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Abstract

E�cient interprocessor communication is crucial to increasing the performance of parallel computers.

In this paper, a special framework is developed on the multidimensional torus, a network that is currently

receiving considerable attention. Using this framework as the basic tool, a number of spanning graphs with

special properties, to �t various communication needs, are constructed on the network. The importance

of these spanning graphs is demonstrated with the development of optimal algorithms for four fundamen-

tal communication problems, namely the single node and multinode broadcasting and the single node and

multinode scattering, on the multidimensional torus network. Broadcasting is the distribution of the same

group of messages from a source processor to all other processors, and scattering is the distribution of distinct

groups of messages from a source processor to all other processors. We consider broadcasting and scattering

from a single processor of the network (single node broadcasting and scattering) and simultaneously from

all processors of the network (multinode broadcasting and scattering). For the multinode broadcasting and

scattering algorithms a special technique is developed on the multidimensional torus network so that mes-

sages originating at individual nodes are interleaved in such a manner that no two messages contend for the

same edge at any given time. The communication problems are studied under the all-port communication

assumption, meaning that in one time step a processor can exchange messages of �xed length with all of

its neighbors simultaneously. Under this assumption the full bandwidth of the communication network is

used. Lower bounds are derived for the above problems under the stated assumptions, in terms of time and

number of message transmissions, and optimal algorithms are designed.

Key words and phrases: communication algorithm, interconnection network, multidimensional torus,

parallel algorithm, spanning tree.



Figure 1: The MT2;4 network.

1 Introduction

It is widely recognized that interprocessor communication is one of the main obstacles in increasing the

performance of parallel computers in which the processors are linked by an interconnection network. The

communication problems emerging from a wide range of parallel algorithms are not arbitrary but de�ne

regular communication primitives. It is crucial for the high performance of parallel computers to e�ciently

execute these primitives. In this paper we concentrate on four fundamental communication primitives,

namely the single node and multinode broadcasting, and the single node and multinode scattering, on the

popular multidimensional torus network. These appear in problems such as matrix operations (e.g. matrix-

vector and matrix-matrix multiplication, factorization, inversion, transposition), solutions of systems of

equations (e.g. Gaussian elimination), image manipulation (e.g. histogramming), some database operations

(e.g. polling, master-slave operations) etc. Broadcasting is the distribution of the same group of messages

from a source processor to all other processors, and scattering is the distribution of distinct groups of messages

from a source processor to all other processors. We consider broadcasting and scattering from a single source

processor of the network (single node broadcasting and scattering) and simultaneously from all processors

of the network (multinode broadcasting and scattering). The cases where a source node wishes to transmit

one or more than one messages are distinguished.

The interconnection network under consideration is the multidimensional torus network, which has been

proven to be a exible topology for the interconnection of processors [5, 14]. An n-dimensional, k-ary

multidimensional torus, denoted by MTn;k, has N = kn processors, each one labeled by an n-digit number

in radix k arithmetic. Two processors are connected if their labels di�er in exactly one digit by j mod k,

j 2 f�1; 1g, i.e. processor vn�1:::vi+1vivi�1:::v0 is connected to processors vn�1:::vi+1v0ivi�1:::v0 for all

0 � i � n� 1, and v0i = (vi + j) mod k, j 2 f�1; 1g. The MT2;4 network can be seen in Fig. 1.

All of the communication problems are studied under the all-port assumption (as opposed to the one-port

assumption), meaning that in one time step a processor can exchange messages of �xed length with all of its

neighbors simultaneously. This assumption is used in several recently constructed multiprocessors in order to
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use all of the available bandwidth. As pointed out by several authors [21], if at each time step a processor can

exchange messages of �xed length with only one of its neighbors, i.e. if the communication is based on the

one-port assumption, the used bandwidth of any network topology is the same as the bandwidth of a ring with

the same number of processors. The algorithms are derived for the store-and-forward communication model,

i.e. a processor must receive the entire message before it can process it and retransmit it. The communication

is bidirectional, meaning that an edge can be used for message transmission in both directions at each time

step and can be viewed as two unidirectional edges. Each message requires unit time to be transmitted on

an edge, i.e. the unit cost model is assumed.

A common approach to implement communication algorithms on interconnection networks is to embed

spanning trees with special properties on those networks. The root of the tree is usually the origin or the

destination of the information, while the edges are used to direct the transmission of messages from parent to

children processors or vice-versa. All of the algorithms presented in this paper are based on the construction

of spanning trees with special properties and the use of appropriate scheduling disciplines to achieve optimal

results. A special framework is developed to facilitate the construction of the spanning trees and the design

of the communication algorithms. The main results obtained in this paper for the preceding communication

problems and when each source processor wishes to transmit M messages to each one of its destination

processors, are summarized in table 1. The number of messages M is usually assumed to be large.

Problem Time steps Message transmissions

Single node broadcasting M + nbk
2
c+ 1 M (kn � 1)

Multinode broadcasting dM(kn�1)
2n

e M (kn � 1)kn

Single node scattering dM(kn�1)
2n

e dMnkn+1

4
e; if k is even

dMn(k2�1)kn�1
4

e, if k is odd

Multinode scattering dMkn+1

8
e; if k is even dMnk2n+1

4
e; if k is even

dM(k2�1)kn�1
8

e, if k is odd dMn(k2�1)k2n�1
4

e, if k is odd

Table 1: The main results obtained on the MTn;k network.

The �rst column gives the number of time steps required for each algorithm to complete and the second

column gives the number of message transmissions performed. We will show that each of these numbers

is equal to a lower bound for the problem, except the number of time steps required for the single node

broadcasting which is only asymptotically optimal. When each source processor wishes to transmit only

one message to each of its destination processors, the number of time steps required is also asymptotically

optimal. The multinode broadcasting and scattering problems are of special interest. A special technique

is developed on the multidimensional torus (lemma 5) so that messages originating at individual nodes are

interleaved in such a manner that no two messages contend for the same edge at any given time during the

execution of the algorithm. This technique demonstrates that the utilization of all communication edges of

a network simultaneously is possible, and that e�cient algorithmic techniques that take advantage of this

capability can be developed. In the single node scattering problem, where the edges incident to the source

node constitute a bottleneck for the transmission of the messages, the spanning graphs o�er the capability

to transmit an equal number of messages over each edge incident to the source node. This along with the
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fact that each message follows a shortest path to its destination help achieve the minimum number of time

steps required for the algorithms to complete. The same algorithms can be used to derive solutions for the

single node and multinode reduction over an associative operator, and for the single node and multinode

gathering problems by inversing the transmission of the messages.

A survey on adaptive communication algorithms on the multidimensional torus network can be found in

[14]. Another collection of communication algorithms on the MTn;k network under a variety of communica-

tion models can be found in [11]. The method of spanning graph construction has been previously used to

design communication algorithms on other interconnection networks, such as the binary hypercube [16, 4],

the generalized hypercube [9], and the star [6, 7] networks.

The remainder of this paper is organized as follows. Notations and de�nitions that are used throughout

the paper are introduced in section 2. Sections 3 and 4 present the construction of a spanning tree and a

spanning graph, respectively, on the multidimensional torus network. Section 5 is devoted to the derivation of

lower bounds and the design of optimal algorithms based on the spanning graphs, for all of the communication

problems under consideration. Finally, we conclude in section 6 along with a summary of the results obtained

in this paper and some suggestions for further research.

2 Notations and De�nitions

An n-dimensional k-ary multidimensional torus MTn;k, is an undirected graph of kn nodes, each one labeled

by an n digit number in radix k arithmetic. Each node v is connected to 2n other nodes with which

it di�ers in only one digit by j mod k, j 2 f�1; 1g, i.e. v = vn�1:::vi+1vivi�1:::v0 is connected to v0 =

vn�1:::vi+1v0ivi�1:::v0 for all 0 � i � n�1, and v0i = (vi+ j) mod k, j 2 f�1; 1g, Fig. 1. The network is edge
and node symmetric with degree 2n (number of edges at each node) and diameter nbk

2
c (maximum shortest

distance between any pair of nodes). MTn;k belongs to the class of Cayley graphs [2, 17]. For networks in

this class, nodes correspond to the elements of a �nite group and edges correspond to a set of generators

that act on the elements of the group [2]. In this context, the 2n generators that de�ne the edges of MTn;k

are denoted by g
j
i , 0 � i � n � 1, j 2 f�1; 1g. Generator g

j
i connects node v = vn�1:::vi+1vivi�1:::v0 to

node v0 = vn�1:::vi+1((vi + j) mod k)vi�1:::v0, which results by adding j mod k to the ith digit of v. In this

case we say that edge (v; v0) is of dimension g
j
i , or dim(v; v0) = g

j
i . Thus, each node of MTn;k is connected

to 2n other nodes through dimensions g
j
i , 0 � i � n� 1, j 2 f�1; 1g. In what follows, node 00:::0 of MTn;k

that contains only zero digits is referred to as node 0n. It can be easily observed that the network is a

generalization of the popular binary hypercube. The binary hypercube contains pairs of connected nodes

in each dimension, while the multidimensional torus contains a ring of k nodes in each dimension. The

multidimensional torus network is also referred to as the generalized hyperrectangular network [14].

We now de�ne an operation on nodes of the multidimensional torus network, namely the translation

operation, that will be of primary importance for the construction of the spanning graphs and the description

of the communication algorithms. Having a spanning graph rooted at node 0n of MTn;k, we will derive

an isomorphic spanning graph, with the same properties, rooted at any other node s of MTn;k, using a

translation of the graph rooted at node 0n with respect to s. As a consequence, it is su�cient to construct

a spanning graph rooted at node 0n of MTn;k. The translation operation on MTn;k is analogous to the
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exclusive-OR operation on nodes of the binary hypercube [16, 3, 4].

De�nition 1: The translation of a node v with respect to node s, denoted by Ts(v), is de�ned to be node

t = Ts(v), so that ti = (vi + si) mod k, 0 � i � n � 1. The inverse translation of a node v with respect to

node s, denoted by T�1
s (v), is de�ned to be node t = T�1

s (v), so that ti = (vi� si) mod k, 0 � i � n�1. By

translation of a network with respect to s we mean that each node of the network is translated with respect

to s. For example, for nodes v = 231 and s = 132 of MT3;4, Ts(v) = 323 and T�1
s (v) = 103.

Lemma 1: The translation operation preserves the dimension of each edge. If edge (v; u) is of dimension

g
j
i , then edge (Ts(v); Ts(u)) is also of dimension g

j
i .

Proof: Assume that edge (v; u) has dimension g
j
i , 0 � i � n � 1, j 2 f�1; 1g. This means that v and u

di�er only in their ith digit by j mod k. From the de�nition of translation with respect to node s, it is easily

derived that Ts(v) and Ts(u) also di�er in their i
th digit by j mod k and as a consequence edge (Ts(v); Ts(u))

is of dimension g
j
i . 2

The translation operation is an automorphism on the multidimensional torus that preserves the topology

of the network and the dimension of each edge.

We now de�ne another operation on MTn;k, namely the rotation operation, that will also be of primary

importance for the construction of the spanning trees, and for the development of the multinode broadcasting

and scattering algorithms. As emphasized in the introduction, these algorithms are designed so that messages

originating at individual nodes are interleaved in such a manner that no two messages contend for the same

edge at any given time. The properties of the rotation operation as explained below, will help achieve this

attribute. The rotation operation on nodes of the multidimensional torus has properties similar to those of

the right cyclic shift operation on nodes of the binary hypercube [16, 3, 4].

De�nition 2: Consider the function r(i) = (k� i) mod k from the set f0; 1; :::; k� 1g to itself. The rotation
of a node v = vn�1:::vi+1vivi�1:::v0, denoted by R(v), is de�ned to be node r(v0)vn�1vn�2:::vi+1vivi�1:::v1.

This can be viewed as a right cyclic shift of the digits of v with the wraparound digit being mapped through

function r. By rotation of a network we mean that the rotation operation is applied to each node of the

network. By Ri = R�Ri�1 we denote i application of rotation. For example, for nodes v = 321 and u = 012

of MT3;4, R(v) = 332 and R(u) = 201.

Lemma 2: The rotation operation has the following properties:

1. If (v; u) is an edge of dimension g
j
i , 0 � i � n� 1, j 2 f�1; 1g, then edge (R(v); R(u)) is of dimension

g
j0

i0 so that:

i0 = (i� 1) mod n;

j0 =
� �j; if i = 0,

j; otherwise.

2. The rotation operation preserves the distance of each node from node 0n.

Proof: We prove each property separately.

1. Assume that 1 � i � n� 1. If we express (v; u) and (R(v); R(u)) as follows:

(vn�1:::vi+1vivi�1:::v0; vn�1:::vi+1((vi + j) mod k)vi�1:::v0);
(r(v0)vn�1:::vi+1vivi�1:::v1; r(v0)vn�1:::vi+1((vi + j) mod k)vi�1:::v1);
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it is clear that if v and u di�er in their ith, 1 � i � n � 1, digit by j mod k, j 2 f�1; 1g, then R(v)

and R(u) di�er in their (i � 1)st digit also by j mod k.

Assume that i = 0. If we express (v; u) and (R(v); R(u)) as follows:

(vn�1:::vi:::v1v0; vn�1:::vi:::v1(v0 + j) mod k);

(r(v0)vn�1:::vi:::v1; r[(v0 + j) mod k]vn�1:::vi:::v1);

it is clear that if v and u di�er in their 0th digit by j mod k, j 2 f�1; 1g, then R(v) and R(u) di�er in

their (n� 1)st digit by r[(v0 + j) mod k]� r(v0) = [k � (v0 + j) � (k � v0)] mod k = �j.

2. The rotation operation is an automorphism on MTn;k that maps node 0n to itself. As an extension to

this, nodes obtained as rotations of each other are all at the same distance from node 0n. 2

Lemma 3: If (v; u) is a directed edge of dimension g
j
i , then the 2n directed edges derived from (v; u) by

consecutive applications of the rotation operation are all of di�erent dimensions [10].

Proof: This is derived in a straightforward manner from the �rst part of lemma 2, which describes the

impact of the rotation operation on the dimension of an edge. For example, for edge (01; 31) of MT2;4

the 2n = 4 edges produced by consecutive applications of the rotation operation are (01; 31)
R! (30; 33)

R!
(03; 13)

R! (10; 11) and their corresponding dimensions are g�1
1

R! g�1
0

R! g11
R! g10. 2

To summarize, the translation and the rotation operations are automorphisms on MTn;k that preserve

the distance between its nodes. The translation operation preserves the dimension of each edge (lemma 1),

while the rotation operation alters it in a regular fashion (lemmas 2 and 3). Finally, the topology of MTn;k

or one of its subnetworks remains unchanged under translation or rotation.

The nodes of MTn;k are grouped into equivalence classes under the operation of rotation as follows:

De�nition 3: An ordered group of nodes, each one derived from its preceding one cyclically, by the appli-

cation of a rotation is called a necklace.

Lemma 4: Necklaces have the following properties:

1. A necklace contains at most 2n nodes.

2. The size of a necklace always divides 2n.

3. All nodes of a necklace are at the same distance form node 0n.

Proof: We prove each property separately.

1. From the de�nition of rotation it can be veri�ed that R2n(v) = v for every node v ofMTn;k. However,

we say at most 2n rotations because the same node can emerge after less than 2n rotations. For

example, for node v = 131 of MT3;4, R
2(131) = 131 and the same node emerges after only 2 rotations

and not 2n = 6.

2. The proof for this property can be found in group theory. A rotation operation is an automorphism

on MTn;k of order 2n. A necklace is an orbit under the action of rotation. The size of an orbit always

divides the order of the automorphism [13, 19].
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3. This property is derived in a straightforward manner from the property of distance preservation of the

rotation operation (lemma 2). 2

In what follows a full necklace is a necklace that contains 2n distinct nodes. A nonfull necklace is a necklace

that contains less than 2n nodes. A node ofMTn;k belongs to a nonfull necklace, if its label has a nontrivial

symmetry with respect to the rotation operation. It can be veri�ed that nodes of this type consist of a sub-

string of n
m
digits v n

m
�1:::v1v0 (m is a divisor of n), which is repeated m times with its nonzero digits modi�ed

as follows: rm�1(v n
m
�1):::rm�1(v1)rm�1(v0):::ri(v n

m
�1):::ri(v1)ri(v0):::r(v n

m
�1):::r(v1)r(v0)v n

m
�1:::v1v0 [10].

For example, node 311331 ofMT6;4, which belongs to a nonfull necklace that contains 4 nodes constists of the

substring 31 of two digits which is repeated modi�ed three times as follows: r2(3)r2(1)r(3)r(1)31 = 311331.

From the properties of the rotation operation we conclude that the nodes ofMTn;k at each distance from

node 0n are collections of necklaces. In table 2, the necklaces ofMT3;3, and those ofMT3;4 at each distance

d, 0 � d � nbk
2
c, from node 0n are given enclosed in parentheses.

The necklaces of MT3;3

d = 0 : (
0

000 )

d = 1 : (
0

200;
1

020;
2

002;
3

100;
4

010;
5

001 )

d = 2 : (
0

220;
1

022;
2

102;
3

110;
4

011;
5

201 )

(
0

210;
1

021;
2

202;
3

120;
4

012;
5

101 )

d = 3 : (
0

222;
1

122;
2

112;
3

111;
4

211;
5

221 )

(
0

212;
1

121 )

The necklaces of MT3;4

d = 0 : (
0

000 )

d = 1 : (
0

300;
1

030;
2

003;
3

100;
4

010;
5

001 )

d = 2 : (
0

330;
1

033;
2

103;
3

110;
4

011;
5

301 )

(
0

310;
1

031;
2

303;
3

130;
4

013;
5

101 )

(
0

200;
1

020;
2

002 )

d = 3 : (
0

333;
1

133;
2

113;
3

111;
4

311;
5

331 )

(
0

320;
1

032;
2

203;
3

120;
4

012;
5

201 )

(
0

230;
1

023;
2

102;
3

210;
4

021;
5

302 )

(
0

313;
1

131 )

d = 4 : (
0

233;
1

133;
2

113;
3

211;
4

321;
5

332 )

(
0

231;
1

323;
2

132;
3

213;
4

121;
5

312 )

(
0

220;
1

022;
2

202 )

d = 5 : (
0

223;
1

122;
2

212;
3

221;
4

322;
5

232 )

d = 6 : (
0

222 )

Table 2: The necklaces of MT3;3 and MT3;4

The following de�nition aims to distinguish one particular node of each necklace.

De�nition 4: The binary correspondent of a node v ofMTn;k is the binary number obtained if we substitute

each nonzero digit in v with 1. One particular node of each necklace is now distinguished as follows:

1. Select the nodes of the necklace that have the largest binary correspondent.

2. Choose the largest among the nodes selected in step (1), if the k digits that are used to label the nodes
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ofMTn;k are ordered as follows: 0 < 1 < k� 1 < :::i < k� i < ::: < dk
2
e. This ordering of the digits is

adopted in order to reect how each digit contributes to the distance of a node from node 0n.

The node selected in step (2) is de�ned to be the generator node of the necklace.

For example, for necklace ( 230; 023; 102; 210; 021; 302 ) of MT3;4 nodes 230, and 210 have the largest

binary correspondent among the nodes of the necklace. The generator node of the necklace is node 230

because this is the largest from nodes 230; 210, if the four digits f0; 1; 2; 3g used to label the nodes of MT3;4

are ordered as 0 < 1 < 3 < 2.

De�nition 5: The displacement of a node v, denoted by D(v), is de�ned to be the minimum number of

rotation operations required to derive this node from the generator node of the necklace to which it belongs.

De�nition 6: The period of a node v, denoted by P (v), is de�ned to be the number of nodes contained in

the necklace to which it belongs.

In table 2, the generator node of each necklace is underlined and the displacement of each node is marked

on top of its label.

De�nition 7: An unfolded necklace is an ordered group of exactly 2n nodes, not necessarily distinct, each

one obtained from its preceding one cyclically, by the application of a rotation.

Each necklace has a corresponding unfolded necklace. For full necklaces, the corresponding unfolded

necklace is the necklace itself. For nonfull necklaces that contain P nodes, the corresponding unfolded

necklace is the necklace repeated 2n
P

times. This is possible since the size of a necklace is always a divisor

of 2n (lemma 4). In table 3, the unfolded necklaces of MT3;3, and those of MT3;4 are given. A comparison

with table 2 will help clarify the di�erences between a necklace and its corresponding unfolded necklace.

The unfolded necklaces of MT3;3

d = 0 : ( 000; 000; 000; 000; 000; 000 )

d = 1 : ( 200; 020; 002; 100; 010; 001 )

d = 2 : ( 220; 022; 102; 110; 011; 201 )

( 210; 021; 202; 120; 012; 101 )

d = 3 : ( 222; 122; 112; 111; 211; 221 )

( 212; 121; 212; 121; 212; 121 )

The unfolded necklaces of MT3;4

d = 0 : ( 000; 000; 000; 000; 000; 000 )

d = 1 : ( 300; 030; 003; 100; 010; 001 )

d = 2 : ( 330; 033; 103; 110; 011; 301 )

( 310; 031; 303; 130; 013; 101 )

( 200; 020; 002; 200; 020; 002 )

d = 3 : ( 333; 133; 113; 111; 311; 331 )

( 320; 032; 203; 120; 012; 201 )

( 230; 023; 102; 210; 021; 302 )

( 313; 131; 313; 131; 313; 131 )

d = 4 : ( 233; 133; 113; 211; 321; 332 )

( 231; 323; 132; 213; 121; 312 )

( 220; 022; 202; 220; 022; 202 )

d = 5 : ( 223; 122; 212; 221; 322; 232 )

d = 6 : ( 222; 222; 222; 222; 222; 222 )

Table 3: The unfolded necklaces of MT3;3 and MT3;4.

The property of the rotation operation that 2n directed edges each of which is obtained as a rotation

of its preceding one are all of di�erent dimensions (lemma 3), along with the property of edge dimension

preservation of the translation operation (lemma 1) will be used extensively in the development of the
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multinode broadcasting and scattering algorithms. These properties will help guarantee that messages

originating at individual nodes will be interleaved in such a manner that no two messages will contend for

the same edge at any given time. Below we explain how this attribute can be achieved.

In a multinode broadcasting or scattering algorithm, all nodes of the network are source of messages.

Under the all-port communication model 2nkn directed edges are available on MTn;k for message transmis-

sion at each time step. The algorithm proceeds symmetricly from all nodes and as a consequence messages

originating at each one of the kn nodes of MTn;k are transmitted through at most 2n directed edges at each

time step. Let us denote by Ei(0
n) the set of 2n directed edges on which messages originating at node 0n

are transmitted at time step i of the algorithm. Since a multinode algorithm proceeds symmetricly from

each node of the network, the 2n directed edges on which messages originating at node s are transmitted at

time step i, denoted by Ei(s), is obtained from Ei(0
n) using the operation of translation with respect to s (if

(v; u) 2 Ei(0
n) then (Ts(v); Ts(u)) 2 Ei(s)). The following lemma is enough to guarantee that no conicts

arise during the execution of an algorithm.

Lemma 5: At each time step i, if the 2n directed edges in Ei(0
n) are all of di�erent dimensions, then the

sets of 2n directed edges Ei(s), where s ranges over all nodes of MTn;k, are disjoint.

Proof: Assume two di�erent edges (v; u) 6= (v0; u0) ofEi(0
n) for some i, and take edges (Ts(v); Ts(u)) 2 Ei(s)

and (Ts0 (v
0); Ts0(u0)) 2 Ei(s

0), which are obtained by (v; u) and (v0; u0) respectively, under translation with

respect to two di�erent nodes ofMTn;k, s and s
0. Also assume that (Ts(v); Ts(u)) = (Ts0(v

0); Ts0(u0)). From

the property of preservation of the dimension of each edge under translation we conclude that dim(v; u) =

dim(Ts(v); Ts(u)) = dim(Ts0 (v
0); Ts0(u0)) = dim(v0; u0), which contradicts our assumption that (v; u) and

(v0; u0) are two di�erent edges of Ei(0
n) since this set contains 2n directed edges that are all of di�erent

dimensions [4]. 2

The multinode broadcasting and scattering algorithms will be developed so that at each time step i,

the set Ei(0
n) contains 2n directed edges that are rotations of each other and as a consequence of di�erent

dimensions. According to lemma 5, this will guarantee that at each time step i, the sets of 2n directed

edges Ei(s), where s ranges over all nodes of MTn;k, are disjoint and as a consequence no two messages will

compete for the same edge at any time step i during the execution of the algorithm.

We are now ready to proceed to the construction of the spanning graphs which will be the basic tools for

the development of the communication algorithms. We start by constructing a shortest path, balanced to

within a constant factor spanning tree using the framework de�ned in this section. Subsequently, we extend

the spanning tree to a shortest path spanning graph.

3 Spanning tree construction

We de�ne a shortest path, balanced to within a constant factor spanning tree, rooted at node 0n of MTn;k,

and denoted by BST0n . The spanning tree is balance to within a constant factor, meaning that the ratio

in the number of nodes between the largest and the smallest of the 2n subtrees of the root is less than a

constant. The framework developed in the previous section will be the basic tool for the construction of the

spanning tree with the stated properties. The ith, 0 � i < 2n, subtree of BST0n is de�ned to be the subtree

that contains all nodes v of MTn;k with displacement D(v) = i. Furthermore, an isomorphic spanning tree
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Figure 2: The BST0n spanning tree on the MT3;3 network.

rooted at any other node s of MTn;k, and denoted by BSTs , can be easily derived from BST0n using the

operation of translation with respect to s. We are now ready to proceed to a formal de�nition of BST0n .

De�nition 8: A shortest path spanning tree, balanced to within a constant factor, rooted at node 0n of

MTn;k, and denoted by BST0n , is de�ned as follows: The 0th subtree of BST0n contains all nodes of

MTn;k that have displacement zero and is de�ned through the following parent function. For node v with

displacement zero, let p be the position of its lowest order nonzero digit.

parent(v) =

� ;; if v = 0n,

vn�1:::vp+1v�p vp�1:::v0; otherwise,

where v�p =

�
vp � 1; if 0 � k � bk

2
c;

(vp + 1) mod k; otherwise:

Any other subtree i, 0 < i < 2n, of BST0n is de�ned as a rotation of subtree i� 1, that includes only those

nodes of MTn;k that have displacement i.

The BST0n spanning tree on the MT3;3 network can be seen in Fig. 2.

Lemma 6: BST0n has the following properties:

1. BST0n is a shortest path spanning tree rooted at node 0n of MTn;k.

2. BST0n is balanced to within a constant factor.

Proof: We prove each property separately.

1. We start by proving that the parent(v) function of de�nition 8 constructs a shortest path tree on those

nodes of MTn;k that have displacement zero. For node v of MTn;k with displacement zero, its parent

node is obtained by changing the value of digit vp which is the lowest order digit of v, to v�p . From

de�nition 4 we can verify that by changing this digit the resulting node also has displacement zero.

Furthermore, the parent(v) function generates a shortest path from node v to node 0n. The distance

of node v = vn�1:::vi+1vivi�1:::v0 from node 0n, denoted by d(v), is:

d(v) =

n�1X
i=0

jvij; where jvij =
�

vi; if vi � bk
2
c;

k � vi; otherwise:

11



The parent of node v is v0 = vn�1:::vp+1v�p vp�1:::v0 and its distance from node 0n is:

d(v0) =
n�1X

i=0;i6=p
jvij+ jv�p j =

n�1X
i=0;i6=p

jvij+ jvpj � 1 =

n�1X
i=0

jvij � 1 = d(v) � 1:

Consequently, the parent of node v is closer to node 0n than the node itself, hence a shortest path tree.

The ith subtree of BST0n is obtained as a rotation of its preceding one or from the 0th subtree by

the application of i rotations, after excluding nodes that do not have displacement i. The nodes

that are excluded are always nodes that belong to nonfull necklaces. In order to show that the ith

subtree of BST0n is connected we have to prove that nodes that belong to nonfull necklaces and have

displacement zero are always leaf nodes of the 0th subtree of BST0n . A node v with displacement zero

that belongs to a nonfull necklace consists of a substring of n
m

digits which is repeated m times with

its nonzero digits modi�ed. If node v has a child node then the value of its last nonzero digit or one of

its �nal zero digits, which belongs to the last substring of m digits, is increased in the label of the child

node (according to the ordering of digits in de�nition 4). However, the resulting node does not have

displacement zero (de�nition 5), it does not belong to the �rst subtree of BST0n , and as a consequence

it cannot be a child of node v.

2. We must prove that each subtree contains O(k
n

2n
) nodes. From the de�nition of BST0n , the ith,

0 � i < 2n, subtree contains nodes v for which D(v) = i. From the 2n nodes that belong to a full

necklace, each one belongs to a di�erent subtree. Nodes that create the imbalance among the subtrees

are the ones that belong to nonfull necklaces. We now derive an upper bound for the number of nodes

that belong to nonfull necklaces. As explained in section 2, these nodes consist of a substring of n=m

digits, which is repeated m times with its nonzero digits modi�ed. So for m prime divisor of n (all the

other divisors are included in this case) an estimate for the number of nodes that belong to nonfull

necklaces is:
nX

m�2; mjn
kn=m = O(

p
kn):

As a consequence each subtree contains at least kn

2n
� O(

p
kn

2n
) = O(k

n

2n
) nodes. This upper bound is

not tight and the imbalance among the subtrees is in reality much smaller. From table 4 we notice

that the ratio in the number of nodes between the largest subtree of MTn;k and
kn

2n
rapidly converges

to one as the number of nodes increases. 2

From the de�nition of BST0n and the fact that each subtree is obtained as a rotation of its preceding one

with some nodes excluded, we conclude that corresponding nodes of the subtrees form necklaces (de�nition

3) and corresponding directed edges of the subtrees are of di�erent dimensions (lemma 3). The properties

of BST0n are apparent in Fig. 2.

Using the BST0n spanning tree we can easily derive a BSTs, rooted at any other node s ofMTn;k. This

spanning tree is isomorphic to BST0n and has the same properties as it. To derive BSTs , we simply apply

the operation of translation with respect to s, on BST0n . If edge (v; u) belongs to the i
th subtree of BST0n ,

then edge (Ts(v); Ts(u)) belongs to the ith subtree of BSTs. Since the dimension of each edge is preserved

under translation (lemma 1), these edges are of the same dimension.
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Number of

Number of nodes of Size of Size of

nodes nonfull Number of minimum maximum

n k kn necklaces necklaces subtree subtree kn=2n Ratio

4 3 81 1 11 10 10 10.00 1.00

4 4 256 16 36 30 35 31.88 1.10

4 5 625 1 79 78 78 78.00 1.00

4 6 1296 16 166 160 165 161.88 1.10

4 7 2401 1 301 300 300 300.00 1.00

5 3 243 3 26 24 25 24.20 1.03

5 4 1024 34 108 99 107 102.30 1.04

5 5 3125 5 315 312 314 312.40 1.00

5 6 7776 36 784 774 783 777.50 1.01

5 7 16807 7 1684 1680 1683 1680.60 1.00

6 3 729 9 63 60 62 60.67 1.02

6 4 4096 76 352 335 351 341.25 1.03

6 5 15625 25 1307 1300 1306 1302.00 1.00

6 6 46656 96 3902 3880 3901 3887.92 1.00

6 7 117649 49 9813 9800 9812 9804.00 1.00

7 3 2187 3 158 156 157 156.14 1.00

7 4 16384 130 1182 1161 1181 1170.21 1.01

7 5 78125 5 5583 5580 5582 5580.29 1.00

7 6 279936 132 20008 19986 20007 19995.36 1.00

7 7 823543 7 58828 58824 58827 58824.43 1.00

8 3 6561 1 411 410 410 410.00 1.00

8 4 65536 256 4116 4080 4115 4095.94 1.00

8 5 390625 1 24415 24414 24414 24414.00 1.00

8 6 1679616 256 104996 104960 104995 104975.94 1.00

8 7 5764801 1 360301 360300 360300 360300.00 1.00

9 3 19683 27 1098 1092 1097 1093.44 1.00

9 4 262144 568 14602 14532 14601 14563.50 1.00

9 5 1953125 125 108523 108500 108522 108506.89 1.00

9 6 10077696 720 559928 559832 559927 559871.94 1.00

Table 4: Comparison between the smallest and the largest subtrees of BST0n for sample values of n and k.

13



Figure 3: The BSG0n spanning graph on the MT3;3 network.

4 Spanning graph construction

The de�nition of BST0n is extended to a spanning graph, rooted at node 0n of MTn;k, and denoted by

BSG0n . This is a special type of graph, which is composed of 2n subtrees, rooted at the nodes adjacent to

node 0n. The ith, 0 � i < 2n, subtree of BSG0n contains nodes v of MTn;k, for which D(v) = i mod P (v).

All subtrees of BSG0n are isomorphic, and each one is derived from its preceding one cyclically, by the

application of a rotation operation. Furthermore, an isomorphic spanning graph rooted at any other node s

ofMTn;k, and denoted by BSGs, can be easily derived from BSG0n using the operation of translation with

respect to s. We are now ready to proceed to a formal de�nition of BSG0n .

De�nition 9: A shortest path spanning graph, rooted at node 0n of MTn;k, and denoted by BSG0n , is

de�ned as follows: The 0th spanning tree of BSG0 contains all nodes of MTn;k that have displacement zero

and is de�ned through the following parent function. For node v with displacement zero, let p be the position

of its lowest order nonzero digit.

parent(v) =

� ;; if v = 0n,

vn�1:::vp+1v�p vp�1:::v0; otherwise,

where v�p =

�
vp � 1; if 0 � k � bk

2
c;

(vp + 1) mod k; otherwise:

Any other subtree i, 0 < i < 2n, of BSG0n is derived as a rotation of subtree i � 1.

The BSG0n spanning graph on the MT3;3 network can be seen in Fig. 2.

Lemma 7: BSG0n has the following properties:

1. BSG0n is a shortest path graph rooted at node 0n of MTn;k.

2. Nodes with period P that belong to nonfull necklaces have 2n
P

paths to node 0n through BSG0n .

Proof: We prove each property separately.

1. The 0th subtrees of BSG0n and BST0n are the same and as a consequence the proof of this property

for BSG0n is the same as the proof of the same property for BST0n (lemma 5).
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2. A node v with displacement zero and period P that belongs to a nonfull necklace belongs to the 0th

subtree of BSG0n . Since each subtree is obtained as a rotation of its preceding one, node v also

belongs to subtrees iP , 0 � i < 2n
P
. Consequently, v has 2n

P
paths to node 0n through BSG0n , one

path through each one of the 2n
P

subtrees it belongs to. 2

From the de�nition of BSG0n and the fact that each subtree of BSG0n is obtained as a rotation of

its preceding one we conclude that corresponding nodes of the subtrees form unfolded necklaces (de�nition

7) and corresponding directed edges are of di�erent dimensions (lemma 3). The properties of BSG0n are

apparent in Fig. 3.

Using the BSG0n graph we can easily derive a BSGs, rooted at any other node s of MTn;k. This graph

is isomorphic to BSG0n and has the same properties as it. To derive BSGs, we simply apply the operation

of translation with respect to s, on BSG0n . If edge (v; u) belongs to the ith subtree of BSG0n , then edge

(Ts(v); Ts(u)) belongs to the ith subtree of BSGs. Since the dimension of each edge is preserved under

translation, these edges are of the same dimension.

The importance of the BSGs graph lies in several di�erent properties it possesses. The fact that each

of the 2n subtrees of BSGs contains the same number of nodes is used in the single node and multinode

scattering algorithms in order for each source node to transmit an equal number of its messages over each one

of its incident edges. A node that belongs to a number of di�erent subtrees of BSGs receives an equal part

of its messages from s through the edges of each subtree. Furthermore, as mentioned in section 2, messages

originating at individual nodes in a multinode broadcasting or scattering algorithm will be interleaved in

such a manner that no two messages contend for the same edge at any time during the execution of the

algorithm. A necessary condition in order to achieve this attribute was presented in lemma 5. Recall that

by Ei(s) we denote the set of 2n directed edges on which messages originating at node s are transmitted

at time step i of a multinode broadcasting or scattering algorithm. Since a multinode algorithm proceeds

symmetricly from all nodes of the network, each Ei(s) is obtained from Ei(0
n) by a translation with respect

to s. According to lemma 5, if the 2n directed edges in Ei(0
n) are all of di�erent dimensions, then the sets

of 2n directed edges Ei(s), for �xed i (time step), and s ranging over all nodes of MTn;k, are disjoint. In

other words, at each time step i, messages originating at individual nodes are transmitted through di�erent

edges of MTn;k. By lemma 7, the 2n subtrees of BSG0n are rotations of each other, and as a consequence

2n corresponding directed edges of the subtrees of BSG0n are all of di�erent dimensions. This property is

true for any BSGs graph, since the dimension of each edge is preserved under translation. We conclude that

in order to avoid conicts of messages originating at individual nodes during a multinode broadcasting or

scattering algorithm, it is enough to use 2n corresponding directed edges of the subtrees of BSG0n . Finally,

the fact that BSG0n is a shortest path graph o�ers the potential to achieve the lower bound for the number

of message transmissions required for each communication problem.
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5 Communication Algorithms

5.1 Lower bounds

In a single node broadcasting problem on MTn;k, each of the kn� 1 destination nodes receives M messages

from the source node and a lower bound for the number of message transmissions is M (kn� 1). The source

node has 2n disjoint paths, of length at most (n� 1)bk
2
c+ k� 1, to each one of the other nodes. In order to

achieve the minimum number of time steps for this problem, the M messages are separated into 2n groups,

each one containing dM
2n
e messages, which are pipelined in the network. Each of the 2n groups of messages

reaches each destination node through a di�erent node disjoint path. As a consequence, a lower bound for

the number of time steps required for this problem is dM
2n
e+ (n� 1)bk

2
c + k � 2.

In a multinode broadcasting problem on MTn;k, each node receives a total of M (kn � 1) messages, M

messages from each one of the kn � 1 other nodes. As a consequence, a lower bound for the number of

message transmissions is M (kn � 1)kn. Since each node of MTn;k has 2n incident edges, a lower bound for

the number of time steps required for this problem is dM(kn�1)
2n

e.
In a single node scattering problem on MTn;k, the source node transmits a total of M (kn� 1) messages,

M messages to each one of the kn � 1 other nodes. Since each node of MTn;k has 2n incident edges, a

lower bound for the number of time steps required for this problem is dM(kn�1)
2n

e. A message destined to a

speci�c node must travel a number of edges equal to the shortest distance between that node and the source

node. Therefore, a lower bound for the number of message transmissions required is the sum of the shortest

distances of all nodes to the source node, multiplied by M , since each node receives M messages from the

source node. Let us denote by Nd the number of nodes at distance d from the source node. A lower bound

for the number of message transmissions required for a single node scattering problem is the following:

M

nb k
2
cX

d=1

dNd =Mkn

 Pnb k
2
c

d=1 dNd

kn

!
: (1)

The expression enclosed in parentheses is the average diameter of the MTn;k network.

Lemma 8: The average diameter of MTn;k is
nk
4
for k even, and

n(k2�1)
4k

for k odd.

Proof: The distance of a node v of MTn;k from node 0n, denoted by d(v) is:

d(v) =

n�1X
i=0

jvij; where jvij =
�

vi; if vi � bk
2
c,

k � vi; otherwise.

To estimate the average diameter we sum the above expression for all nodes v of MTn;k and divide by kn.

For k odd, the average diameter of MTn;k is:

1

kn

X
v

n�1X
i=0

jvij = 1

kn

n�1X
i=0

X
v

jvij = 1

kn
n2kn�1

k�1

2X
i=1

i =
n(k2 � 1)

4k
:

For k even, the average diameter of MTn;k is:

1

kn

X
v

n�1X
i=0

jvij = 1

kn

n�1X
i=0

X
v

jvij = 1

kn
nkn�1

0
@2

k

2X
i=1

i � k

2

1
A =

nk

4
:
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2

If we substitute the average diameter ofMTn;k in expression (1), we conclude that a lower bound for the

number of message transmissions required for the single node scattering problem on MTn;k is dMnkn+1

4
e for

k even, and dMn(k2�1)kn�1
4

e for k odd.

A multinode scattering problem can be viewed as kn single node scattering problems, one from each node

of MTn;k. A lower bound for the number of message transmissions is derived from the lower bound for the

number of message transmissions required for the single node scattering problem, multiplied by kn. This

lower bound is equal to dMnk2n+1

4
e for k even and dMn(k2�1)k2n�1

4
e for k odd. Each node has 2n incident

edges and at most 2nkn message transmissions can be performed at each time step. Consequently, a lower

bound for the number of time steps required for this problem is dMkn+1

8
e for k even and dM(k2�1)kn�1

8
e for

k odd.

Table 5 summarizes the lower bounds for all of the above problems.

Problem Time steps Message transmissions

Single node broadcasting dM
2n
e+ (n� 1)bk

2
c + k � 2 M (kn � 1)

Multinode broadcasting dM(kn�1)
2n

e Mkn(kn � 1)

Single node scattering dM(kn�1)
2n

e dMnkn+1

4
e; if k is even

dMn(k2�1)kn�1
4

e, if k is odd

Multinode scattering dMkn+1

8
e; if k is even dMnk2n+1

4
e; if k is even

dM(k2�1)kn�1
8

e, if k is odd dMn(k2�1)k2n�1
4

e, if k is odd

Table 5: Lower bounds on the MTn;k network.

5.2 Single node broadcasting

In a single node broadcasting, a source node s transmits the same group of M messages to each other node.

We use BSTs to develop the single node broadcasting algorithm.

The single node broadcasting algorithm from node s proceeds as follows:

1. The M messages the source node s wishes to broadcast are communicated over all of its incident edges

simultaneously and are pipelined down each one of the subtrees of BSTs . We have to mention that

the message header always carries the identity of the source node.

2. As soon as an intermediate node v receives a message header with the identity of the source node

s, it starts to forward each message it receives from its parent to all of its children nodes in BSTs

simultaneously.

The propagation of the messages down BSTs continues until all leaf nodes of BSTs receive the M

messages. An example of a single node broadcasting algorithm on MT3;3 can be seen in Fig. 4.

Each destination node receives the M messages once, and as a consequence the number of message

transmissions performed is M (kn � 1), which is optimal. However, the number of time steps required is

M + nbk
2
c � 1, which is only asymptotically optimal, since the algorithm does not take advantage of the

node disjoint paths that exist between s and the other nodes of the network.
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Figure 4: Single node broadcasting on the MT3;3 network using BST0n .

5.3 Multinode broadcasting

In a multinode broadcasting algorithm, each node of the network transmits M messages to all the other

nodes. Each node s uses BSGs for the transmission of its messages. BSG0n can be replicated at any

other node s of MTn;k using the operation of translation with respect to s, as explained in section 4. As

mentioned in section 2, the messages originating at individual nodes of the network will be interleaved in

such a manner, that no two messages will contend for the same edge at any time during the execution of the

algorithm (lemma 5).

The multinode broadcasting algorithm proceeds as follows:

1. Each source node s transmits the M messages it wishes to broadcast to all of its neighbors simultane-

ously. The identity of the source node s, along with a number to indicate the spanning tree of BSGs

in which the messages are transmitted, are always included in the message header.

2. When an intermediate node v of a BSGs receives a group of M messages originating at node s, it

stores a copy, and performs the following procedures. The messages have to be forwarded to the �rst

child of node v in BSGs. If node T
�1
s (v) has period P (de�nition 6) then the group of M messages is

split into 2n
P

subgroups of MP
2n

messages each. Node v of the ith spanning tree of BSGs transmits the

(i div P )th subgroup of messages to its �rst child node in BSGs.

When an intermediate node v receives an acknowledgement from one of its children nodes in BSGs,

it forwards the messages it received in the past from node s to its next child in BSGs following the

splitting technique described in the previous paragraph. When an acknowledgement is received from

the last child node of v in BSGs, node v transmits an acknowledgement with the identity of s to its

parent node in BSGs.

3. When a leaf node of BSGs receives a group of messages broadcast by node s, it transmits an acknowl-

edgement with the identity of s to its parent node in BSGs.

The algorithm terminates when each source node receives acknowledgements from all its neighbors. In

this algorithm, the transmission of messages in each BSGs corresponds to a simultaneous depth �rst traversal
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Figure 5: Multinode broadcasting on the MT3;3 network using BSG0n .

of its spanning trees. In order to prove that using this algorithm, no two messages contend for the same

edge at any time step during its execution, we have to show that the requirement of lemma 5 is satis�ed.

Let us remind that by Ei(s) we denote the set of 2n directed edges on which messages originating at node s

are transmitted at time step i of a multinode broadcasting algorithm. Since a multinode algorithm proceeds

symmetricly from all nodes ofMTn;k, the 2n directed edges in each Ei(s), are obtained as a translation with

respect to s of the 2n directed edges of Ei(0
n). According to lemma 5, if at each time step i, the 2n directed

edges in Ei(0
n) are all of di�erent dimensions, then the sets of 2n directed edges Ei(s), for s ranging over all

nodes of MTn;k are disjoint, and as a consequence messages originating at individual nodes are transmitted

over disjoint sets of edges at time step i. The multinode broadcasting algorithm described above, proceeds

symmetricly from all nodes of MTn;k, since each BSGs is a translation with respect to s of BSG0n . This

means that, if an edge (v; u) is used for the transmission of a message originating at node 0n during time

step i, then edge (Ts(v); Ts(u)) is used for the transmission of a message originating at node s of MTn;k

at time step i. At each time step, messages originating at node 0n are transmitted over 2n corresponding

directed edges of the 2n spanning trees of BSG0n . From the properties of BSG0n (lemma 7), these edges

are rotations of each other and as a consequence of di�erent dimensions, and the requirement of lemma 5 is

satis�ed. An example of a multinode broadcasting algorithm on the MT2;4 network can be seen in Fig. 5.

This �gure helps illustrate the technique of message splitting performed by the algorithm.

The number of message transmissions performed is M (kn � 1)kn, which is optimal, since each of the kn

nodes of MTn;k receives the M messages originating at any other node once. The number of time steps

required is dM(kn�1)
2n)

e, which is also optimal.

If each source node s wishes to broadcast one message to all the other nodes, then BSTs is used with a

similar method. The algorithm achieves again the minimum number of message transmissions, (kn � 1)kn,

but it is only asymptotically optimal, O(k
n�1
2n

).

19



Figure 6: Single node scattering on the MT3;3 network using BSG0n .

5.4 Single node scattering

In a single node scattering algorithm, a source node s transmits distinct groups of M messages to each

other node. Node s uses BSGs for the transmission of its messages. Each source node keeps a table of

approximately kn

2n
nodes. The table includes the nodes of the �rst spanning tree of BSG0n , sorted in reverse

ordering of their distance from node 0n. The nodes in the table correspond to the transmission order of the

�rst port of BSG0n , and each one is accompanied by a number to indicate its period P . Recall that nodes

with period P that belong to nonfull necklaces have 2n
P

paths to node 0n through BSG0n . The interesting

property of this algorithm is that nodes that belong to nonfull necklaces with period P receive MP
2n

of their

M messages through each one of the 2n
P

paths from node 0n.

The single node scattering algorithm proceeds as follows:

For each node v in the table of kn

2n
entries do the following:

1. If the source node is node 0n, then it transmits messages destined to nodes v, R(v), R2(v),...,R2n�1(v),

simultaneously. If v belong to a full necklace then all of these nodes are distinct and node 0n transmits

the M messages destined to node Ri(v), 0 � i < 2n, through its ith port. However, if node v has

period P and belongs to a nonfull necklace, then these nodes are not distinct but they are P distinct

nodes repeated 2n
P

times, in other words it is the unfolded necklace of a nonfull necklace that contains

P nodes (de�nition 7). In this case each of the P groups of M messages node 0n has to transmit is

split into 2n
p

subgroups, each containing MP
2n

messages. The ith, 0 � i < 2n
P
, subgroup of the jth,

0 � j < P , group of messages is transmitted over port iP + j of node 0n. As a consequence, each of

the P nodes of a nonfull necklace receives MP
2n

of its M messages through each of the 2n
P

paths from

node 0n through BSG0n .

If the source is any other node s ofMTn;k, then s transmits messages destined to nodes Ts(v), Ts(R(v)),

Ts(R
2(v)),...,Ts(R

2n�1(v)), simultaneously, using the same technique of message splitting described

above for node 0n.

We have to mention that each message header includes the identity of the destination node of the
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messages and a number that indicates the spanning tree of BSGs in which it is transmitted.

2. As soon as an intermediate node v receives a new message header, it performs the following procedures.

If node v is the destination of the message it stores a copy and removes it from the network. If v is

not the destination of the message, the identity of the child node to which the message will be forward

has to be determined. Node v of the ith spanning tree of BSGs identi�es the �rst digit to the left of

digit (n� 1� i) mod n in its label that is not equal to the corresponding digit of the destination node.

The message is forwarded to the child node of v with this digit equal to the corresponding digit of

the destination node. Subsequent messages that follow the same message header are forwarded to the

same child node.

3. As soon as a source node have transmitted the messages to nodes Ts(R
i(v)), 0 � i < 2n, through its

incident edges, it starts transmitting messages to nodes Ts(R
i(v)), 0 � i < 2n, for the next entry u in

the table.

An instance of the single node scattering on MT3;3 for messages transmitted from node 0n to nodes 212 and

121 is shown in Fig. 6, in order to demonstrate the message splitting technique described above.

Since BSGs is a shortest path spanning graph, each message follows a shortest path to its destina-

tion node and as a consequence the minimum number of message transmissions, dMnkn+1

4
e for k even and

dMn(k2�1)kn�1
4

e for k odd, is achieved. Furthermore, an equal number of the M (kn� 1) messages the source

node has to transmit is transmitted over each one of its incident edges. This, combined with the fact that

messages destined to nodes that are the furthest from the source are transmitted �rst, helps achieve the

minimum number of time steps, dM(kn�1)
2n

e.
If the source node s wishes to transmit one message to each one of the other nodes then BSTs is used with

a similar method. The algorithm achieves again the minimum number of message transmissions, dnkn+1
4

e
for k even and dn(k2�1)kn�1

4
e for k odd. However, the time is only asymptotically optimal, O(k

n�1
2n

), since

BSTs is balanced only to within a constant factor.

5.5 Multinode scattering

In a multinode scattering algorithm each node transmits distinct groups of M messages to each other node.

Each node s uses BSGs for the transmission of its messages. BSG0n can be replicated at any other node s

ofMTn;k using the operation of translation with respect to s, as explained in section 4. As in the multinode

broadcasting algorithm, messages originating at individual nodes will be interleaved in such a manner that

no two messages will contend for the same edge at any time during the execution of the algorithm (lemma

5). The method used for the multinode scattering algorithm is similar to the one used for the single node

scattering algorithm, but simultaneously executed from all nodes of the network. Each node keeps a table

of approximately kn

2n
nodes. The nodes in the table correspond to the transmission order of the �rst port of

BSG0n , and each one is accompanied by a number to indicate its period P .

The multinode scattering algorithm from each node of the network proceeds as follows:

For each node v in the table of kn

2n
entries do the following:
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1. Source node s determines the destination of the messages to be transmitted over its ith, 0 � i < 2n,

port as Ts(R
i(v)). For node v with period P , each of the P groups of M messages that have to be

transmitted by the source node is split into 2n
P

subgroups of MP
2n

messages each. The ith, 0 � i < 2n
P
,

subgroup of the jth, 0 � j < P , group of messages is transmitted over the (iP +j)th port of the source.

We have to mention that the identity of the destination node and a number that indicates the spanning

tree of BSG0n in which the messages are transmitted are included in the message header.

2. As soon as an intermediate node v receives a new message header, it has to wait until it receives the

messages that follows it. If node v is the destination node of the messages, it stores a copy and removes

them from the network. If node v is not the destination node of the messages, it has to identify the child

node to which the messages have to be forwarded. Node v of the ith spanning tree of BSGs, locates

the �rst digit to the left of digit (n � 1 � i) mod n in its label that is not equal to the corresponding

digit of the destination node. The messages are forwarded to the child node of v with this digit equal

to the corresponding digit of the destination node.

3. When the messages transmitted from a source node s have reached their destination nodes Ts(R
i(v)),

0 � i < 2n, then s can transmit messages to nodes Ts(R
i(u)), 0 � i < 2n, for the next entry u in

the table. For example, if the distance from the source to the current destination nodes is d then the

messages to the next group of nodes is transmitted dMP
2n

time steps after the starting transmission

time of the current group of messages (P is the period of v).

From the properties of BSG0n , we know that the 2n paths that lead to nodes Ri(v), 0 � i < 2n, through

its spanning trees i, 0 � i < 2n, respectively, are rotations of each other (lemma 7), and as a consequence,

the 2n directed edges at each level of these paths are of di�erent dimensions. Each node in a path receives

all the messages from its parent node before it starts transmitting them to the next node down the path.

As a consequence, at each time step, 2n directed edges that are all at the same level of the paths are used.

Since these edges are all of di�erent dimensions the requirement of lemma 5 is satis�ed, and no two messages

contend for the same edge during the execution of the algorithm.

Each message follows a shortest path to its destination node and the minimum number of message

transmissions, dMnk2n+1

4
e for k even and dMn(k2�1)k2n�1

4
e for k odd, is achieved. Furthermore, an equal

number of the M (kn � 1) messages that each source node has to transmit are transmitted over each one of

its incident edges and the minimumnumber of time steps, dMkn+1

8
e for k even and dM(k2�1)kn�1

8
e for k even,

is achieved.

When each source node wishes to transmit one message to each one of the other nodes a similar method

is followed, but the BSTs spanning tree is used. Although the minimum number of messages transmissions,

dnk2n+1
4

e for k even and dn(k2�1)k2n�1
4

e for k odd, is achieved. The time is only asymptotically optimal,

O(dkn+1
8

e) for k even and O(d (k2�1)kn�1
8

e) for k even, since BSTs is balanced only to within a constant

factor.
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6 Conclusions

A general framework was developed on the multidimensional torus network, that led to the construction of

a shortest path, balanced to within a constant factor, spanning tree, and a shortest path, perfectly balanced

spanning graph. Several de�nitions such as the ones for the translation and the rotation operations and the

grouping of the nodes into necklaces, were developed.

The application of the spanning graphs to the development of optimal communication algorithms was

demonstrated by giving a number of algorithm for the single and multinode broadcasting, and the single

and multinode scattering problems, under the all-port communication assumption and the store-and-forward

model. These are algorithms in which all nodes of the network know in advance the communication pattern.

The method is mostly useful for communication problems that require a group or all nodes of the network

to be sources of messages, such as the multinode broadcasting and scattering problems. The property that

corresponding edges of the subtrees are of di�erent dimensions, along with lemma 5, give the necessary

condition for conict avoidance. The spanning graphs can be used for the development of algorithms for a

number of other communication problems, or under a variety of communication models, such as the one-port

model. It was also pointed out that the algorithms developed in this paper are applicable to the solution of

a wide range of problems such as matrix computations, image manipulations, linear algebra, and database

operations, to name a few.

Our algorithms illustrate that it is advantageous to use all of the communication links of a network

simultaneously in communication intensive tasks, and that exible techniques that take advantage of this

capability can be e�ciently developed. This leads to a considerable increase in network bandwidth utilization,

while at the same time decreasing the routing time required for the completion of the algorithms.

We are con�dent that a general framework that leads to the construction of spanning graphs with similar

properties can be potentially developed for networks that belong to a subclass of the Cayley graphs. This

will o�er a uniform solution to a wide range of communication problems on a wide range of networks. Future

research could move towards various directions, the most important being the generalization of the developed

framework to a class of interconnection networks that exhibit speci�c characteristics, and the application of

this framework to the solution of other types of problems.
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