions and heuristics that are applied to spatial models. Although the scheme can be
motivated by human needs, it overcomes the inherent limitations of the cognitive system.
In particular, control strategies can be developed so that no consistent interpretation for a

world is overlooked.
In a recent debate concerning the advantages/disadvantages of descriptive versus depic-

tive (model-based) representations, Levesque and Reiter [42] state that a reason to prefer
descriptive (logic) representations is that they are \blessed with a semantics". Although
proof-theoretic representations can be advocated for their semantic clarity, we have demon-

strated in this paper that an intuitive semantics for model-based reasoning with array rep-
resentations also exists. Furthermore, as pointed out by Stenning [64], the model-based
deductions should be considered as inferences in a weak logical system that facilitates \easy
but limited inferences". Although some strategies for spatial reasoning with the array mod-
els were discussed, a fully operational model-based reasoning system and its application in
a variety of domains is a subject of ongoing research.

In summary, the array representation scheme provides an e�ective and e�cient means
for performing spatial reasoning. Extensions to the scheme { for temporal, inductive and
analogical reasoning, for hierarchical worlds and for egocentric reasoning { are also proposed.
Further research is required, however, to develop these extensions and to fully realize the

applicability of the scheme to a variety of domains.
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