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Abstract

E�cient interprocessor communication is crucial to increasing the performance of parallel computers.

In this paper, a special framework is developed on the generalized hypercube, a network that is currently

receiving considerable attention. Using this framework as the basic tool, a number of spanning graphs with

special properties to �t various communication needs, are constructed on the network. The importance

of these spanning graphs is demonstrated with the development of optimal algorithms for four fundamen-

tal communication problems, namely, the single node and multinode broadcasting and the single node and

multinode scattering, on the generalized hypercube network. Broadcasting is the distribution of the same

group of messages from a source processor to all other processors, and scattering is the distribution of distinct

groups of messages from a source processor to each other processor. We consider broadcasting and scattering

from a single processor of the network (single node broadcasting and scattering) and simultaneously from

all processors of the network (multinode broadcasting and scattering). For the multinode broadcasting and

scattering algorithms a special technique is developed on the generalized hypercube so that messages origi-

nating at individual nodes are interleaved in such a manner that no two messages contend for the same edge

at any given time. The communication problems are studied under the all-port communication assumption,

meaning that in one time step a processor can exchange messages of �xed length with all of its neighbors

simultaneously. Under this assumption the full bandwidth of the communication network is used. Lower

bounds are derived for the above problems under the stated assumptions, in terms of time and number of

message transmissions, and optimal algorithms are designed.

Key words and phrases: communication algorithm, interconnection network, generalized hypercube,

parallel algorithm, spanning tree.



Figure 1: The GH2;4 network.

1 Introduction

It is widely recognized that interprocessor communication is one of the main obstacles in increasing the

performance of parallel computers in which the processors are linked by an interconnection network. The

communication problems emerging from a wide range of parallel algorithms are not arbitrary but de�ne

regular communication primitives. It is crucial for the high performance of parallel computers to e�ciently

execute these primitives. In this paper, we concentrate on four fundamental communication primitives,

namely the single node and multinode broadcasting, and the single node and multinode scattering, on the

popular generalized hypercube network. These appear in problems such as matrix operations (e.g. matrix-

vector and matrix-matrix multiplication, factorization, inversion, transposition), solutions of systems of

equations (e.g. Gaussian elimination), image manipulation (e.g. histogramming), some database operations

(e.g. polling, master-slave operations) etc. Broadcasting is the distribution of the same group of messages

from a source processor to all other processors, and scattering is the distribution of distinct groups of messages

from a source processor to all other processors. We consider broadcasting and scattering from a single source

processor of the network (single node broadcasting and scattering) and simultaneously from all processors

of the network (multinode broadcasting and scattering). The cases where a source node wishes to transmit

one or more than one messages are distinguished.

The interconnection network under consideration is the generalized hypercube network, which has been

proven to be a exible topology for the interconnection of processors [5, 14]. An n-dimensional, k-ary

generalized hypercube, denoted by GHn;k, has N = kn processors, each one labeled by an n-digit number

in radix k arithmetic. Two processors are connected if their labels di�er in exactly one digit, i.e. processor

vn�1:::vi+1vivi�1:::v0 is connected to processors vn�1:::vi+1v
0
ivi�1:::v0 for every 0 � i � n� 1, 0 � v0i � k� 1

and vi 6= v0i. It can be easily observed that the network is a generalization of the popular binary hypercube.

The n-digit binary numbers that represent nodes of the binary hypercube are replaced by n-digit k-ary

numbers to represent nodes of the generalized hypercube. The GH2;4 network can be seen in Fig. 1.
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All of the communication problems are studied under the all-port assumption (as opposed to the one-port

assumption), meaning that in one time step a processor can exchange messages of �xed length with all of its

neighbors simultaneously. This assumption is used in several recently constructed multiprocessors in order to

use all of the available bandwidth. As pointed out by several authors [21], if at each time step a processor can

exchange messages of �xed length with only one of its neighbors, i.e. if the communication is based on the

one-port assumption, the used bandwidth of any network topology is the same as the bandwidth of a ring with

the same number of processors. The algorithms are derived for the store-and-forward communication model,

i.e. a processor must receive the entire message before it can process it and retransmit it. The communication

is bidirectional, meaning that an edge can be used for message transmission in both directions at each time

step and can be viewed as two unidirectional edges. Each message requires unit time to be transmitted on

an edge, i.e. the unit cost model is assumed.

A common approach to implement communication algorithms on interconnection networks is to embed

spanning trees with special properties on those networks. The root of the tree is usually the origin or the

destination of the information, while the edges are used to direct the transmission of messages from parent to

children processors or vice-versa. All of the algorithms presented in this paper are based on the construction

of spanning trees with special properties and the use of appropriate scheduling disciplines to achieve optimal

results. A special framework is developed to facilitate the construction of the spanning trees and the design

of the communication algorithms. The main results obtained in this paper for the preceding communication

problems and when each source processor wishes to transmit M messages to each one of its destination

processors, are summarized in table 1. The number of messages M is usually assumed to be large.

Problem Time steps Message transmissions

Single node broadcasting M + n� 1 M (kn � 1)

Multinode broadcasting dM(kn�1)
n(k�1) e M (kn � 1)kn

Single node scattering dM(kn�1)
n(k�1) e Mn(k � 1)kn�1

Multinode scattering Mkn�1 Mn(k � 1)k2n�1

Table 1: The main results obtained on the GHn;k network.

The �rst column gives the number of time steps required for each algorithm to complete and the second

column gives the number of message transmissions performed. We will show that each of these numbers

is equal to a lower bound for the problem, except the number of time steps required for the single node

broadcasting which is only asymptotically optimal. When each source processor wishes to transmit only

one message to each of its destination processors, the number of time steps required is also asymptotically

optimal. The multinode broadcasting and scattering problems are of special interest. A special technique

is developed on the generalized hypercube (lemma 5) so that messages originating at individual nodes are

interleaved in such a manner that no two messages contend for the same edge at any time during the

execution of an algorithm. This technique demonstrates that the utilization of all communication edges of

a network simultaneously is possible, and that e�cient algorithmic techniques that take advantage of this

capability can be developed. In the single node scattering problem, where the edges incident to the source
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node constitute a bottleneck for the transmission of the messages, the spanning graphs o�er the capability

to transmit an equal number of messages over each edge incident to the source node, and as a consequence

optimal number of time steps is achieved. The same algorithms can be used to derive optimal solutions for

the single node and multinode reduction over an associative operator, and for the single node and multinode

gathering problems by inversing the transmission of the messages.

A survey on adaptive communication algorithms on the generalized hypercube network can be found

in [14]. The method of spanning graph construction has been previously used to design communication

algorithms on other interconnection networks, such as the binary hypercube [16], the multidimensional torus

[10], and the star network [6, 7].

The remainder of this paper is organized as follows. Notations and de�nitions that are used throughout

the paper are introduced in section 2. Sections 3 and 4 present the construction of a spanning tree and a

spanning graph, respectively, on the generalized hypercube network. Section 5 is devoted to the derivation of

lower bounds and the design of optimal algorithms based on the spanning graphs, for all of the communication

problems under consideration. Finally, we conclude in section 6 along with a summary of the results obtained

in this paper and some suggestions for further research.

2 Notations and de�nitions

An n-dimensional k-ary generalized hypercube GHn;k, is an undirected graph of kn nodes, each one labeled

by an n-digit number in radix k arithmetic. Each node v is connected to n(k � 1) other nodes with which

it di�ers in only one digit, i.e. v = vn�1:::vi+1vivi�1:::v0 is connected to v0 = vn�1:::vi+1v
0
ivi�1:::v0 for

all 0 � i � n � 1, 0 � v0i � k � 1 and vi 6= v0i, Fig. 1. The network is edge and node symmetric with

degree n(k � 1) (number of edges at each node) and diameter n (maximum shortest distance between any

pair of nodes). GHn;k belongs to the class of Cayley graphs [2, 17]. For networks in this class, nodes

correspond to the elements of a �nite group and edges correspond to a set of generators that act on the

elements of the group [2]. In this context, the k(n � 1) generators that de�ne the edges of GHn;k are

denoted by gji , 0 � i � n� 1, 1 � j � k � 1. Generator gji connets node v = vn�1:::vi+1vivi�1:::v0 to node

v0 = vn�1:::vi+1((vi + j) mod k)vi�1:::v0, which results by adding j mod k to the ith digit of v. In this case

we say that edge (v; v0) is of dimension g
j
i , or dim(v; v0) = g

j
i . Thus, each node of GHn;k is connected to

n(k � 1) other nodes through dimensions gji , 0 � i � n � 1, 1 � j � k � 1. In what follows, node 00:::0 of

GHn;k is referred to as node 0. It can be easily observed that the network is a generalization of the popular

binary hypercube. The binary hypercube contains pairs of connected nodes in each dimension, while the

generalized hypercube contains a complete subnetwork of k nodes in each dimension.

We now de�ne an operation on nodes of the generalized hypercube network, namely the translation

operation, that will be of primary importance for the construction of the spanning graphs and the description

of the communication algorithms. Having a spanning graph rooted at node 0 of GHn;k, we will derive an

isomorphic spanning graph, with the same properties, rooted at any other node s ofGHn;k, using a translation

of the graph rooted at node 0 with respect to s. As a consequence, it is su�cient to construct a spanning

graph rooted at node 0 of GHn;k. The translation operation on GHn;k is analogous to the exclusive-OR

operation on nodes of the binary hypercube [16, 3, 4].
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Figure 2: Application of the T12 operation on the GH2;3 network.

De�nition 1: The translation of a node v with respect to node s, denoted by Ts(v), is de�ned to be node

t = Ts(v), so that ti = (vi + si) mod k, 0 � i � n � 1. The inverse translation of a node v with respect to

node s, denoted by T�1s (v), is de�ned to be node t = T�1s (v), so that ti = (vi� si) mod k, 0 � i � n�1. By

translation of a network with respect to s we mean that each node of the network is translated with respect

to s. For example, for nodes v = 231 and s = 132 of GH3;4, Ts(v) = 323 and T�1s (v) = 103.

Lemma 1: The translation operation preserves the dimension of each edge. If edge (v; u) is of dimension

g
j
i , then edge (Ts(v); Ts(u)) is also of dimension gji .

Proof: Assume that edge (v; u) has dimension gji , 0 � i � n � 1, 1 � j � k � 1. This means that v and

u di�er only in their ith digit by j mod k. From the de�nition of translation with respect to node s, it is

easily derived that Ts(v) and Ts(u) also di�er only in their ith digit by j mod k and as a consequence edge

(Ts(v); Ts(u)) is of dimension gji . 2

The translation operation is an automorphism on the generalized hypercube that preserves the topology

of the network and the dimension of each edge. An example of the application of the T12 operation on the

GH2;3 network is shown in Fig. 2. The property of edge dimension preservation is apparent.

We now de�ne another operation on GHn;k, namely the rotation operation, that will also be of primary

importance for the construction of the spanning trees, and for the development of the multinode broadcasting

and scattering algorithms. As emphasized in the introduction, these algorithms are designed so that messages

originating at individual nodes are interleaved in such a manner that no two messages contend for the same

edge at any given time. The properties of the rotation operation, as explained below, will help achieve this

attribute. The rotation operation on nodes of the generalized hypercube has properties similar to those of

the left cyclic shift operation on nodes of the binary hypercube [16, 3, 4].
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De�nition 2: Consider function r from the set f0; 1; :::; k� 1g to itself:

r(i) =

�
0; if i = 0,
i mod (k � 1) + 1; otherwise.

(notice that r maps digit 0 to itself and the remaining digits as follows: 1 ! 2 ! 3 ! ::: ! k �
1 ! 1). The rotation of a node v = vn�1:::vi+1vivi�1:::v0, denoted by R(v), is de�ned to be node

vn�2:::vi+1vivi�1:::v0r(vn�1). This can be viewed as a left cyclic shift of the digits of v with the wraparound

digit being mapped though function r. By rotation of a network we mean that the rotation operation is

applied to each node of the network. By Ri = R � Ri�1 we denote i applications of rotation. For example,

for nodes v = 221 and u = 012 of GH3;4, R(v) = 213 and R(u) = 120.

Lemma 2: The rotation operation has the following properties:

1. If (v; u) is an edge of dimension gji , 0 � i � n� 1, 1 � j � k � 1, so that vi = 0 and ui = j, then edge

(R(v); R(u)) is an edge of dimension gj
0

i0 so that:

i0 = (i + 1) mod n;

j0 =

�
r(j); if i = n � 1,
j; otherwise.

2. The rotation operation preserves the distance of each node from node 0.

Proof: We prove each property separately.

1. Assume that 0 � i � n� 2. If we express (v; u) and (R(v); R(u)) as follows:

(vn�1:::vi+10vi�1:::v0; vn�1:::vi+1jvi�1:::v0);

(vn�2:::vi+10vi�1:::v0r(vn�1); vn�2:::vi+1jvi�1:::v0r(vn�1));

it is clear that if v and u di�er in their ith, 0 � i � n� 2, digit by j then R(v) and R(u) di�er in their

(i+ 1)st digit also by j.

Assume that i = n� 1. If we express (v; u) and (R(v); R(u)) as follows:

(0vn�2:::vi:::v0; jvn�2:::vi:::v0);

(vn�2:::vi:::v00; vn�2:::vi:::v0r(j));

it is clear that if v and u di�er in their (n� 1)st digit by j then R(v) and R(u) di�er in their 0th digit

by r(j).

2. The distance of a node v from node 0 is equal to the number of nonzero digits in the label of v. This

is a modi�ed de�nition of the Hamming distance for nodes of the generalized hypercube. Since the

rotation operation preserves the number of nonzero digits in the label of a node (bijection r maps digit

0 to itself), it also preserves the distance of each node from node 0. Another way to see this is the

following. The rotation operation is an automorphism on GHn;k that maps node 0 to itself. As an

extension to this, nodes obtained as rotations of each other are all at the same distance from node 0.2

Lemma 3: If (v; u) is a directed edge of dimension g
j
i , so that vi = 0 and ui = j, then the n(k� 1) directed

edges derived from (v; u) by consecutive applications of the rotation operation are all of di�erent dimensions.
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Proof: This is derived in a straightforward manner from the �rst part of lemma 2, which describes the

impact of the rotation operation on the dimension of an edge of this type. For example, for edge (01; 11) of

GH2;4, the n(k� 1) = 6 edges produced by consecutive applications of the rotation operation are (01; 11)
R!

(10; 12)
R! (02; 22)

R! (20; 23)
R! (03; 33)

R! (30; 31) and their corresponding dimensions are g1
1

R! g2
0

R!
g2
1

R! g3
0

R! g3
1

R! g1
0
. 2

To summarize, the translation and the rotation operations are automorphisms on GHn;k that preserve

the distance between its nodes. The translation operation preserves the dimension of each edge (lemma 1),

while the rotation operation alters it in a regular fashion (lemma 2). Finally, the topology of GHn;k or one

of its subnetworks remains unchanged under translation or rotation.

The nodes of GHn;k are grouped into equivalence classes under the operation of rotation as follows:

De�nition 3: An ordered group of nodes, each one derived from its subsequent one cyclically, by the

application of a rotation is called a necklace.

The term necklace was initially used for groups of nodes of the shu�e exchange graph [18].

Lemma 4: Necklaces have the following properties:

1. A necklace contains at most n(k � 1) nodes.

2. The size of a necklace always divides n(k � 1).

3. All nodes of a necklace are at the same distance from node 0.

Proof: We prove each property separately.

1. From the de�nition of rotation it can be veri�ed that Rn(k�1)(v) = v for every node v of GHn;k.

However, we say at most n(k� 1) rotations because the same node can emerge after less than n(k� 1)

rotations. For example, for node v = 21 of GH2;4, R
3(v) = 21 and the same node emerges after only

3 rotations and not n(k � 1) = 6.

2. The proof for this property can be found in group theory. A rotation operation is an automorphism

on GHn;k of order n(k � 1). A necklace is an orbit under the action of rotation. The size of an orbit

always divides the order of the automorphism [13, 19].

3. This property is derived in a straightforward manner from the property of distance preservation of the

rotation operation (lemma 2). 2

In what follows a full necklace is a necklace that contains n(k� 1) distinct nodes. A nonfull necklace is a

necklace that contains less than n(k � 1) nodes. A node belongs to a nonfull necklace if its label has a non-

trivial symmetry with respect to the rotation operation. Nodes that belong to nonfull necklaces constist of a

substring of n
m
digits v n

m
�1:::v1v0 (m is a divisor of n), which is repeated m times with its nonzero digits mod-

i�ed as follows: rm�1(v n

m
�1):::r

m�1(v1)r
m�1(v0):::r

i(v n

m
�1):::r

i(v1)r
i(v0):::r(v n

m
�1):::r(v1)r(v0)v n

m
�1:::v1v0

[9]. For example, node 330220 of GH6;4 which belongs to a nonfull necklace that contains 12 nodes constists

of the substring 220 of three digits which is repeated twice as follows: r(2)r(2)r(0)220 = 330220.

From the properties of the rotation operation we conclude that the nodes of GHn;k at each distance from

node 0 are collections of necklaces. In table 2, the necklaces of GH2;4, and those of GH3;3 at each distance

d, 0 � d � n, from node 0 are given enclosed in parentheses.
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The necklaces of GH2;4

d = 0 : (
0

00 )

d = 1 : (
0

30;
1

03;
2

20;
3

02;
4

10;
5

01 )

d = 2 : (
0

33;
1

23;
2

22;
3

12;
4

11;
5

31 )

(
0

32;
1

13;
2

21 )

The necklaces of GH3;3

d = 0 : (
0

000 )

d = 1 : (
0

200;
1

020;
2

002;
3

100;
4

010;
5

001 )

d = 2 : (
0

220;
1

022;
2

102;
3

110;
4

011;
5

201 )

(
0

210;
1

021;
2

202;
3

120;
4

012;
5

101 )

d = 3 : (
0

222;
1

122;
2

112;
3

111;
4

211;
5

221 )

(
0

212;
1

121 )

Table 2: The necklaces of GH2;4 and GH3;3.

The following de�nition aims to distinguish one particular node of each necklace.

De�nition 4: The binary correspondent of a node v of GHn;k is the binary number obtained if we substitute

each nonzero digit in v with digit 1. The generator node of a necklace is de�ned to be the largest among the

nodes of the necklace that have the largest binary correspondent.

For example, for necklace ( 210; 021; 202; 120; 012; 101 ) of GH3;3 the generator node is 210 because

this is the largest from nodes 210, 120, that have the largest binary correspondent among the nodes of the

necklace.

De�nition 5: The displacement of a node v, denoted by D(v), is de�ned to be the minimum number of

rotation operations required to derive from this node the generator node of the necklace to which it belongs.

De�nition 6: The period of a node v, denoted by P (v), is de�ned to be the number of nodes contained in

the necklace to which it belongs.

In table 2, the generator node of each necklace is underlined and the displacement of each node is marked

on top of its label.

De�nition 7: An unfolded necklace is an ordered group of exactly n(k � 1) nodes, not necessarily distinct,

each one obtained from its subsequent one cyclically, by the application of a rotation.

Each necklace has a corresponding unfolded necklace. For full necklaces, the corresponding unfolded

necklace is the necklace itself. For nonfull necklaces that contain P nodes, the corresponding unfolded

necklace is the necklace repeated
k(n�1)

P
times. This is possible since the size of a necklace is always a

divisor of k(n� 1) (lemma 4). In table 3, the unfolded necklaces of GH2;4, and those of GH3;3 are given. A

comparison with table 2 will help clarify the di�erence between a necklace and its corresponding unfolded

necklace.

9



The unfolded necklaces of GH2;4

d = 0 : ( 00; 00; 00; 00; 00; 00 )
d = 1 : ( 30; 03; 20; 02; 10; 01 )
d = 2 : ( 33; 23; 22; 12; 11; 31 )

( 32; 13; 21; 32; 13; 21 )

The unfolded necklaces of GH3;3

d = 0 : ( 000; 000; 000; 000; 000; 000 )
d = 1 : ( 200; 020; 002; 100; 010; 001 )
d = 2 : ( 220; 022; 102; 110; 011; 201 )

( 210; 021; 202; 120; 012; 101 )
d = 3 : ( 222; 122; 112; 111; 211; 221 )

( 212; 121; 212; 121; 212; 121 )

Table 3: The unfolded necklaces of GH2;3 and GH3;3.

The property of the rotation operation that n(k � 1) directed edges each of which is obtained as a

rotation of its preceding one are all of di�erent dimensions (lemma 3), along with the property of edge

dimension preservation of the translation operation (lemma 1) will be used extensively in the development of

the multinode broadcasting and scattering algorithms. These properties will help guarantee that messages

originating at individual nodes will be interleaved in such a manner that no two messages will contend for

the same edge at any given time. Below we explain how this attribute can be achieved.

In a multinode broadcasting or scattering algorithm, all nodes of the network are source of messages.

Under the all-port communication model n(k � 1)kn directed edges are available on GHn;k for message

transmission at each time step. Messages originating at each one of the kn nodes of GHn;k are transmitted

through at most n(k � 1) directed edges at each time step. Let us denote by Ei(0) the set of n(k � 1)

directed edges on which messages originating at node 0 are transmitted at time step i of the algorithm.

Since a multinode algorithm proceeds symmetricly from each node of the network, the n(k � 1) directed

edges on which messages originating at node s are transmitted at time step i, denoted by Ei(s), is obtained

from Ei(0) using the operation of translation with respect to s (if (v; u) 2 Ei(0) then (Ts(v); Ts(u)) 2 Ei(s)).

The following lemma is enough to guarantee that no conicts arise during the execution of an algorithm.

Lemma 5: At each time step i, if the n(k � 1) directed edges in Ei(0) are all of di�erent dimensions, then

the sets of n(k � 1) directed edges Ei(s), where s ranges over all nodes of GHn;k, are disjoint.

Proof: Assume two di�erent edges (v; u) 6= (v0; u0) of Ei(0) for some i, and take edges (Ts(v); Ts(u)) 2 Ei(s)

and (Ts0 (v
0); Ts0(u

0)) 2 Ei(s
0), which are obtained by (v; u) and (v0; u0) respectively, under translation with

respect to two di�erent nodes of GHn;k, s and s
0. Also assume that (Ts(v); Ts(u)) = (Ts0(v

0); Ts0(u
0)). From

the property of preservation of the dimension of each edge under translation we conclude that dim(v; u) =

dim(Ts(v); Ts(u)) = dim(Ts0 (v
0); Ts0(u

0)) = dim(v0; u0), which contradicts our assumption that (v; u) and

(v0; u0) are two di�erent edges of Ei(0). 2

The multinode broadcasting and scattering algorithms will be developed so that at each time step i, the

set Ei(0) contains n(k � 1) directed edges that are rotations of each other and as a consequence of di�erent

dimensions. According to lemma 5, this will guarantee that at each time step i, the sets of n(k� 1) directed

edges Ei(s), where s ranges over all nodes of GHn;k, are disjoint and as a consequence no two messages will

compete for the same edge at any time step i during the execution of the algorithm.

We are now ready to proceed to the construction of the spanning graphs which will be the basic tools
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Figure 3: The BST0 spanning tree on the GH2;4 network.

for the development of the communication algorithms. We start by constructing a shortest path, balanced

to within a constant factor spanning tree using the framework de�ned in this subsection. Subsequently, we

extend the spanning tree to a shortest path spanning graph.

3 Spanning tree construction

We de�ne a shortest path, balanced to within a constant factor spanning tree, rooted at node 0 of GHn;k,

and denoted by BST0. The spanning tree is balance to within a constant factor, meaning that the ratio in

the number of nodes between the largest and the smallest of the n(k � 1) subtrees of the root is less than a

constant. The framework developed in the previous subsection will be the basic tool for the construction of

the spanning tree with the stated properties. Each one of the n(k � 1) subtrees of BST0 contains all nodes

that have the same displacement. The ith, 0 � i < n(k � 1), subtree of BST0 is de�ned to be the subtree

that contains all nodes v of GHn;k with displacement D(v) = i. Furthermore, an isomorphic spanning tree

rooted at any other node s of GHn;k, and denoted by BSTs , can be easily derived from BST0 using the

operation of translation with respect to s. We are now ready to proceed to a formal de�nition of BST0 .

De�nition 8: A shortest path spanning tree, balanced to within a constant factor, rooted at node 0 of

GHn;k, and denoted by BST0, is de�ned through the following parent function. For node v, let pi be the

position of its �rst nonzero digit cyclically to the left of position (n� 1� i) mod n.

parentBST0 (v) =

� ;; if v = 0,
vn�1:::vpi+10vpi�1:::v0; if v 6= 0 and D(v) = i.

The BST0 spanning tree on the GH2;4 network can be seen in Fig. 3.

Lemma 6: BST0 has the following properties:

1. The parentBST0 function de�nes a shortest path spanning tree rooted at node 0 of GHn;k.

2. The ith, 0 � i < n(k� 1), subtree of BST0 contains all nodes v of GHn;k with displacement D(v) = i.

Furthermore, if node v with displacement D(v) = i, 0 < i < n(k � 1), has parent node u in the ith

subtree of BST0 then node R(v) with displacement i� 1 has parent node R(u) in the (i� 1)st subtree

of BST0. From this we conclude that corresponding nodes of the subtrees of BST0 form necklaces.
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3. BST0 is balanced to within a constant factor.

4. All nodes that belong to nonfull necklaces, except node 0, are leaf nodes.

Proof: We prove each property separately.

1. From the de�nition of the parentBST0 function we notice that the parent of each node is obtained

by changing a nonzero digit in the label of the node to zero. As a consequence, the parentBST0 (v)

function generates a shortest path to node 0. Furthermore, each node has only one parent node, hence

the graph is a spanning tree.

2. The parent of node v with displacement D(v) = i in the ith, 0 < i < n(k � 1), subtree of BST0 is

obtained by changing to zero its �rst nonzero digit cyclically to the left of position (n� 1� i) mod n.

Assume that the digit that is changed into zero is in position p of v and that its parent is node u. The

parent of node R(v) with displacement D(v) = i � 1 in the (i � 1)st subtree of BST0 is obtained by

changing to zero its �rst nonzero digit cyclically to the left of position (n � 1 � (i � 1)) mod n. The

digit that is changed into zero in R(v) is in position (p + 1) mod n and its parent is node R(u) [9].

For example, node 103302 of GH6;4 has dispacement 2, and its parent node in the second subtree of

BST0 is obtained by changing to zero its �rst nonzero digit cyclically to the left of position 3. As a

consequence its parent is node 003302. Node R(103302) = 033022 has dispacement 1 and its parent in

the �rst subtree of BST0 is obtained by changing to zero its �rst nonzero digit cyclically to the left of

position 4. As a consequence its parent is node 033020. It is true that R(003302) = 033020.

3. We must prove that each subtree of the root contains O( kn

n(k�1)) nodes. From the de�nition of BST0,

the ith, 0 � i < n(k � 1), subtree contains all nodes of GHn;k with displacement D(v) = i. From the

n(k�1) nodes that belong to a full necklace, each one belongs to a di�erent subtree. Nodes that create

the imbalance among the subtrees are the ones that belong to nonfull necklaces. We now derive an

upper bound for the number of nodes that belong to nonfull necklaces. As explained in section 2, these

nodes consist of a substring of n=m digits, which is repeated m times with its nonzero digits modi�ed.

So for m prime divisor of n (all the other divisors of n are included in this case) an estimate for the

number of nodes that belong to nonfull necklaces is:

nX
m�2; mjn

kn=m = O(
p
kn):

As a consequence, each subtree contains at least kn

n(k�1) � O(
p
kn

n(k�1)) = O( kn

n(k�1)) nodes. This upper

bound is not tight and the imbalance among the subtrees is in reality much smaller. From table 4 we

notice that the ratio between the number of nodes of the largest subtree of GHn;k and
kn

n(k�1) rapidly

converges to 1 as the number of nodes increases.

4. Nodes that are at maximum distance from node 0, do not contain any zero digits in their labels, and

are always leaf nodes, since BST0 is a shortest path tree. We have to prove that nodes of nonfull

necklaces that contain zero digits in their labels are leaf nodes as well. Without loss of generality we

prove that the generator node v of a nonfull necklace is a leaf node of BST0 . Node v has displacement

12



Number of
Number of nodes of Size of Size of

nodes nonfull Number of minimum maximum
n k kn necklaces necklaces subtree subtree kn=n(k � 1) Ratio

4 3 81 1 11 10 10 10.00 1.00

4 4 256 16 24 20 23 21.25 1.08

4 5 625 1 40 39 39 39.00 1.00

4 6 1296 36 68 63 67 64.75 1.03

4 7 2401 1 101 100 100 100.00 1.00

5 3 243 3 26 24 25 24.20 1.03

5 4 1024 4 70 68 69 68.20 1.01

5 5 3125 5 158 156 157 156.20 1.01

5 6 7776 1 312 311 311 311.00 1.00

5 7 16807 7 562 560 561 560.20 1.00

6 3 729 9 63 60 62 60.67 1.02

6 4 4096 64 232 224 231 227.50 1.02

6 5 15625 25 654 650 653 651.00 1.00

6 6 46656 246 1566 1547 1565 1555.17 1.01

6 7 117649 1 3269 3268 3268 3268.00 1.00

7 3 2187 3 158 156 157 156.14 1.01

7 4 16384 4 782 780 781 780.14 1.00

7 5 78125 5 2792 2790 2791 2790.14 1.00

7 6 279936 6 8000 7998 7999 7998.14 1.00

7 7 823543 7 19610 19608 19609 19608.14 1.00

8 3 6561 1 411 410 410 410.00 1.00

8 4 65536 256 2744 2720 2743 2730.62 1.00

8 5 390625 1 12208 12207 12207 12207.00 1.00

8 6 1679616 1296 42026 41958 42025 41990.38 1.00

8 7 5764801 1 120101 120100 120100 120100.00 1.00

9 3 19683 27 1098 1092 1097 1093.44 1.00

9 4 262144 1 9710 9709 9709 9709.00 1.00

9 5 1953125 125 54262 54250 54261 54253.45 1.00

9 6 10077696 216 223960 223944 223959 223948.78 1.00

Table 4: Comparison between the smallest and the largest subtrees of BST0 for sample values of n and k.
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zero, belongs to the �rst subtree of BST0, and consists of a substring of n=m digits, which is repeated

m times with its nonzero digits modi�ed. If node v had a child node then one of its �nal zero digits,

which belongs to the last substring ofm digits, becomes nonzero in the label of the child node. However

the resulting node does not have displacement zero, it does not belong to the �rst subtree of BST0,

and as a consequence it cannot be a child node of v. For example, node 330220 of GH6;4 is a generator

node of a nonfull necklace that contains 12 nodes. If this node had a child node, then its last zero

digit would change to a nonzero digit in its child node, i.e. 330221, 330222, or 330223. However from

de�nition 4, none of these nodes could be the generator node of the necklace it belong to, since it is

not the node with the largest binary correspondent among the nodes of its necklace (de�nition 4). 2

The properties of BST0 are apparent in Fig. 3. A simple comparison with table 2 will help verify that

corresponding nodes of the subtrees of BST0 form necklaces.

Using the BST0 spanning tree and the parentBST0 function we can easily derive a BSTs, rooted at any

other node s of GHn;k. This spanning tree is isomorphic to BST0 and has the same properties as it. To

derive BSTs, we simply apply the operation of translation with respect to s, on BST0 . If edge (v; u) belongs

to the ith subtree of BST0, then edge (Ts(v); Ts(u)) belongs to the i
th subtree of BSTs. Since the dimension

of each edge is preserved under translation, these edges are of the same dimension. Each node v can derive

its parent in BSTs by computing node parentBST0 (T�1s (v)) and obtaining the translation of the resulting

node with respect to s.

4 Spanning graph construction

The de�nition of BST0 is extended to a spanning graph, rooted at node 0 of GHn;k, and denoted by BSG0.

This is a special type of graph which is composed of n(k�1) spanning trees, rooted at the nodes adjacent to

node 0. The ith, 0 � i < n(k � 1), spanning tree of BSG0 contains nodes v, for which D(v) = i mod P (v).

All spanning trees of BSG0 are isomorphic, and each one can be derived from its next one, cyclically, by the

application of a rotation operation. Furthermore, an isomorphic spanning graph rooted at any other node s

of GHn;k, and denoted by BSGs, can be easily derived from BSG0 using the operation of translation with

respect to s. We are now ready to proceed to a formal de�nition of BSG0.

De�nition 9: A shortest path spanning graph, rooted at node 0 of GHn;k, and denoted by BSG0, is

de�ned though the following parent function. By parentBSG0 (v; i) we denote the parent of node v in the

ith, 0 � i < n(k � 1), spanning tree of BSG0. For node v, let pi be the position of its �rst nonzero digit

cyclically to the left of position (n � 1� i) mod n.

parentBSG0 (v; i) =

� ;; if v = 0,
vn�1:::vpi+10vpi�1:::v0; if v 6= 0 and D(v) = i mod P (v).

The BSG0 spanning graph on the GH2;4 network can be seen in Fig. 3.

Lemma 7: BSG0 has the following properties:

1. The parentBSG0 function de�nes a shortest path graph rooted at node 0 of GHn;k. Nodes that belong

to full necklaces have a single path to node 0 through BSG0. Nodes with period P that belong to

nonfull necklaces have n(k�1)
P

paths to node 0 through BSG0.
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Figure 4: The BSG0 spanning graph on the GH2;4 network.

2. The ith, 0 � i < n(k � 1) � 1, spanning tree of BSG0 can be obtained as a rotation of its (i + 1)st

spanning tree. Since rotation is an automorphism on GHn;k all spanning trees of BSG0 are isomorphic.

Furthermore, n(k � 1) corresponding directed edges of the spanning trees are rotations of each other

and as a consequence of di�erent dimensions (lemma 3), and n(k � 1) corresponding nodes of the

spanning trees form an unfolded necklace (de�nition 7).

3. All nodes that belong to nonfull necklaces are leaf nodes.

Proof: We prove each property separately.

1. From the de�nition of the parentBSG0 function we notice that the parent(s) of each node is(are)

obtained by changing a nonzero digit in the label of the node to zero. As a consequence the parentBSG0

function generates shortest paths from each node to node 0. From the de�nition of BSG0 we now that

the ith, 0 � i < n(k� 1), spanning tree of GHn;k includes all nodes v for which D(v) = i mod P (v). A

node v that belongs to a full necklace has period P (v) = n(k � 1) and as a consequence belongs only

to spanning tree TD(v). A node v with period P, that belongs to a nonfull necklace belongs to n(k�1)
P

spanning trees of BSG0.

2. It is enough to prove that if node v with displacement D(v) = i mod P (v), has parent node u in the ith,

0 < i < n(k�1), spanning tree ofBSG0, then node R(v) with displacementD(v)�1 = (i�1) mod P (v),

has parent node R(u) in the (i� 1)st spanning tree of BSG0 [9]. The proof for this property is similar

to the proof of the second part of lemma 6. From the above and using induction, it can be shown

that each spanning tree can be obtained as a rotation of its next one in BST0 . From this we conclude

that n(k � 1) corresponding directed edges of the spanning trees are rotations of each other and as

a consequence of di�erent dimensions (lemma 3). Furthermore, n(k � 1) corresponding nodes of the

spanning trees are rotations of each other and as a consequence form an unfolded necklace (de�nition

7).

3. Since BSG0 is an extension of BST0, the proof of this property for BSG0 is derived in a similar manner

to the proof of the same property of BST0 . 2

The properties of BSG0 are apparent in Fig. 4. A simple comparison with table 3 will help verify that
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corresponding nodes of the spanning trees of BSG0 form unfolded necklaces. Corresponding edges of the

spanning trees of BSG0 are rotations of each other and as a consequence of di�erent dimensions (lemma 3).

Using the BSG0 graph and the parentBSG0 function we can easily derive a BSGs, rooted at any other

node s of GHn;k. This graph is isomorphic to BSG0 and has the same properties as it. To derive BSGs,

we simply apply the operation of translation with respect to s, on BSG0. If edge (v; u) belongs to the

ith spanning tree of BSG0, then edge (Ts(v); Ts(u)) belongs to the ith spanning tree of BSGs. Since the

dimension of each edge is preserved under translation, these edges are of the same dimension. Each node

v can derive its parent in the ith spanning tree of BSG0 by computing node parentBSG0 (T�1s (v); i) and

obtaining the translation of the resulting node with respect to s.

The importance of the BSGs graph lies in several di�erent properties it possesses. The fact that each

of the n(k � 1) spanning trees of BSGs contain the same number of nodes is used in the single node and

multinode scattering algorithms in order for each source node to transmit an equal number of its messages

over each one of its incident edges. A node that belongs to a number of di�erent spanning trees of BSGs

receives an equal part of its messages from s through the edges of each spanning tree. Furthermore, as

mentioned in section 2, messages originating at individual nodes in a multinode broadcasting or scattering

algorithm will be interleaved in such a manner that no two messages contend for the same edge at any

time during the execution of the algorithm. A necessary condition in order to achieve this attribute was

presented in lemma 5. Recall that by Ei(s) we denote the set of n(k� 1) directed edges on which messages

originating at node s are transmitted at time step i of a multinode broadcasting or scattering algorithm.

Since a multinode algorithm proceeds symmetricly from all nodes of the network, each Ei(s) is obtained

from Ei(0) by a translation with respect to s. According to lemma 5, if the n(k� 1) directed edges in Ei(0)

are all of di�erent dimensions, then the sets of n(k � 1) directed edges Ei(s), for �xed i (time step), and

s ranging over all nodes of GHn;k, are disjoint. In other words, at each time step i, messages originating

at individual nodes are transmitted through di�erent edges of GHn;k. By lemma 7, the n(k � 1) spanning

trees of BSG0 are rotations of each other, and as a consequence n(k � 1) corresponding directed edges of

the spanning trees of BSG0 are all of di�erent dimensions. This property is true for any BSGs graph, since

the dimension of each edge is preserved under translation. We conclude that in order to avoid conicts

of messages originating at individual nodes during a multinode broadcasting or scattering algorithm, it is

enough to use n(k � 1) corresponding directed edges of the spanning trees of BSG0. Finally, the fact that

BSG0 is a shortest path graph o�ers the potential to achieve the lower bound for the number of message

transmissions required for each communication problem.

5 Communication Algorithms

5.1 Lower bounds

In a single node broadcasting problem on GHn;k, each of the kn � 1 destination nodes receives M messages

from the source node and a lower bound for the number of message transmissions is M (kn� 1). The source

node has n node disjoint paths, of length at most n+ 2, to each one of the other nodes. In order to achieve

the minimumnumber of time steps for this problem, the M messages are split into n(k�1) groups, each one

containing d M
n(k�1)e messages, which are pipelined in the network. Each of the n(k � 1) groups of messages
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reaches each destination node through a di�erent node disjoint path. As a consequence, a lower bound for

the number of time steps required for this problem is d M
n(k�1)e + n+ 1.

In a multinode broadcasting problem on GHn;k, each node receives a total of M (kn � 1) messages, M

messages from each one of the kn � 1 other nodes. As a consequence, a lower bound for the number of

message transmissions is M (kn�1)kn. Since each node of GHn;k has n(k�1) incident edges, a lower bound

for the number of time steps required for this problem is dM(kn�1)
n(k�1) e.

In a single node scattering problem on GHn;k, the source node transmits a total of M (kn� 1) messages,

M messages to each one of the other nodes. Since each node of GHn;k has n(k � 1) incident edges, a lower

bound for the number of message transmissions required for this problem is dM(kn�1)
n(k�1) e. A message destined

to a speci�c node must travel a number of edges equal to the shortest distance between that node and the

source node. Therefore, a lower bound for the number of message transmissions required is the sum of the

shortest distances of all nodes to the source node, multiplied by M , since each node receives M messages

from the source. At distance d, 1 � d � n, from a source node of GHn;k there are (k � 1)d
�
n
d

�
nodes and

we conclude that a lower bound for the number of message transmission is:

M

nX
d=1

d(k � 1)d
�

n

d

�
=Mn(k � 1)kn�1:

A multinode scattering problem can be viewed as kn single node scattering problems, one from each node

of GHn;k. A lower bound for the number of message transmissions is derived from the lower bound for the

number of message transmissions required for the single node scattering problem, multiplied by kn. This

lower bound is equal to Mn(k � 1)k2n�1. Each node has n(k � 1) incident edges and at most knn(k � 1)

message transmissions can be performed at each time step. Consequently, a lower bound for the number of

time steps required for this problem is Mkn�1.

Table 5 summarizes the lower bounds for all of the above problems. These lower bounds were derived in

a similar manner to the lower bound derived in [4] for the binary hypercube.

Problem Time steps Message transmissions

Single node broadcasting d M
n(k�1)e+ n+ 1 M (kn � 1)

Multinode broadcasting dM(kn�1)
n(k�1) e M (kn � 1)kn

Single node scattering dM(kn�1)
n(k�1) e Mn(k � 1)kn�1

Multinode scattering Mkn�1 Mn(k � 1)k2n�1

Table 5: Lower bounds on the the GHn;k network.

5.2 Single node broadcasting

In a single node broadcasting, a source node s transmits the same group of M messages to each other node.

We use BSTs to develop the single node broadcasting algorithm.

The single node broadcasting algorithm from node s proceeds as follows:

1. The M messages the source node s wishes to broadcast are communicated over all of its incident edges
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Figure 5: Single node broadcasting on the GH2;4 network using BST0.

simultaneously and are pipelined down each one of the subtrees of BSTs . We have to mention that

the message header always carries the identity of the source node.

2. As soon as an intermediate node v receives a message header with the identity of the source node s, it

identi�es its children nodes in BSTs as a translation with respect to s of the children of node T�1s (v)

in BST0 . Subsequently, it forwards each message it receives from its parent to all of its children nodes

in BSTs simultaneously.

The propagation of the messages down BSTs continues until all leaf nodes of BSTs receive the M

messages. An example of a single node broadcasting algorithm on the GH2;4 can be seen in Fig. 5.

Each destination node receives the M messages once, and as a consequence the number of message

transmissions performed is M (kn � 1), which is optimal. However, the number of time steps required is

M + n � 1 which is only asymptotically optimal, since the algorithm does not take advantage of the node

disjoint paths that exist between s and the other nodes of the network.

5.3 Multinode broadcasting

In a multinode broadcasting algorithm, each node of the network transmits M messages to all the other

nodes. Each node s uses BSGs for the transmission of its messages. BSG0 can be replicated at any

other node s of GHn;k using the operation of translation with respect to s, as explained in section 4. As

mentioned in section 2, the messages originating at individual nodes of the network will be interleaved in

such a manner, that no two messages will contend for the same edge at any time during the execution of the

algorithm (lemma 5).

The multinode broadcasting algorithm proceeds as follows:

1. Each source node s transmits the M messages it wishes to broadcast to all of its neighbors simultane-

ously. The identity of the source node s, along with a number to indicate the spanning tree of BSGs

in which the messages are transmitted, are always included in the message header.

2. When an intermediate node v of a BSGs receives a group of M messages originating at node s, it

stores a copy, and performs the following procedures. The messages have to be forwarded to the �rst

child of node v in BSGs. If node T
�1
s (v) has period P (de�nition 6) then the group of M messages is
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Figure 6: Multinode broadcasting on the GH2;4 network using BSG0.

split into n(k�1)
P

subgroups of MP
n(k�1) messages each. Node v of the ith spanning tree of BSGs sends

the (i div P )th subgroup of messages to its �rst child node in BSGs.

When an intermediate node v receives an acknowledgement from one of its children nodes in BSGs,

it forwards the messages it received in the past from node s to its next child in BSGs following the

splitting technique described in the previous paragraph. When an acknowledgement is received from

the last child node of v in BSGs, node v sends an acknowledgement with the identity of s to its parent

node in BSGs.

3. When a leaf node of BSGs receives a group of messages broadcast by node s, it sends an acknowledge-

ment with the identity of s to its parent node in BSGs.

The algorithm terminates when each source node receives acknowledgements from all its neighbors. In

this algorithm, the transmission of messages in each BSGs corresponds to a simultaneous depth �rst traversal

of its spanning trees. In order to prove that using this algorithm, no two messages contend for the same

edge at any time step during its execution, we have to show that the requirement of lemma 5 is satis�ed.

Let us remind that by Ei(s) we denote the set of n(k � 1) directed edges on which messages originating at

node s are transmitted at time step i of a multinode broadcasting algorithm. Since a multinode algorithm

proceeds symmetricly from all nodes of GHn;k, the n(k � 1) directed edges in each Ei(s), are obtained as

a translation with respect to s of the n(k � 1) directed edges of Ei(0). According to lemma 5, if at each

time step i, the n(k � 1) directed edges in Ei(0) are all of di�erent dimensions, then the sets of n(k � 1)

directed edges Ei(s), for s ranging over all nodes of GHn;k are disjoint, and as a consequence messages

originating at individual nodes are transmitted over disjoint sets of edges at time step i. The multinode

broadcasting algorithm described above, proceeds symmetricly from all nodes of GHn;k, since each BSGs is

a translation with respect to s of BSG0. This means that, if an edge (v; u) is used for the transmission of

a message originating at node 0 during time step i, then edge (Ts(v); Ts(u)) is used for the transmission of

a message originating at node s of GHn;k at time step i. At each time step, messages originating at node 0

are transmitted over n(k � 1) corresponding directed edges of the n(k � 1) spanning trees of BSG0. From

the properties of BSG0 (lemma 7), these edges are rotations of each other and as a consequence of di�erent

dimensions, and the requirement of lemma 5 is satis�ed. An example of a multinode broadcasting algorithm
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Figure 7: Single node scattering on the GH2;4 network using BSG0.

on the GH2;4 network can be seen in Fig. 6. This �gure helps illustrate the technique of message splitting

performed by the algorithm.

The number of message transmissions performed is M (kn � 1)kn, which is optimal, since each of the

kn nodes of GHn;k receives the M messages originating at any other node once. The number of time steps

required is dM(kn�1)
n(k�1) e, which is also optimal.

If each source node s wishes to broadcast one message to all the other nodes, then BSTs is used with a

similar method. The algorithm achieves again the minimum number of message transmissions, (kn � 1)kn,

but it is only asymptotically optimal, O( kn�1
n(k�1)).

5.4 Single node scattering

In a single node scattering algorithm, a source node s transmits distinct groups of M messages to each

other node. Node s uses BSGs for the transmission of its messages. Each source node keeps a table of

approximately kn

n(k�1) nodes. The table includes the nodes of the �rst spanning tree of BSG0, sorted in

reverse ordering of their distance from node 0. The nodes in the table correspond to the transmission order

of the �rst port of BSG0, and each one is accompanied by a number to indicate its period P . Recall that

nodes with period P that belong to nonfull necklaces have n(k�1)
P

paths to node 0 through BSG0. The

interesting property of this algorithm is that nodes that belong to nonfull necklaces with period P receive

MP
n(k�1) of their M messages through each one of the n(k�1)

P
paths from node 0.

The single node scattering algorithm proceeds as follows:

For each node v in the table of kn

n(k�1) entries do the following:

1. If the source is node 0, then it transmits messages destined to nodes v, R(v), R2(v),...,Rn(k�1)�1(v),

simultaneously. If v belong to a full necklace then all of these nodes are distinct and node 0 transmits

the M messages destined to node Ri(v), 0 � i < n(k � 1), through its ith port. However, if node

v has period P and belongs to a nonfull necklace, then these nodes are not distinct but they are P

distinct nodes repeated
n(k�1)

P
times, in other words it is the unfolded necklace of a nonfull necklace

that contains P nodes (de�nition 7). In this case each of the P groups of M messages node 0 has to

transmit is split into n(k�1)
p

subgroups, each containing MP
n(k�1) messages. The ith, 0 � i <

n(k�1)
P

,

subgroup of the jth, 0 � j < P , group of messages is transmitted over port iP + j of node 0. As a
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consequence, each of the P nodes of a nonfull necklace receives MP
n(k�1) of itsM messages through each

of the n(k�1)
P

paths from node 0 through BSG0.

If the source node is any other node s of GHn;k, then s transmits messages destined to nodes Ts(v),

Ts(R(v)), Ts(R
2(v)),...,Ts(R

n(k�1)�1(v)), simultaneously, using the same technique of message splitting

described above for node 0.

We have to mention that each message header includes the identity of the destination node of the

messages and a number that indicates the spanning tree of BSGs in which it is transmitted.

2. As soon as an intermediate node v receives a new message header, it performs the following procedures.

If node v is the destination of the message it stores a copy and removes it from the network. If v is

not the destination of the message, the identity of the child node to which the message will be forward

has to be determined. Node v of the ith spanning tree of BSGs identi�es the �rst digit to the left of

digit (n� 1� i) mod n in its label that is not equal to the corresponding digit of the destination node.

The message is forwarded to the child node of v with this digit equal to the corresponding digit of

the destination node. Subsequent messages that follow the same message header are forwarded to the

same child node.

3. As soon as a source node have transmitted the messages to nodes Ts(R
i(v)), 0 � i < n(k�1), through

its incident edges, it starts transmitting messages to nodes Ts(R
i(v)), 0 � i < n(k � 1), for the next

entry u in the table.

An instance of the single node scattering on GH2;4 for messages transmitted from node 0 to nodes 32, 13,

and 21 is shown in Fig. 7, in order to demonstrate the message splitting technique described above.

Since BSGs is a shortest path spanning graph, each message follows a shortest path to its destination

node and as a consequence the minimum number of message transmissions, Mn(k � 1)kn�1, is achieved.

Furthermore, an equal number of the M (kn � 1) messages the source node has to transmit is transmitted

over each one of its incident edges. This, combined with the fact that messages destined to nodes that are the

furthest from the source are transmitted �rst, helps achieve the minimum number of time steps, dM(kn�1)
n(k�1) e.

If the source node s wishes to transmit one message to each one of the other nodes then BSTs is

used with a similar method. The algorithm achieves again the minimum number of message transmissions,

n(k� 1)kn�1. However, the time is only asymptotically optimal, O( kn�1
n(k�1)), since BSTs is balanced only to

within a constant factor.

5.5 Multinode scattering

In a multinode scattering algorithm each node transmits distinct groups of M messages to each other node.

Each node s uses BSGs for the transmission of its messages. BSG0 can be replicated at any other node s

of GHn;k using the operation of translation with respect to s, as explained in section 4. As in the multinode

broadcasting algorithm, messages originating at individual nodes will be interleaved in such a manner that

no two messages will contend for the same edge at any time during the execution of the algorithm (lemma

5). The method used for the multinode scattering algorithm is similar to the one used for the single node

scattering algorithm, but simultaneously executed from all nodes of the network. Each node keeps a table of

21



approximately kn

n(k�1) nodes. The nodes in the table correspond to the transmission order of the �rst port

of BSG0, and each one is accompanied by a number to indicate its period P .

The multinode scattering algorithm from each node of the network proceeds as follows:

For each node v in the table of kn

n(k�1) entries do the following:

1. Source node s determines the destination of the messages to be transmitted over its ith, 0 � i < n(k�1),
port as Ts(R

i(v)). For node v with period P , each of the P groups of M messages that have to be

transmitted by the source node is split into n(k�1)
P

subgroups of MP
n(k�1) messages each. The ith,

0 � i <
n(k�1)

P
, subgroup of the jth, 0 � j < P , group of messages is transmitted over the (iP + j)th

port of the source node.

We have to mention that the identity of the destination node and a number that indicates the spanning

tree of BSG0 in which the messages are transmitted are included in the message header.

2. As soon as an intermediate node v receives a new message header, it has to wait until it receives the

messages that follows it. If node v is the destination node of the messages, it stores a copy and removes

them from the network. If node v is not the destination node of the messages, it has to identify the child

node to which the messages have to be forwarded. Node v of the ith spanning tree of BSGs, locates

the �rst digit to the left of digit (n � 1 � i) mod n in its label that is not equal to the corresponding

digit of the destination node. The messages are forwarded to the child node of v with this digit equal

to the corresponding digit of the destination node.

3. When the messages transmitted from a source node s have reached their destination nodes Ts(R
i(v)),

0 � i < n(k � 1), then s can transmit messages to nodes Ts(R
i(u)), 0 � i < n(k � 1), for the next

entry u in the table. For example, if the distance from the source to the current destination nodes is

d then the messages to the next group of nodes is transmitted d MP
n(k�1) time steps after the starting

transmission time of the current group of messages.

From the properties of BSG0, we know that the n(k�1) paths that lead to nodes Ri(v), 0 � i < n(k�1),

through its spanning trees i, 0 � i < n(k � 1), respectively, are rotations of each other (lemma 7), and as a

consequence, the n(k� 1) directed edges at each level of these paths are of di�erent dimensions. Each node

in a path receives all the messages from its parent node before it starts transmitting them to the next node

down the path. As a consequence, at each time step, n(k� 1) directed edges that are all at the same level of

the paths are used. Since these edges are all of di�erent dimensions the requirement of lemma 5 is satis�ed,

and no two messages contend for the same edge during the execution of the algorithm.

Each message follows a shortest path to its destination node and the minimum number of message

transmissions, Mn(k � 1)k2n�1, is achieved. Furthermore, an equal number of the M (kn � 1) messages

that each source node has to transmit are transmitted over each one of its incident edges and the minimum

number of time steps, Mkn�1, is achieved.

When each source node wishes to transmit one message to each one of the other nodes a similar method

is followed, but the BSTs spanning tree is used. Although the minimum number of messages transmissions,

n(k � 1)k2n�1, is achieved, the time is only asymptotically optimal, O(kn�1), since BSTs is balanced only

to within a constant factor.
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6 Conclusions

A general framework was developed on the generalized hypercube network, that led to the construction of

a shortest path, balanced to within a constant factor, spanning tree, and a shortest path spanning graph.

Several de�nitions such as the ones for the translation and the rotation operations and the grouping of the

nodes into necklaces were developed.

The applications of the spanning graphs to the development of optimal communication algorithms was

demonstrated by giving a number of algorithm for the single and multinode broadcasting, and for the single

and multinode scattering problems, under the all-port communication assumption, and the store-and-forward

model. These are algorithms in which all nodes of the network know in advance the communication pattern.

The method is mostly useful for communication problems that require a group or all nodes of the network

to be sources of messages, such as the multinode broadcasting and scattering problems. The property that

corresponding edges of the subtrees are of di�erent dimensions, along with lemma 5, give the necessary

condition for messages to be interleaved so that conict are avoidance. The spanning graphs can be used

for the development of algorithms for a number of other communication problems, or under a variety of

communication models, such as the one-port model. It was also pointed out that the algorithms developed

in this paper are applicable to the solution of a wide range of problems such as matrix computations, image

manipulations, linear algebra, and database operations, to name a few.

Our algorithms illustrate that it is advantageous to use all of the communication links of a network

simultaneously in communication intensive tasks, and that exible techniques that take advantage of this

capability can be developed. This leads to a considerable increase in network bandwidth utilization, while

at the same time decreasing the routing time required for the completion of the algorithms.

We are con�dent that a general framework that leads to the construction of spanning graphs with similar

properties can be potentially developed for networks that belong to a subclass of the Cayley graphs. This

will o�er a uniform solution to a wide range of communication problems on a wide range of networks. Future

research could move towards various directions, the most important being the generalization of the developed

framework to a class of interconnection networks that exhibit speci�c characteristics, and the application of

this framework to the solution of other types of problems.
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