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Abstract

Documents can be represented as ordered labelled trees. Finding the editing distance between

documents is a particular case of the general problem for trees. We give a detailed survey of previous

results, presenting them in a single notation to elucidate their commonalities. We then discuss two ways

of extending these results|�rst, by changing the set of primitive editing operations used by existing

algorithms and, second, by post-processing the output of the algorithms to recognize patterns of change

signi�cant to documents. Finally, we provide extensions of the �rst type. Our algorithm allows subtree

operations but is otherwise similar to that of Zhang and Shasha.

�This is a corrected and expanded version of Technical Report 91-315.
yThis report was completed during a sabbatical at INRIA (Institute National de Recherche en Informatique et en Automa-

tique) in Rocquencourt, France.
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1 Introduction

Documents can be represented not just as strings of characters in a �le, but as structures with a hierarchical

arrangement of text and non-text nodes. The non-text nodes are labelled with category names such as

\paragraph", \section" and so on. Representing documents this way is a natural consequence of using the

Standard Generalized Markup Language (SGML) to encode the content and form of documents [5]. Such

representations can form the basis for text archives [2]. Even documents that are not simple hierarchies can

be represented this way [3].

Finding the minimum di�erence between two of these documents is analogous to the string-to-string and

tree-to-tree correction problems examined by other researchers [12, 19, 20, 21, 22, 23]. Such documents are

trees with labelled nodes in which the left to right ordering of the o�spring of a node is signi�cant. Any

piece of text in the document can be thought of as a single labelled node, all leaf nodes are text and any

node with children is a structural or non-text node (see Figure 1).

An algorithm to �nd the minimum di�erence between two structured documents could be used in several

di�erent ways.

� Editing or Co-authoring: When an author presents a modi�ed version of a document to an editor or

co-author, the two versions could be compared to isolate only the changed components. A sophisticated

display mechanism could highlight the di�erences. This would be a powerful editing tool.

� Querying: If documents are stored in an archive using a structured representation, a query against

the archive could also be a tree. The document (or document fragments) that satisfy the query would

be those that are closest to the query in edit distance.

� Storing: Documents are often published in several versions. A \document control system" might

be modelled on a source code control system to provide help in managing versions. One of the

characteristics of such a system should be that it stores only the di�erences between versions of a

documents without having to store more than one complete document.

The general approach to edit distance problems (for strings or trees) has been to de�ne a sequence of

primitive operations that can be applied to one object to produce another, and to de�ne the distance

between two objects as a function computed on a sequence of such operations. In simple cases it can be

su�cient to determine the length of the sequence. More realistically and more generally, each operation is

assigned a cost that represents the di�culty of making that change to the object. The cost could be thought

of as the perceived unlikelihood of the change having arisen at random in whatever process produced the

changed object.

For string-to-string editing the operations most frequently considered are

� insert a character,

� delete a character, and

� change one character into another.

When considering trees this set of operations needs to be generalized to include others that deal with

the structure of the tree. The primitive operations that can be used to measure tree-to-tree edit distance

include:

� insertTree: Add an entire subtree (possibly one leaf node) to the target tree.

� deleteTree: Remove an entire subtree (possibly one leaf node) from the original tree.

� insert: Add an internal node to the target tree.
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� delete: Remove an internal node from the given tree.

� change: Relabel a node in the given tree with the label of a node in the target tree.

� swap: Swap subtrees rooted at adjacent siblings.

� swap with editing: Swap subtrees rooted at adjacent siblings and edit the subtrees in the given tree to

the corresponding subtrees in the target tree.

Assigning in�nite cost to any operation will result in its elimination from the set of usable operations. For

example, if change(x; y) is assigned in�nite cost for all nodes x in the original tree and all nodes y in the

target tree, then a particular change(x; y) operation will become more expensive than a delete(x) followed

by an insert(y). The cost function need not return the same value for each operation of a particular type,

because it can examine each individual operation and take into account properties of the nodes involved.

For instance, the cost of deleting an internal node could depend on the number of children which must be

re-attached to its parent.

Our algorithms extend previous work in the area, much of which is listed at the end of this paper. Some

of the work referenced was not directly relevant because it focussed on structures other than the ones in

which we are interested, like binary trees or undirected, acyclic graphs. Section 2 describes the relevant

background to our work. Section 3 is a discussion of how this previous work might be extended to deal more

realistically with trees that represent documents. We present our �rst extension of the Zhang and Shasha

algorithm which allows insertion and deletion at the tree level. We also consider two ways of implementing a

swap operation in the extended Zhang and Shasha algorithm. We consider the application of the algorithm

with tree insertion, deletion, and swapping to structured documents. An appendix contains the text of

programs that implement the algorithms (except for the last extension described).

||||||||||||||||||||||||||||||
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Figure 1: Representing Text as a Tree
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2 Background

2.1 String-to-String Correction: Wagner and Fischer

The string-to-string correction problem is that of determining the distance between two strings as measured

by the number of edit operations needed to transform one string into the other. There are actually two

problems here: determining the minimum cost of a solution and producing a list of operations which, when

performed on string S, would produce string S0 with the minimum cost. The edit operations normally used

are:

� change one character to another,

� insert a character, and

� delete a character.

This problem has been studied by several researchers; the algorithm of Wagner and Fischer [22] illustrates

the approach.

Edit operations are written as Si ! S0j where S and S0 are the original and target strings, respectively,

and Si refers to the ith character of the string S. The symbol � represents the empty string, so a ! �

represents the deletion of character a and � ! b represents the insertion of character b. A sequence of

operations necessary to transform S into S0 can be written as a collection of ordered pairs called a trace.
Each pair (i; j) indicates that operation Si ! S0j is one of the operations needed. If there is no pair with i

in the �rst position then node Si is to be deleted. Insertions are indicated in a similar manner. A trace is

thus equivalent to a sequence of operations. Each edit operation has an associated cost function, 
, which

assigns a non-negative real number, 
(a! b), to the transformation, a! b.

The algorithm is presented in Figure 2. This is the �rst of several algorithms to be presented. These

algorithms illustrate the various methods used to solve either the string-to-string or tree-to-tree correction

problems. The notation has been altered from their original presentations in the literature in order to make

clear what each algorithm shares with the others and for ease of reading. Each algorithm is accompanied

by a brief description of the notational conventions used. The conventions introduced for one algorithm are

considered to be in use in those presented later, unless a new convention is stated.

Given a pair of strings, S and S0, to compare, with respective lengths n and m, the algorithm sets up an

(n + 1) � (m + 1) matrix, D, where each entry, D[i; j], corresponds to the distance between the substring

of S composed of its �rst i characters and the substring of S0 composed of its �rst j characters. It is easy

to see that the mth entry in the 0th row would contain the cost of inserting all the characters in S0 and the

nth entry in the 0th column would contain the cost of deleting all the characters of S. The entry D[n;m] is

the minimum distance between the two entire strings. The cost in, time and space, of computing this result

is O(nm).

To solve the second problem, that is, to determine a sequence of edit operations which will accomplish the

minimum cost conversion, it is only necessary to \follow the path of least resistance" through the distance

array, recording the moves that are made. An O(n +m) algorithm to do this is included in Figure 3. The

algorithm produces a list of operations which is guaranteed to be a minimal cost solution (perhaps not the

only one). Alternatively, we could extend the algorithm in Appendix 2 by keeping track of the operations

used to form the least-cost edit sequence as the cost itself is calculated. This would require expanding each

matrix entry to also record one operation.

2.2 Tree-to-Tree Correction: Selkow

Selkow extended the string-to-string problem solution to �nding the tree-to-tree edit distance [12]. His

solution used the basic operations relabel, delete and insert, but node deletions and insertions could only be

5



||||||||||||||||||||||||||||||

Notational conventions are used throughout:

� the empty string or the empty tree


(a! b) cost of edit operation a! b

n length of the original string, S, or total number of nodes in the original tree, T

m length of the target string, S0, or total number of nodes in the target tree, T 0

D array of edit distances between string S and string S0 or tree T and tree T 0

D[i; j] the cumulative edit distance between S1::i and S01::j or between T1::i and T 0

1::j

k list catenation operator

D[0; 0] = 0

for i = 1 to n do

D[i; 0] = D[i� 1; 0] + 
(Si ! �)

for j = 1 to m do

D[0; j] = D[0; j � 1] + 
(� ! S0j)

for i = 1 to n do

for j = 1 to m do

D[i; j] = min(D[i� 1; j � 1] + 
(Si ! S0j),

D[i � 1; j] + 
(Si ! �),

D[i; j � 1] + 
(� ! S0j))

Figure 2: The Wagner and Fischer Algorithm

||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||

L = nil

i = n

j = m

while i 6= 0 and j 6= 0 do

if D[i; j] = D[i � 1; j] + 
(Si ! �) then

L = L k (Si ! �)

i = i � 1

else if D[i; j] = D[i; j � 1] + 
(�! S0j) then

L = L k (�! S0j)

j = j � 1

else

L = L k (Si ! S0j)

i = i � 1

j = j � 1

Figure 3: Extracting the Operations From Wagner and Fischer

||||||||||||||||||||||||||||||
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||||||||||||||||||||||||||||||

Additional notational conventions:

c the number of children from T

c0 the number of children from T 0

Ti in this algorithm only: the ith child (counting from the left) of T , not the ith node

of the tree in some overall labelling

�(T ) the label of the node at the root of T

ins(�! T 0

x) the cost to insert the subtree rooted at x into T 0

del(Tx ! �) the cost to delete the subtree rooted at x within T

CostType some prede�ned type (probably integer)

edit(T; T 0): CostType

D[0; 0] = 
(�(T ) ! �(T 0))

for i = 1 to c do

D[i; 0] = D[i� 1; 0] + del(Ti ! �)

for j = 1 to c0 do

D[0; j] = D[0; j � 1] + ins(�! T 0

j)

for i = 1 to c do

for j = 1 to c0 do

D[i; j] = min(D[i� 1; j � 1] + edit(Ti; T
0

j), D[i � 1; j] + del(Ti ! �), D[i; j � 1] + ins(�! T 0

j))

return(D[c; c0])

Figure 4: Selkow's Tree-to-Tree Algorithm

||||||||||||||||||||||||||||||

done at the leaves of the trees. Only if the entire subtree rooted at a node was deleted could the node be

deleted and, similarly, only nodes without descendants (i.e. , leaf nodes) can be inserted. Given an input

tree, A, and a target tree, B, Selkow's algorithm takes the cost of changing the root of A to that of B and

adds to this the cost of changing the subtrees of A, A1; A2; : : : ; An, to the subtrees of B, B1; B2; : : : ; Bm.

Selkow's approach is recursive. The �rst invocation of the algorithm is given the root nodes of two trees,

the original and the target trees ; it then invokes the algorithm on each child of one root paired with each

child of the other root. At each pair of nodes, the algorithm sets up a temporary n�m cost matrix, where

n is the number of children of the node from the original tree and m is the number of children of the node

from the target tree. Entry (i; j) in the matrix is then computed by taking the minimum cost from three

approaches available to edit A1; A2; : : : ; Ai into B1; B2; : : : ; Bj.

� The �rst approach is to add the cost to edit A1; A2; : : : ; Ai into B1; B2; : : : ; Bj�1 and the cost to insert

Bj .

� The second method is to add the cost to edit A1; A2; : : : ; Ai�1 into B1; B2; : : : ; Bj and the cost to

delete Ai.

� The last of these costs is calculated by taking the cost to edit A1; A2; : : : ; Ai�1 into B1; B2; : : : ; Bj�1

and recursively examining the cost of editing Ai into Bj.

Selkow's algorithm is given in Figure 4.

A problem with the recursive approach is that the distance array is a local, temporary data structure. The

intermediate costs necessary for determining the actual list of operations are thus gone once the algorithm

7
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Notational conventions are:

CostType a pair with a �eld c, for cost, and another l, for list of operations.

D an array of size (n+ 1)� (m + 1) of type CostType.

edit(T; T 0): CostType

D[0; 0] = (
(�(T ) ! �(T 0), (�(T )! �(T 0)))

for i = 1 to c do

D[i; 0] = (D[i � 1; 0]:c+ del(Ti ! �), D[i � 1; 0]:l k Ti ! �)

for j = 1 to c0 do

D[0; j] = (D[0; j � 1]:c+ ins(�! T 0

j), D[0; j � 1]:l k �! T 0

j)

for i = 1 to c do

for j = 1 to c0 do

change = edit(Ti; T
0

j)

delete = D[i � 1; j]:c+ del(Ti ! �)

insert = D[i; j � 1]:c+ ins(�! T 0

j)

if D[i � 1; j � 1]:c+ change:c � delete and (D[i � 1; j � 1]:c+ change:c � insert) then

D[i; j] = (D[i � 1; j � 1]:c+ change:c, D[i� 1; j � 1]:l k change:l)
else if delete � insert then

D[i; j] = (delete, D[i � 1; j]:l k (Ti ! �))

else

D[i; j] = (insert, D[i; j � 1]:l k (�! T 0

j))

return(D[c; c0])

Figure 5: Creating an Operation List with Selkow's Algorithm

||||||||||||||||||||||||||||||

terminates. We cannot, therefore, use an algorithm like that presented as an extension of the string-to-string

edit algorithm, to determine the list of operations making up the minimal-cost edit. However, it is not

di�cult to keep track of the operation chosen as having lowest cost at each stage by returning a richer data

structure than the one used in the present algorithm. Figure 5 shows how to do this; it is the analog of the

alternate approach suggested under the discussion of the string-to-string problem.

The time complexity of Selkow's algorithm is O(nmd), where n and m are the maximumnumber of children

from any node in each of the trees and d is the maximum depth of the trees.

Restricting insertions and deletions to leaf nodes makes the algorithm very simple, but does not accurately

represent our intuition about which set of primitive operations is reasonable for tree editing or, especially,

document editing. For example, the cost of merging two internal nodes would be the cost of deleting every

descendant of one of them, plus the cost of inserting all the same nodes under the other, plus the cost of

changing one internal node. It would be more realistic in this case to delete and insert only the nodes, not

the subtrees of which they are the roots. Nevertheless, deletion and insertion of entire subtrees are useful

operations and we will restore them into our set of primitive operations once we have examined some other

tree-to-tree editing distance solutions.

2.3 Tree-to-Tree Correction: Tai

Tai [20] solves the tree-to-tree correction problem by a method which is, again, very similar to the methods

used for the string problem. However, unlike Selkow's algorithm, Tai's uses a dynamic programming
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approach without recursion. The primitive operations used are

� change one node label into another,

� delete a node, and insert a node.

The insertions attach some or all of the children of the parent of the node being inserted as the children of

the node being inserted. Similarly, all of the children of a deleted node are re-attached to the parent of that

node. The exact method used to attach only some of the children to the new node in an insertion is not

important in determining the minimum edit distance as long as there is some accurate way of determining

the cost of insertions and as long as we are assured that only consecutive subsequences of children are

attached.

In adapting the string algorithm to trees, Tai used a preorder traversal to name each node uniquely. A

preorder traversal is one in which the �rst node visited is the root, then all subtrees are traversed in preorder

from left to right. Tai assumes that the root of the tree remains unchanged during editing.

During the traversal each node is numbered, so that node 1 is always the root of the tree and node i is

the node that was visited after node i � 1. T (x : y) denotes the nodes and their associated edges between

nodes Tx; Tx+1; : : : ; Ty and Tx is an ancestor of Ty . Tai then uses the idea of traces from the string-to-string

algorithm to catalog which operations are used to transform T to T 0. They are called mappings here but

they are similar to traces in the Wagner and Fischer algorithm [22]. The pairs in a mapping may imply

a change operation on node Ti to produce node T 0

j if they are labelled di�erently, or a simple connection

between the nodes if they have the same label. If, for any node a 2 T , there is no pair in a mapping with

the �rst integer representing a, then this is equivalent to deleting a. If no pair exists with a second integer

representing b 2 T 0 in a mapping, then b is considered to be inserted into T 0.

The biggest problem with this approach is that, unlike the situation with strings, preserving structural

information about the tree is necessary. This means that while in the string case one always knew that if

Si::i+h = S0j::j+h then the distance between S1::i�1 and S01::j�1 is the same as the distance between S1::i+h

and S01::j+h, the analogous relationship in trees does not hold. See Figure 6 for a simple case where the

least-cost mapping ((1; 1); (2; 2)) from T (1 : 2) to T 0(1 : 3) cannot be extended to ((1; 1); (2; 2); (3; 4)) as a

mapping from T 0(1 : 4); this is because T2 is an ancestor of T3 but T
0

2 is not an ancestor of T 0

4. The least-cost

mapping in this case is ((1; 1); (2; 3); (3; 4)) assuming that the cost of deleting, inserting or changing a

character is the same. Because of this problem, conditions are imposed on mappings to ensure that the

structure of both trees is preserved by the mapping.

||||||||||||||||||||||||||||||

�
�
�

@
@
@

a a

b b c

d d

Figure 6: Example of an Illegal Mapping

||||||||||||||||||||||||||||||

If we examine the mechanics of Tai's algorithm we can see that, as in the string-to-string algorithm, a

distance matrix, D, is used and for each location in the matrix, D[i; j], the cost of deleting Ti, the cost of

9
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Notational conventions are:

p(x) the immediate parent of x

pn(x) the immediate parent of pn�1(x)

p0(x) x

Ti in this algorithm only: the ith node of T , where the tree is labelled in preorder

INF the maximum possible edit cost (i.e., deleting T then inserting T 0)

E an array for keeping track of the minimum cost of change paths.

CC an array for keeping track of the minimum cost of changing node Ti into node Tj
(including accumulated costs from all of their descendants and left siblings).

compute minimum cost of all possible change paths

for i = 1 to n do

for j = 1 to m do

for u = i; p(i); p2(i); : : : , 1 do

for s = u; p(u); p2(u); : : : , 1 do

for v = j; p(j); p2(j); : : : , 1 do

for t = v; p(v); p2(v); : : : , 1 do

if s = u = i and t = v = j then

E[s; u; i; t; v; j] = 
(Ti ! T 0

j)

else if s = u = i or t < v = j then

E[s; u; i; t; v; j] = E[s; u; i; t; p(j); j� 1] + 
(�! T 0

j)

else if s < u = i or t = v = j then

E[s; u; i; t; v; j] = E[s; p(i); i� 1; t; v; j] + 
(Ti ! �)

else E[s; u; i; t; v; j] = min(E[s; x; i; t; v; j], E[s; u; i; t; y; j],

E[s; u; x� 1; t; v; y � 1] +E[x; x; i; y; y; j]);

Where if u = pn(i) then x = pn�1(i) in T and if v = pn(j) then y = pn�1(j) in T 0

Figure 7: Tai's Tree-to-Tree Algorithm: Step 1

||||||||||||||||||||||||||||||

inserting T 0

j , and the cost of mapping Ti to T
0

j , are assessed and the minimum selected. Also as in the string

case, a list of operations necessary to ensure a minimum-cost transformation of T into T 0 is obtainable

after the algorithm is terminated. Since the structure of the trees must be preserved, there is some extra

work (compared to the string problem) required to ensure that a legal minimum cost mapping is being

achieved. Steps 1 and 2 of the algorithm are needed to ensure that no illegal mappings are formed. The

�rst step forms a six-dimensional matrix, E, which records the cost of transforming each subtree of T into

each subtree of T 0. The minimum cost is selected in the CC array in the second step. Tai's algorithm has

time and space complexity in O(nmd2d02), where d is the depth of the tree T and d0 is the depth of T 0.

Tai's algorithm is given in Figures 7, 8 and 9. A similar algorithm using a postorder traversal of the tree

and having a better time complexity, and much better space complexity, is given in [23]. The next section

discusses that algorithm.

2.4 Tree-to-Tree Correction: Zhang and Shasha

The algorithm due to Zhang and Shasha [19, 23] uses the same basic de�nitions and assumptions as that of

Tai, including the same three primitive operations. They number the trees to be compared in a di�erent

way, however, using a postorder traversal instead of preorder. A postorder traversal visits the nodes of a

10
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compute minimum change cost between each pair of nodes

CC[1,1] = 0

for i = 2 to n do

CC[i; 1] = i

for j = 2 to m do

CC[1; j] = j

for i = 2 to n do

for j = 2 to m do

CC[i; j] = INF

for s = i; p(i); p2(i); : : : , 1 do

for t = j; p(j); p2(j); : : : , 1 do

CC[i; j] = min(CC[i; j], CC[s; t] + E[s; p(i); i� 1; t; p(j); j � 1] - 
(Ts ! T 0

t)

CC[i; j] = CC[i; j] + 
(Ti ! T 0

j)

Figure 8: Tai's Tree-to-Tree Algorithm: Step 2

||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||

compute tree-to-tree distance

D[1; 1] = 0

for i = 2 to n do

D[i; 1] = D[i� 1; 1] + 
(Ti ! �)

for j = 2 to m do

D[1; j] = D[1; j � 1] + 
(� ! T 0

j)

for i = 2 to n do

for j = 2 to m do

D[i; j] = min(CC[i; j],D[i� 1; j] + 
(Ti ! �), D[i; j � 1] + 
(� ! T 0

j))

Figure 9: Tai's Tree-to-Tree Algorithm: Step 3

||||||||||||||||||||||||||||||

11



tree starting with the leftmost leaf descendant of the root and proceeding to the leftmost descendant of the

right sibling of that leaf, the right sibling(s), then the parent of the leaf and so on up the tree to the root.

The last node visited will always be the root.

With Tai's algorithm it was necessary, in e�ect, to keep track of multiple solutions in order to backtrack

around illegal ones once the lower levels were reached. With Zhang and Shasha's algorithm, the minimum

cost mappings of all the descendants of each node have been computed before the node is encountered, so

the least-cost mapping can be selected right away. This is accomplished by keeping track of the keyroots of
a tree. Keyroots are de�ned to be the root of the tree plus all nodes which have a left sibling. Determining

the keyroots of a tree in advance allows the algorithm to separate the concepts of tree distance and forest

distance. The distance between two nodes when considered in the context of their left siblings in the trees

T and T 0 is their forest distance. The distance between two nodes considered separately from their siblings

and ancestors (but not from their descendants) is their tree distance. For example, in Figure 10, we can see

that the forest distance between node b in T and node b in T 0 is 6 units while the tree distance is 3 units

(if each change operation costs 1 unit). On the other hand, the forest distance and tree distance between

nodes a and q are both 3 units, because neither has any left siblings.

||||||||||||||||||||||||||||||
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||||||||||||||||||||||||||||||

For each node, the calculation to determine the minimumcost mapping from the node to a node in the other

tree (the tree distance) depends only on mapping the nodes and their children. To determine the minimum

cost mapping of a node, then, one must know the minimum cost mapping from all the keyroots amongst

its children, plus the cost of its leftmost child (the forest distance of its rightmost child). The algorithm

thus proceeds through the nodes determining mappings from all leaf keyroots �rst, then all keyroots at the

next higher level, and so on to the root. Since the nodes are numbered in postorder, this is a natural way

to proceed. The algorithm employs a temporary forest distance array for each pair of keyroots. If a node

is not a keyroot, one could determine a separate forest distance for it, but it would be exactly equal to its

tree distance since there are no left siblings, so this can be determined when the parent is determined. See

Figure 11 for the algorithm. Extracting the set of operations necessary to transform T into T 0 at a cost no

greater than D[n;m] can be done with techniques similar to those presented above.

Zhang and Sasha's solution to the problem has a time complexity in O(nmdd0) and a space complexity,

depending on how the temporary arrays are implemented, in O(nm). An example which illustrates this

algorithm and compares it to our solution is given below. This work has been extended by the inclusion

of more general pattern matching, and the development of programs that implement the algorithms

[13, 14, 15, 16, 17, 18].
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Notational conventions are:

Ti in this algorithm only: the ith node of T , labelled in post order

l(i) the leftmost leaf descendant of the subtree rooted at i

K(T ) the keyroots of tree T , K(T ) = fk 2 T j:9k0 > k with l(k0) = l(k)g
; a null tree

FD[T [i; i0]; T 0[j; j0]] the forest distance from nodes i to i0 in T to nodes j to j0 in T 0,

if i � i0 then T [i; i0] = ;

compute l( ), K(T ), and K(T 0)

for each x 2 K(T ) do

for each y 2 K(T 0) do

FD[;; ;] = 0

for i = l(x) to x do

FD[T [l(x); i]; ;] = FD[T [l(x); i� 1]; ;] + 
(Ti ! �)

for j = l(y) to y do

FD[;; T 0[l(y); j]] = FD[;; T 0[l(y); j � 1]] + 
(� ! T 0

j)

for i = l(x) to x do

for j = l(y) to y do

m = min(FD[T [l(x); i� 1]; T 0[l(y); j]] + 
(Ti ! �),

FD[T [l(x); i]; T 0[l(y); j � 1]] + 
(�! T 0

j))

if l(i) = l(x) and l(j) = l(y) then

D[i; j] = min(m, FD[T [l(x); i� 1]; T 0[l(y); j � 1]] + 
(Ti ! T 0

j))

FD[T [l(x); i]; T 0[l(y); j]] = D[i; j] /* Note */

else

FD[T [l(x); i]; T 0[l(y); j]] = min(m, FD[T [l(x); l(i)� 1]; T 0[l(y); l(j) � 1]] + D[i; j])

Note : This required assignment was omitted from the version of the algorithm given in [23].

Figure 11: Zhang and Shasha's Tree-to-Tree Algorithm

||||||||||||||||||||||||||||||
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Figure 12: A Merge Operation

||||||||||||||||||||||||||||||

3 Extending the Tree-to-Tree Correction Problem

The solutions to the tree-to-tree edit problem presented above lack an intuitive applicability to document

editing. When editing documents most people perform operations that are more complex than the primitive

operations we have seen in the algorithms of the previous section. Many operations that seem primitive

when editing documents are, in fact, combinations of these operations. Examples of operations which are

commonly performed when editing documents are:

� merge two sections,

� split one section into two,

� permute sections of text under an unchanging encompassing structure, and

� move one section of text to another position.

One approach is to consider these operations as primitive and look for them in the same way as the other

primitive operations already identi�ed. This seems impractical, however, because it would make the inner

loop of the computation much more complex.

A simpler way to account for these kinds of operations would be to use a post-processing approach, where

the set of primitive operations is not extended but subsequent processing tries to identify operations that are

combinations of one or more primitives. Two deletes followed by an insert could be a merge, for example.

See Figure 12 for an illustration of a merge. The complex operations should be intuitively more acceptable

in the context of editing documents than the primitive operations.
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Notational conventions and de�nitions:

l(i) the leftmost leaf descendant of the subtree rooted at i.

K(T ) fkj:9k0 > k with l(k0) = l(k)g
deleteTree(a) the cost of performing a deleteTree operation on node a.

insertTree(a) the cost of performing an insertTree operation on node a.

for each x 2 K(T ) do

for each y 2 K(T 0) do

FD[l(x)� 1; l(y) � 1] = 0

for i = l(x) to x do

FD[i; l(y) � 1] = FD[l(i)� 1; l(y) � 1] + deleteTree(Ti)

for j = l(y) to y do

FD[l(x)� 1; j] = FD[l(x)� 1; l(j) � 1] + insertTree(T 0

j )

for i = l(x) to x do

for j = l(y) to y do

m = min(FD[i� 1; j] + 
(Ti ! �),

FD[i; j � 1] + 
(�! T 0

j),

FD[l(i)� 1; j] + deleteTree(Ti),

FD[i; l(j)� 1] + insertTree(T 0

j ))

if l(i) = l(x) and l(j) = l(y) then

D[i; j] = min(m, FD[i� 1; j � 1] + 
(Ti ! T 0

j))

FD[i; j] = D[i; j]

else

FD[i; j] = min(m, FD[l(i)� 1; l(j)� 1] + D[i; j])

Figure 13: Extending with Insertion and Deletion of Subtrees

||||||||||||||||||||||||||||||

Neither the set of primitives used by Zhang and Shasha nor that used by Selkow, however, seem rich enough

to allow this kind of postprocessing. The merge example, given above, relies on delete and insert operations

which are restricted to single nodes, but if we still wish to �nd any permute operations that apparently

have occurred, we must have delete and insert operations on a subtree level. We propose to add the two

primitive operations deleteTree and insertTree, which are de�ned to be the same as Selkow's delete and

insert, to the set of primitive operations given by Zhang and Shasha. The base algorithm for dealing with

deleteT ree and insertT ree is given below. Following that, we propose to add the primitive operation swap

which in the context of document editing would seem more natural than the deletion of a subtree followed

by the insertion of that same subtree or a very similar one.

3.1 Subtree Insertion and Deletion

This section will present the extensions to the Zhang and Shasha algorithm which are necessary to add the

two primitive operations deleteT ree and insertT ree. An example of the operation of both algorithms on

the same tree is then given. The revised algorithm is presented in Figure 13.

As can be seen, our algorithm is very similar to that of Figure 11. But there are signi�cant di�erences

caused by the addition of deleteTree and insertTree. Lemma 3 in the Zhang and Shasha paper includes

15



these two statements:

forestdist(T1[l(i1)::i]; ;) = forestdist(T1[l(i1)::i� 1]; ;) + 
(T1[i]! �)

forestdist(;; T2[l(j1)::j]) = forestdist(;; T2[l(j1)::j � 1]) + 
(�! T2[j])

With our additions of deleteTree and insertTree, these are changed to:

forestdist(T1[l(i1)::i]; ;) = forestdist(T1[l(i1)::l(i) � 1]; ;) + deleteTree(T1[i])

forestdist(;; T2[l(j1)::j]) = forestdist(;; T2[l(j1)::l(j) � 1]) + insertTree(T2[j])

The calculation of the distance corresponds to the cost of deleting or inserting the subtree rooted at i or

j, respectively, and repeating the process with all subtrees rooted at the siblings. This change in lemma 3

causes the change in the initialization phase of the algorithm.

When D is being initialized, the basic operations can no longer be delete and insert, since those operations
can no longer be performed on leaf nodes. The maximum possible cost of the entire transformation is

therefore the cost of performing a deleteTree operation on the root of T , then performing an insertTree
operation on the root of T 0. For each pair of keyroots, the forest distance array (FD) is now initialized by

calculating the cost of deleting and inserting each subtree on a cumulative basis, rather than deleting and

inserting each node.

With the new primitive operations, we must add two new cases.

FD[l(i)� 1; j] + deleteTree(Ti)

FD[i; l(j)� 1] + insertTree(T 0

j )

At any pair of nodes, Ti and T 0

j , the minimum cost may now be that yielded by one of �ve operations plus

the appropriate accumulated cost. The costs are the same as in the previous algorithm for the three shared

operations, but the accumulated cost of the two new subtree operations depends on the cost up to the root

of the previous sibling subtree (if any). The root of the previous subtree is Tl(i)�1 for Ti and T 0

l(j)�1
for T 0

j

since the tree is numbered in postorder.

Consider any pair (i; j) where i 2 K(T ) and j 2 K(T 0), then:

1. Just before the calculation D(i; j), all distances D(i1; j1) are available such that i1 is not on the path

from i to l(i) but is in the subtree of tree(i) and j is not on the path from j to l(j) but is in the subtree

of tree(j).

2. After the calculation of D(i; j) all values D(i1; j1) are available.

Condition 1 always holds: Consider i1 where l(i1) 6= l(i). Choose the lowest ancestor of i1, i
0

1 such that

i01 2 K(T ). Because a node can be its own ancestor and because of the properties of a keyroot, we know

that l(i1) = l(i01), so i01 6= i. Both i01 and i 2 K(T ) so i01 � i, therefore i1 < i. The same holds for j1.

Therefore because the keyroots are stored in ascending order in K(T ) and K(T 0), D(i01; j
0

1) will always be

computed before D(i; j) and D(i1; j1) is available after calculating D(i01; j
0

1).

Based on the truth of the �rst condition and the if condition in the algorithm, (l(i) = l(x) and l(j) = l(y)),

condition 2 holds.

The complexity is the same as that of the Zhang and Shasha algorithm, since all of the changes take place

inside the loops already there. The time complexity is O(nmdd0) and the space complexity is O(nm).

We will now give an example using two tree comparison algorithms to �nd the minimum edit distance

between two trees. First we will examine the operation of the Zhang and Shasha algorithm. We will then

compare this to our extended algorithm.
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Figure 14: Convert T into T 0

||||||||||||||||||||||||||||||

The two trees to be compared are shown in Figure 14. Note that the letters inside the circles representing

the nodes are to be taken as the labels of the nodes and that the numbers beside the nodes are their

postorder numbering. In the case of structured documents the node labels would be longer strings, which

would add some complexity to the explanation without altering the functioning of the algorithm. We will

refer to nodes by either their labels or their postorder numbering when discussing the algorithms, but the

algorithms themselves use only the postorder numbering. Also given in the diagram is the set of keyroots

of each tree.

The �rst assumption we must make in order to demonstrate the algorithms has to do with the relative costs

of the various operations. For this example, we will assume that all three of the operations allowed by the

Zhang and Shasha algorithm have equal cost for all nodes. Arbitrarily we will set that cost to 1 unit. The

purpose in setting the costs in such a simple way is so that the interaction of the various costs will not

obscure the functioning of the algorithm. Both algorithms will function with any costs assigned to their

operations, including costs which vary depending on which node is being considered.

||||||||||||||||||||||||||||||

D Array
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3 0
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FD Array

; T 0[2; 2]

; 0 1

T [3; 3] 1 0

Figure 15: Converting node e to node e

||||||||||||||||||||||||||||||
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In Figure 15 we see the �rst iteration of the algorithm, determining the cost of transforming the tree rooted

in node e of tree T to the tree rooted in node e of tree T 0. Since these two nodes have the same label, the

cost is that of converting label e to label e, which is to say 0. Once the FD cost is determined, the D array

is updated, since node e is on the path from node e to node e in both trees.

||||||||||||||||||||||||||||||

D Array
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; 0 1 2 3

T [3; 3] 1 1 1 2

Figure 16: Converting node e to node a

||||||||||||||||||||||||||||||

Comparing the subtree rooted at e in tree T to the subtree rooted in a in tree T 0 (which is actually the

entire tree T 0) is the next stage of the algorithm. This is slightly more complex and results in two slots of

D being �lled. Since the cost of converting node e to node b is 1, that is the number put in the respective

slot of D. D[3,3] gets a cost of 2 since we could obtain T 0 from node e by inserting nodes b and a.

||||||||||||||||||||||||||||||

D Array
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3 1 0 2
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FD Array

; T 0[2; 2]
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T [4; 4] 1 1

FD Array

; T 0[1; 1] T 0[1; 2] T 0[1; 3]

; 0 1 2 3

T [4; 4] 1 1 2 3

Figure 17: Converting node f to nodes e and a

||||||||||||||||||||||||||||||

In Figure 17, we see the costs of converting the leaf f to the leaf e and then to the entire tree T 0. The greater

cost of creating T 0 from f than from e is because f must be changed into another node label whereas e can
be left the same as it is in T 0.

The next two iterations compare the subtree rooted at c with the two keyroots of T 0. Note that the leaf d
is compared also because it is on the path from c to l(c) = d. It costs 3 units to convert the subtree rooted

at c into T 0 because we must change b to d, e to e, c to a and delete f. In this case there is only one way to

obtain the lowest cost transformation, but this does not, in general, have to be true.

Finally, in Figure 19, we see the cost of converting all of T into T 0. Again, any nodes which are on the path

to the leftmost leaf descendant of the root (in this case, b) are transfered from FD at the same time as

their ancestor. The �nal cost is the same as it was when converting node c to node e (D[5,2]), since we can
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Figure 18: Converting node c to nodes e and a
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Figure 19: Converting node a to nodes e and a

||||||||||||||||||||||||||||||

simply convert a to a, b to b, delete c and d, convert e to e and delete f. Using the three operations allowed
in this algorithm, this is the best possible conversion, given the relative operation cost assumption above.

Looking now at the new algorithm, we must assign costs to two additional operations. The simplest

assignment is to again give each of the �ve operations a cost of 1 unit. This would result in a strong bias in

favor of the two operations deleteTree and insertTree, however, and does not seem to be intuitively correct.

We have therefore assigned a cost of k, where k is the number of nodes in the subtree being inserted, to the

operation insertTree. The cost of deleteTree we will leave at 1, regardless of the size of the subtree being

deleted.

The costs of converting the leaf nodes to other leaf nodes is the same as in the previous algorithm, so

Figures 20 to 22 are very similar to Figures 15 to 17. This need not be the case, since the operations now

being performed at the leaf level are deleteTree, insertTree and change instead of insert, delete and change.

Since in this example the cost of deleting a leaf or inserting a leaf is the same regardless of which set of

operations is used, the cumulative costs are also the same. The e�ects of adding deleteTree to our set of

primitive operations on subtrees become quite clear in the next few iterations, however.

In Figure 23, we see that since deleting the entire subtree rooted at c is now possible, it is cheaper to do

that and insert node e into T 0 than to delete the three nodes necessary to move e up to become a child of

a. The cost in slot D[5,2] re
ects that fact.

19



||||||||||||||||||||||||||||||

D Array

1 2 3

1

2

3 0

4

5

6

FD Array

l(2) � 1 2

l(3)� 1 0 1

3 1 0

Figure 20: Converting node e to node e: our algorithm

||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||

D Array

1 2 3

1

2

3 1 0 2

4

5

6

FD Array

l(3) � 1 1 2 3

l(3)� 1 0 1 2 3

3 1 1 1 2

Figure 21: Converting node e to node a: our algorithm

||||||||||||||||||||||||||||||

As before, adding the two nodes a and b to the comparison does not change the cost since equivalent nodes

exist in both trees. So the minimum cost of changing T into T 0 is 2.

The two algorithms presented are quite similar, with the only signi�cant di�erence being the addition of the

two new operations. This example shows that the addition of deleteTree to the set of primitive operations

can result in signi�cant di�erences in the minimum cost set of operations discovered. The operation

insertTree has little e�ect on the example, but if the cost of operations were to be changed, then insertTree

could also result in di�erent minimum cost sets being discovered.

3.2 Swapping of Subtrees

This section �rst presents the extensions to the algorithm introduced in subsection 4.1 which are necessary

to add the primitive operation swap, where the subtrees to be swapped are adjacent siblings and the

subtrees are not edited. Subsequently swap is developed to edit subtrees that are swapped. A comparison

of the two swapping algorithms to that of subsection 4.1 is then discussed.

Only swapping of adjacent siblings is examined. The �rst swapping algorithm only swaps subtrees if the

target tree has equivalent subtrees in the swapped position. The revised algorithm is shown in Figure 25.
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Figure 22: Converting node f to nodes e and a: our algorithm
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Figure 23: Converting node c to nodes e and a: our algorithm
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The �rst algorithm to introduce the use of a swap operation considers swapping adjacent if their corre-

sponding subtrees are equivalent. swap looks at the subtree tooted at Ti and its sibling's subtree rooted at

Tl(i)�1 and compares them to the subtree rooted at T 0

j and its sibling's subtree rooted at T 0

l(j)�1. Ti must

be equivalent to T `l(j)�1 and Tl(i)�1 equivalent to T 0

j in order for swap to be a candidate for inclusion on a

minimum path.

The algorithm for calculating tree distance is very similar to that of section 4.1. But there is a signi�cant

di�erence caused by the addition of swap. The operation is added to the calculation of FD[i; j], where Ti
and T 0

j are keyroots and l(i) 6= l(x) and l(j) 6= l(y). The new primitive operation is a new case added in

order to cover all possible mappings that yield FD[i; j].

FD[l(l(i) � 1)� 1; l(l(j) � 1)� 1] + swap(i,j)

Notice that the root of the previous subtree is Tl(l(i)�1)�1 for Ti and T 0

l(l(j)�1)�1 for T 0

j since the tree is

numbered in postorder.

3.3 Swapping and Editing of the Subtrees

The second algorithm to implement a swap operation still only considers swapping adjacent siblings, but

allows editing the swapped subtrees. Ti is edited to T 0

l(j)�1 and similarly Tl(i)�1 is edited to be equivalent
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Figure 24: Converting node a to nodes e and a: our algorithm
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to T 0

j . The algorithm for calculating tree distance remains the same as that given above. The de�nition of

the operation thus becomes :

swap(i; j) the cost of performing a swap between subtrees rooted at Ti
and Tl(i)�1 + tree distance between Ti and T 0

l(j)�1 + tree distance between Tl(i)�1

and T 0

j

However, swap and edit become mutually recursive and, therefore, the calculation of complexity must be

revisited. Every keyroot except the root calls swap which calls edit. Therefore, the time complexity becomes

O(n2m2dd0). An implementation is possible that does not increase the space complexity from O(nm).

Termination is guaranteed because when edit is called with two leaves swap is not called from within edit.

3.4 Comparing the Three New Algorithms

The example given in Figure 26 demonstrates the di�erence between the algorithms. We will assume that a

deleteT ree operation costs 1, an insertT ree operation has a cost equal to the number of nodes in the tree

and that a swap operation has cost 1.

The algorithm without swap results in a tree distance of 4 because the subtree rooted at b is deleted and

then inserted as the middle sibling of a. In contrast to this, incorporating a simple swap operation results in

a tree distance of 1. When x = 9 and y = 9, FD[5; 5] utilizes the swap as its minimum available approach.

Figure 27 highlights the advantage of adding editing of swapped subtrees. Again the actual cost of swapping

two subtrees is considered to be 1. The algorithm with a simple swap results in a tree distance of 3 because

the subtrees rooted at b are not equivalent and, therefore, when x = 4 and y = 5, FD[3; 4] does not utilize

the swap operation. Instead the node c in T is deleted and the nodes c and e in T 0 are inserted. However,

the algorithm using swap with editing assigns FD[3; 4] = 2, when x = 4 and y = 5, because the swap costs

1 and the tree distance between the subtree rooted at b in T to that rooted at b in T 0 is 1.

4 Determining the Cost of Operations

All of the algorithms for solving tree-to-tree or string-to-string correction problems require accurate costing

of the operations in order to be useful. As was pointed out in the introduction, establishing a su�ciently

high cost for the change operation in the string-to-string case means it is never used in any minimum cost
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Notational conventions :

swap(i; j) if (Tl(i)�1 = Tj) and (Ti = Tl(j)�1) the cost of performing

a swap between subtrees rooted at Ti and Tl(i)�1

for each x 2 K(T ) do

for each y 2 K(T 0) do

FD[l(x)� 1; l(y) � 1] = 0

for i = l(x) to x do

FD[i; l(y) � 1] = FD[l(i)� 1; l(y) � 1] + deleteTree(Ti)

for j = l(y) to y do

FD[l(x)� 1; j] = FD[l(x)� 1; l(j) � 1] + insertTree(T 0

j )

for i = l(x) to x do

for j = l(y) to y do

m = min(FD[i� 1; j] + 
(Ti ! �),

FD[i; j � 1] + 
(�! T 0

j),

FD[l(i)� 1; j] + deleteTree(Ti),

FD[i; l(j)� 1] + insertTree(T 0

j ))

if l(i) = l(x) and l(j) = l(y) then

D[i; j] = min(m, FD[i� 1; j � 1] + 
(Ti ! T 0

j))

FD[i; j] = D[i; j]

else if (i 2 K(T ) and j 2 K(T 0))

FD[i; j] = min(m, FD[l(i)�1; l(j)�1] + D[i; j], FD[l(l(i)�1)�1; l(l(j)�1)�1] + swap(i,j))

else

FD[i; j] = min(m, FD[l(i)� 1; l(j)� 1] + D[i; j])

Figure 25: Extending with Swapping of Subtrees
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solution and all changes are accomplished by using insert and delete. With trees, we have a more di�cult

problem. In the string case it is somewhat reasonable to assume that each operation has a �xed cost,

regardless of which characters were being operated on, since characters can be regarded as atomic in some

sense.

This would be the case if the strings were considered to be related by some random process, such as the

introduction of noise from some communication channel. However, the assumption is no longer true if the

strings are considered to be related to each other in a more sophisticated way. For example, one string

might be the result of a beginning typist attempting to type the other string. In this case patterns of key

arrangement on a keyboard might be signi�cant, with some errors (depressing a key adjacent to the desired

one) being more likely than others (depressing a key further away).

In the tree case, the assumption of atomicity certainly does not hold true, and the cost of an operation

may vary depending on which node is being deleted, inserted or changed because each node may have

a multi-character label and may have several children. This is especially true of structured documents,

where a node contianing only text|and thus only a label without any subordinate structure|may contain

as much as an entire paragraph of text or as little as a single letter. It is important to understand the

context of our algorithms in order to make clear the relationship between cost of operations and various

implementation factors, primarily storage considerations.

In Figure 28 we see an example of a case where di�erent costs assigned to di�erent edit operations would

result in very di�erent least-cost editing sequences. Assume that deleting and inserting nodes costs exactly

1 unit per child of the node and that changing a node label costs 1 unit. If tree T is transformed into tree T 0

by deleting node b, the cost is 3 units. If T is changed into T 0 by deleting a and changing b to a, the cost is

2 units. If we assume that the cost of deleting any node is the same as the cost of deleting any other node,

of course, the cost of deleting b is 1 unit, and the cost of deleting a and then changing b to a, is 2 units.

To determine the cost of the operations accurately, we will have to know what data structure is being used.

A case can be made for keeping the costs of insertions and deletions constant regardless of which node is

concerned. If a tree is stored as a series of special characters indicating structural information interspersed

with node labels (possibly text), as might be the case for a Lisp function, for example, then deletion

(insertion) is a matter of removing (adding) a node label and some �xed number of special characters. In

a Lisp function this would be removing (adding) one set of brackets and the �rst atom in the brackets. If,

however, the tree is stored as a set of vertices and a set of edges, or if it is stored with each node having a
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label and a set of pointers to children of that node, then this assumption does not hold. In either of these

cases, the cost of inserting or deleting a node would vary according to the number of children that it had.

If we have a de�nite idea of the data structure to be used to represent the tree, determining the cost of

insertions and deletions of internal nodes is relatively straightforward.

Similarly, the cost of a deleteTree operation is, under one representation of trees, a deletion of everything

between two special characters, and therefore node-independent. If the tree in question is represented as

labelled nodes with pointers to their children, deleteTree is again no problem, it costs exactly whatever it

costs to de-allocate memory. If a tree is represented as a set of vertices and a set of edges, however, then

determining the cost of deleteTree becomes a very expensive operation in itself, since the entirety of both

structures might need to be scanned for each structural node in the original tree.

It is less intuitively easy to establish an acceptable cost for any version of insertTree. We can say, though,

that using any of the data structures suggested to represent trees, it should probably have cost proportional

to the size of the subtree being inserted since, under any storage method for trees, the nodes being inserted

must come from somewhere.

In the case of the swap operation, if the tree representation is as labeled nodes with pointers to their

children, the cost is that of changing two pointers. In a representation of a tree such as that in a Lisp

function then a swap is similar to a tree deletion followed by an insertion. For a tree represented by a set

of vertices and a set of edges, both structures would be scanned in their entirety, similar to the deleteT ree

situation.

Changing leaf node labels can be accurately modelled by a constant value or by �nding the string-to-string

edit distance between them. This could be done in a pre-processing stage and the results tabulated in an

n�m array in O(nmll0) where l is the longest node label of T and l0 is the longest of T 0. The internal node

labels could be strings (such as the SGML tag <chapter>) or they could be parse tokens of some type. If

they are strings, then they can be treated exactly the same as leaf nodes. If not, the distance between them

depends entirely on the way that the parse tokens can be compared.

5 Conclusion

String-to-string correction can be generalized to trees, and ultimately to structured documents. There are

several algorithms for dealing with tree-to-tree correction. To extend these to structured documents, several

approaches are possible. Two obvious ones are to add more appropriate primitives to the sets used by the

existing algorithms, or to post-process the output of existing algorithms. We have presented a small advance

on the Zhang and Shasha algorithm that is of the �rst type.

It remains to consider a richer set of document editing primitives, and to integrate them into a single

algorithm using the two approaches discussed. In addition, it will be important to have a single cost metric

re
ecting both structural transformations and value transformations, and to extend these algorithms with

considerations of value transformations (string-to-string corrections) at the leaves.
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A Programs for Object-to-Object Correction

We present programs in Turing implementing the algorithms in the paper.

A.1 String-to-String Correction: Wagner and Fischer

% �le Tgamma.t
function gamma(p, q: char): int

if p = q then

result 0
else

result 1
end if

end gamma

% �le Ta1 1.t
include "Tgamma.t"

const null := " "

var d: array 0 . . 50, 0 . . 50 of int

var s, t: string

put "Input source and target strings:"

get s, t 10

put s

put t

const n := length(s)
const m := length(t)

put "Lengths are ", n, " and ", m

d(0,0) := 0
for i: 1 . . n 20

d(i, 0) := d(i�1, 0) + gamma(s(i), null)
end for

for j : 1 . . m

d(0, j ) := d(0, j�1) + gamma(null, t(j ))
end for

for i: 1 . . n
for j : 1 . . m

d(i, j ) := min( d(i�1, j�1) + gamma(s(i), t(j )),
min(d(i�1, j ) + gamma(s(i), null),
d(i, j�1) + gamma(null, t(j )))) 30

end for

end for

put "Distance is ", d(n, m)
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To create an operation list, these additional program fragments are appended to the program already shown.

% �le Trepchg.t
% c at position i to d at position j with cost v
function repChange(c: char, i: int, d: char, j, v : int): string

if c = d then

result ""

else

result "[" + c + "|" + intstr(i) + "," + d + "|" + intstr(j ) + ":" + intstr(v) + "]"

end if

end repChange

include "Ta1_1.t"

include "Trepchg.t"

% extract the operation list working backwards
var l := ""

var i := n

var j := m

loop

exit when i = 0 and j = 0
if d(i, j ) = d(i�1, j ) + gamma(s(i), null) then 10

l := repChange(s(i), i, null, j, gamma(s(i), null)) + l

i �= 1
elsif d(i, j ) = d(i, j�1) + gamma(null, t(j )) then

l := repChange(null, i, t(j ), j, gamma(null, t(j ))) + l

j �= 1
else

l := repChange(s(i), i, t(j ), j, gamma(s(i), t(j ))) + l

i �= 1
j �= 1

end if 20

end loop

put l
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A.2 Tree-to-Tree Correction: Selkow

% �le Tsize.t
function treeSize(n: ^node): int

if n = nil then

result 0
else

var s := 0
for i: 1 . . n �> fanout

s += treeSize(n �> child(i))
end for

result s + 1 % count the node itself 10

end if

end treeSize

% �le Ta2 1defs.t
type costType: int

const maxFanout := 10
const dSize := maxFanout + 1

type node:
record

name: char

fanout: 0 . . maxFanout 10

child : array 1 . . maxFanout of ^node

end record

% Ta2 1mkprt.t
procedure makeTree(s: string, var i: int, var n: ^node)

new n

n �> name := s(i+1) % skip the opening bracket
n �> fanout := 0
i += 2
loop

exit when s(i) = ")"

n �> fanout += 1
makeTree(s, i, n �> child(n �> fanout)) 10

end loop

i += 1 % skip the closing bracket
end makeTree

procedure printTree(n: ^node, indent: int)
const blanks := " "

put blanks(1 . . indent), n �> name

for i: 1 . . n �> fanout

printTree(n �> child(i), indent+1)
end for 20

end printTree

% �le Ta2 1costs.t
function deleteTree(n: ^node): costType

result 1
end deleteTree

function insertTree(n: ^node): costType

result treeSize(n)
end insertTree

% �le Ta2 1edit.t
function edit(n, m: ^node): costType

const p := n �> fanout

const q := m �> fanout
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var d: array 0 . . dSize, 0 . . dSize of costType

d(0, 0) := gamma(n �> name, m �> name)
for i: 1 . . p

d(i, 0) := d(i�1, 0) + deleteTree(n �> child(i))
end for

for j : 1 . . q 10

d(0, j ) := d(0, j�1) + insertTree(m �> child(j ))
end for

for i: 1 . . p

for j : 1 . . q

d(i, j ) := min(d(i�1, j�1) + edit(n �> child(i), m �> child(j )),
min(d(i�1, j ) + deleteTree(n �> child(i)),
d(i, j�1) + insertTree(m �> child(j ))))

end for

end for

result d(p, q) 20

end edit

% algorithm of Selkow
include "Tgamma.t"

include "Ta2_1defs.t"

include "Ta2_1mkprt.t"

include "Tsize.t"

include "Ta2_1costs.t"

include "Ta2_1edit.t"

var t1, t2 : ^node

put "Examples of legal trees are (a(b(c))) and (a(b)(c))." 10

put "Node labels are single characters. No blanks are allowed."

put "Enter source and target:"

var s1, s2 : string
get s1, s2

var p := 1
makeTree(s1, p, t1)
p := 1
makeTree(s2, p, t2)
put "Source is of size ", treeSize(t1)
printTree(t1, 1) 20

put "Target is of size ", treeSize(t2)
printTree(t2, 1)
put "Distance is: ", edit(t1, t2)
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This variation creates an operation list for the minimal distance edit.

% �le Ta2 2defs.t
type costType:

record

c: int
l: string

end record

const maxFanout := 10
const dSize := maxFanout + 1
type node:

record 10

name: char

number : int
fanout: 0 . . maxFanout

child: array 1 . . maxFanout of ^node

end record

% �le Ta2 2mkprt.t
procedure makeTree(s: string, var i: int, var n: ^node, var nodes: int)

new n

n �> name := s(i+1) % skip the opening bracket
n �> fanout := 0
n �> number := nodes

nodes += 1
i += 2
loop

exit when s(i) = ")" 10

n �> fanout += 1
makeTree(s, i, n �> child(n �> fanout), nodes)

end loop

i += 1 % skip the closing bracket
end makeTree

procedure printTree(n: ^node, indent: int)
const blanks := " "

put blanks(1 . . indent), n �> name, "[", n �> number, "]"

for i: 1 . . n �> fanout 20

printTree(n �> child(i), indent+1)
end for

end printTree

% �le Ta2 2costs.t
function deleteTree(n: ^node): costType

var r : costType
r.c := 1; r.l := ""

result r

end deleteTree

function insertTree(n: ^node): costType

var r : costType
r.c := treeSize(n); r.l := "" 10

result r

end insertTree

% �le Ta2 2edit.t
function edit(n, m: ^node): costType

const a := n �> number

const b := m �> number

const p := n �> fanout

const q := m �> fanout

var d: array 0 . . dSize, 0 . . dSize of costType

var g := gamma(n �> name, m �> name)
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d(0, 0).c := g

d(0, 0).l := repChange(n �> name, a, m �> name, b, g) 10

for i: 1 . . p

const nci := n �> child(i)
const del := deleteTree(nci).c
d(i, 0).c := d(i�1, 0).c + del

d(i, 0).l := repChange(nci �> name, nci �> number, "T", b, del) + d(i�1, 0).l
end for

for j : 1 . . q
const mcj := m �> child(j )
const ins := insertTree(mcj ).c
d(0, j ).c := d(0, j�1).c + ins 20

d(0, j ).l := repChange("T", a, mcj �> name, mcj �> number, ins) + d(0, j�1).l
end for

for i: 1 . . p

for j : 1 . . q

const nci := n �> child(i)
const mcj := m �> child(j )
const change := edit(nci, mcj )
const costToChange := d(i�1, j�1).c + change.c
const del := deleteTree(nci).c
const costToDelete := d(i�1, j ).c + del 30

const ins := insertTree(mcj ).c
const costToInsert := d(i, j�1).c + ins

if costToChange <= costToDelete and costToChange <= costToInsert then

d(i, j ).c := costToChange

d(i, j ).l := d(i�1, j�1).l + change.l
elsif costToDelete <= costToInsert then

d(i, j ).c := costToDelete

d(i, j ).l := repChange(nci �> name, nci �> number, "T", b, del) + d(i�1, j ).l
else

d(i, j ).c := costToInsert 40

d(i, j ).l := repChange("T", a, mcj �> name, mcj �> number, ins) + d(i, j�1).l
end if

end for

end for

result d(p, q)
end edit

% algorithm of Selkow
include "Tgamma.t"

include "Ta2_2defs.t"

include "Ta2_2mkprt.t"

include "Trepchg.t"

include "Tsize.t"

include "Ta2_2costs.t"

include "Ta2_2edit.t"

var t1, t2 : ^node

put "Examples of legal trees are (a(b(c))) and (a(b)(c))." 10

put "Node labels are single characters. No blanks are allowed."

put "Enter source and target:"

var s1, s2 : string
get s1, s2

var p := 1; var nodes := 1
makeTree(s1, p, t1, nodes)
p := 1; nodes := 1
makeTree(s2, p, t2, nodes)
put "Source is of size ", treeSize(t1)
printTree(t1, 1) 20

put "Target is of size ", treeSize(t2)
printTree(t2, 1)
const e := edit(t1, t2)
put "Distance is: ", e.c
put "with operations: ", e.l

34



A.3 Tai's Tree-to-Tree Algorithm

% �le Ta3defs.t
type costType: int

const in�nity := 999999
const null := " "

const maxFanout := 10
const dSize := maxFanout + 1

type node:
record 10

name: char

number : int
fanout: 0 . . maxFanout

child: array 1 . . maxFanout of ^node

parent: ^node

end record

const maxNodes := 10
const maxDepth := 10

20

type nodeList : array 1 . . maxNodes of ^node

var e: array 1. . maxNodes, 1. . maxNodes, 1. . maxDepth, 1. . maxDepth, 1. . maxDepth, 1. . maxDepth of costType

var cc, d: array 1 . . maxNodes, 1 . . maxNodes of costType

% �le Ta3mkprt.t
procedure linkItUp(s: string, var i: int, var n: ^node, p: ^node, var nodes: int, var nl: nodeList)

new n

n �> name := s(i+1) % skip the opening bracket
n �> number := nodes

nl(nodes) := n

n �> fanout := 0
n �> parent := p

nodes += 1
i += 2 10

loop

exit when s(i) = ")"

n �> fanout += 1
linkItUp(s, i, n �> child(n �> fanout), n, nodes, nl)

end loop

i += 1 % skip the closing bracket
end linkItUp

procedure makeTree(s: string, var n: ^node, var nl: nodeList)
var nodes := 1 20

var p := 1 % index into speci�cation string
linkItUp(s, p, n, nil, nodes, nl)

end makeTree

procedure printTree(n: ^node, indent: int)
const blanks := " "

put blanks(1 . . indent), n �> name, "[", n �> number, ">" . .
if n �> parent = nil then

put "*]"

else 30

put n �> parent �> number, "]"

end if

for i: 1 . . n �> fanout

printTree(n �> child(i), indent+1)
end for

end printTree

% �le Ta3step1.t

35



function parentOf (i: int, nl:nodeList): int
if i = 1 then

result 0
else

result nl(i) �> parent �> number

end if

end parentOf

procedure setValue(s, u, i, t, v, j, x, y: int, t1, t2 : ^node, nl1, nl2 : nodeList) 10

if (s = u and u = i) and (t = v and v = j ) then

e(s, u, i, t, v, j ) := gamma(nl1(i) �> name, nl2(j ) �> name)
elsif (s = u and u = i) or (t < v and v = j ) then

e(s, u, i, t, v, j ) := e(s, u, i, t, parentOf (j, nl2), j�1) + gamma(" ", nl2(j ) �> name)
elsif (s < u and u = i) or (t = v and v = j ) then

e(s, u, i, t, v, j ) := e(s, parentOf (i, nl1), i�1, t, v, j ) + gamma(nl1(i) �> name, " ")
else

e(s, u, i, t, v, j ) := min(e(s, x, i, t, v, j ), min(e(s, u, i, t, y, j ),
e(s, u, x�1, t, v, y�1) + e(x, x, i, y, y, j )))

end if 20

end setValue

procedure step1(t1 : ^node, nl1 : nodeList, t2 : ^node, nl2 : nodeList)
var x := �1
var y := �1
for i: 1 . . treeSize(t1)

for j : 1 . . treeSize(t2)
var u := i

loop

exit when u = 0 30

var s := u

loop

exit when s = 0
var v := j

loop

exit when v = 0
var t := v

loop

exit when t = 0
setValue(s, u, i, t, v, j, x, y, t1, t2, nl1, nl2) 40

t := parentOf (t, nl2)
end loop

y := v

v := parentOf (v, nl2)
end loop

s := parentOf (s, nl1)
end loop

x := u

u := parentOf (u, nl1)
end loop 50

end for

end for

end step1

% �le Ta3step2.t
procedure step2(t1, t2 : ^node, nl1, nl2 : nodeList)

cc(1, 1) := 0
for i: 2 . . treeSize(t1)

cc(i, 1) := i

end for

for j : 2 . . treeSize(t2)
cc(1, j ) := j

end for

for i: 2 . . treeSize(t1) 10

for j : 2 . . treeSize(t2)
cc(i, j ) := in�nity

var s := parentOf (i, nl1)
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loop

var t := parentOf (j, nl2)
loop

cc(i, j ) := min(cc(i, j ), cc(s, t) + e(s, parentOf (i, nl1), i�1, t, parentOf (j, nl2), j�1)
� gamma(nl1(s) �> name, nl2(t) �> name))

exit when t = 1
t := parentOf (t, nl2) 20

end loop

exit when s = 1
s := parentOf (s, nl1)

end loop

cc(i, j ) := cc(i, j ) + gamma(nl1(i) �> name, nl2(j ) �> name)
end for

end for

end step2

% �le Ta3step3.t
procedure step3

d(1, 1) := 0
for i: 2 . . treeSize(t1)

d(i, 1) := d(i�1, 1) + gamma(nl1(i) �> name, null)
end for

for j : 2 . . treeSize(t2)
d(1, j ) := d(1, j�1) + gamma(null, nl2(j ) �> name)

end for

for i: 2 . . treeSize(t1) 10

for j : 2 . . treeSize(t2)
d(i, j ) := min(cc(i, j ), min(d(i�1, j ) + gamma(nl1(i) �> name, null),

d(i, j�1) + gamma(null, nl2(j ) �> name)))
end for

end for

end step3

% algorithm of Tai
include "Tgamma.t"

include "Ta3defs.t"

include "Ta3mkprt.t"

include "Tsize.t"

include "Ta3step1.t"

include "Ta3step2.t"

var t1, t2 : ^node

put "Examples of legal trees are (a(b(c))) and (a(b)(c))." 10

put "Node labels are single characters. No blanks are allowed."

put "Enter source and target:"

var s1, s2 : string
get s1, s2

var nl1, nl2 : nodeList

makeTree(s1, t1, nl1)
makeTree(s2, t2, nl2)
put "Source is of size ", treeSize(t1)
printTree(t1, 1)
put "Target is of size ", treeSize(t2) 20

printTree(t2, 1)

step1(t1, nl1, t2, nl2)
step2(t1, t2, nl1, nl2)
include "Ta3step3.t"

step3

put "Distance is: ", d(treeSize(t1), treeSize(t2))
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A.4 Zhang and Shasha's Tree-to-Tree Algorithm

% �le Ta4defs.t
type costType: int

const in�nity := 999999
const null := " "

const maxFanout := 10
const dSize := maxFanout + 1

type node:
record 10

name: char

number, leftmost: int
keyroot: boolean

fanout: 0 . . maxFanout

child: array 1 . . maxFanout of ^node

parent: ^node

end record

const maxNodes := 10
const fdSize := maxNodes + 1 20

const maxDepth := 4

type nodeList : array 1. .maxNodes of ^node

var fd: array 0 . . fdSize, 0 . . fdSize, 0 . . fdSize, 0 . . fdSize of costType

var d: array 1 . . maxNodes, 1 . . maxNodes of costType

% �le Ta4mkprt.t
procedure linkItUp(s: string, var i: int, var n: ^node, p: ^node)

new n

n �> name := s(i+1) % skip the opening bracket
n �> fanout := 0
n �> parent := p

i += 2
loop

exit when s(i) = ")"

n �> fanout += 1 10

linkItUp(s, i, n �> child(n �> fanout), n)
end loop

i += 1 % skip the closing bracket
end linkItUp

procedure postorder(var n: ^node, var nodes: int, var nl: nodeList, makeKeyroot: boolean)
if n not = nil then

n �> leftmost := nodes

n �> keyroot := makeKeyroot

for i: 1 . . n �> fanout 20

postorder(n �> child(i), nodes, nl, i not= 1)
end for

n �> number := nodes

nl(nodes) := n

nodes += 1
end if

end postorder

procedure makeTree(s: string, var n: ^node, var nl: nodeList)
var nodes := 1 30

var p := 1 % index into speci�cation string
linkItUp(s, p, n, nil)
postorder(n, nodes, nl, true)

end makeTree

function repNode(n: ^node): string
var r := n �> name + "[" + intstr(n �> number) + ">"
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if n �> parent = nil then

r += "*]"

else 40

r += intstr(n �> parent �> number) + "]"

end if

if n �> keyroot then

r += "*"

else

r += "-"

end if

result r + intstr(n �> leftmost)
end repNode

50

procedure printTree(n: ^node, indent: int)
const blanks := " "

put blanks(1 . . indent), repNode(n)
for i: 1 . . n �> fanout

printTree(n �> child(i), indent+1)
end for

end printTree

% �le Ta4edit.t
function access(l, m, n, o: int): costType

var lprime := l

var mprime := m

var nprime := n

var oprime := o

if l > m then

lprime := 0
mprime := 0

end if 10

if n > o then

nprime := 0
oprime := 0

end if

result fd(lprime, mprime, nprime, oprime)
end access

for x : 1 . . treeSize(t1)
if nl1(x) �> keyroot then

const lx := nl1(x) �> leftmost 20

for y: 1 . . treeSize(t2)
if nl2(y) �> keyroot then

const ly := nl2(y) �> leftmost

fd(0, 0, 0, 0) := 0
for i: lx . . x

fd(lx, i, 0, 0) := access(lx, i�1, 0, 0) + gamma(nl1(i) �> name, null)
end for

for j : ly . . y

fd(0, 0, ly, j ) := access(0, 0, ly, j�1) + gamma(null, nl2(j ) �> name)
end for 30

for i: lx . . x
for j : ly . . y

var part := min(access(lx, i�1, ly, j ) + gamma(nl1(i) �> name, null),
access(lx, i, ly, j�1) + gamma(null, nl2(j ) �> name))

if nl1(i) �> leftmost = lx and nl2(j ) �> leftmost = ly then

fd(lx, i, ly, j ) := min(part,
access(lx, i�1, ly, j�1) + gamma(nl1(i) �> name, nl2(j ) �> name))

d(i, j ) := fd(lx, i, ly, j )
else

fd(lx, i, ly, j ) := min(part, 40

access(lx, nl1(i) �> leftmost � 1, ly, nl2(j ) �> leftmost � 1) + d(i, j ))
end if

end for

end for

end if
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end for

end if

end for

% �le Trdtree.t
put "Examples of legal trees are (a(b(c))) and (a(b)(c))."

put "Node labels are single characters. No blanks are allowed."

put "Enter source and target:"

var s1, s2 : string
get s1, s2

put s1, skip, s2

include "Tgamma.t"

include "Ta4defs.t"

include "Tsize.t"

include "Ta4mkprt.t"

include "Trdtree.t"

var t1, t2 : ^node

var nl1, nl2 : nodeList

makeTree(s1, t1, nl1) 10

makeTree(s2, t2, nl2)
put "Source is of size ", treeSize(t1)
printTree(t1, 1)
put "Target is of size ", treeSize(t2)
printTree(t2, 1)
include "Ta4edit.t"

put "Distance is: ", d(treeSize(t1), treeSize(t2))
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A.5 Subtree Insertion and Deletion

% �le N1defs.t
type costType: int

const in�nity := 999999
const null := " "

const maxFanout := 10
const dSize := maxFanout + 1

type node:
record 10

name: char

number, leftmost: int
keyroot: boolean

fanout: 0 . . maxFanout

child: array 1 . . maxFanout of ^node

parent: ^node

end record

const maxNodes := 10
const fdSize := maxNodes + 1 20

const maxDepth := 4

type nodeList : array 1. .maxNodes of ^node

var fd: array 0 . . fdSize, 0 . . fdSize of costType

var d: array 1 . . maxNodes, 1 . . maxNodes of costType

% �le N1edit.t
for x : 1 . . treeSize(t1)

if nl1(x) �> keyroot then

const lx := nl1(x) �> leftmost

for y: 1 . . treeSize(t2)
if nl2(y) �> keyroot then

const ly := nl2(y) �> leftmost

fd(lx � 1, ly � 1) := 0
for i: lx . . x

fd(i, ly � 1) := fd(nl1(i) �> leftmost � 1, ly � 1) + deleteTree(nl1 (i)) 10

end for

for j : ly . . y

fd(lx � 1, j ) := fd(lx � 1, nl2(j ) �> leftmost � 1) + insertTree(nl2(j ))
end for

for i: lx . . x
for j : ly . . y

const li := nl1(i) �> leftmost

const lj := nl2(j ) �> leftmost

var part := min(fd(i � 1, j ) + gamma(nl1(i) �> name, null),
min(fd(i, j � 1) + gamma(null, nl2(j ) �> name), 20

min(fd(li � 1, j ) + deleteTree(nl1(i)),
fd(i, lj � 1) + insertTree(nl2(j )))))

if li = lx and lj = ly then

d(i, j ) := min(part, fd(i � 1, j � 1) + gamma(nl1(i) �> name, nl2(j ) �> name))
fd(i, j ) := d(i, j )

else

fd(i, j ) := min(part, fd(li � 1, lj � 1) + d(i, j ))
end if

end for

end for 30

end if

end for

end if

end for

% �le N1.t
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include "Tgamma.t"

include "N1defs.t"

include "Tsize.t"

include "Ta4mkprt.t"

include "Trdtree.t"

var t1, t2 : ^node

var nl1, nl2 : nodeList 10

makeTree(s1, t1, nl1)
makeTree(s2, t2, nl2)
put "Source is of size ", treeSize(t1)
printTree(t1, 1)
put "Target is of size ", treeSize(t2)
printTree(t2, 1)
include "Ta2_1costs.t"

include "N1edit.t"

put "Distance is: ", d(treeSize(t1), treeSize(t2))
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A.6 Swapping Subtrees

% �le N2swap.t
function equalTrees(p, q: ^node): boolean

if p = nil then

result q = nil

elsif q = nil then

result false

elsif p �> name not = q �> name or p �> fanout not = q �> fanout then

result false

else

var i := 1 10

loop

exit when i > p �> fanout

if not equalTrees(p �> child(i), q �> child(i)) then

result false

end if

i += 1
end loop

result true

end if

end equalTrees 20

function swap(i, sibO�, j, sibOfj : ^node) : costType

if i �> parent not = nil and j �> parent not = nil

and equalTrees(i, sibOfj ) and equalTrees(sibO�, j ) then

result 1
else

result in�nity

end if

end swap

% �le N2edit.t
for i: 0. .treeSize(t1)

for j : 0. .treeSize(t2)
fd(i, j ) := in�nity

end for

end for

d(treeSize(t1), treeSize(t2)) := 0
for x : 1 . . treeSize(t1)

if nl1(x) �> keyroot then

const lx := nl1(x) �> leftmost 10

for y: 1 . . treeSize(t2)
if nl2(y) �> keyroot then

const ly := nl2(y) �> leftmost

fd(lx � 1, ly � 1) := 0
for i: lx . . x

fd(i, ly � 1) := fd(nl1(i) �> leftmost � 1, ly � 1) + deleteTree(nl1 (i))
end for

for j : ly . . y

fd(lx � 1, j ) := fd(lx � 1, nl2(j ) �> leftmost � 1) + insertTree(nl2(j ))
end for 20

for i: lx . . x
for j : ly . . y

const li := nl1(i) �> leftmost

const lj := nl2(j ) �> leftmost

fd(i, j ) := min(fd(i � 1, j ) + gamma(nl1(i) �> name, null),
min(fd(i, j � 1) + gamma(null, nl2(j ) �> name),
min(fd(li � 1, j ) + deleteTree(nl1(i)),
fd(i, lj � 1) + insertTree(nl2(j )))))

if li = lx and lj = ly then

fd(i, j ) := min(fd(i, j ), fd(i � 1, j � 1) + gamma(nl1(i) �> name, nl2(j ) �> name)) 30

d(i, j ) := fd(i, j )
else

fd(i, j ) := min(fd(i, j ), fd(li � 1, lj � 1) + d(i, j ))
if nl1(i) �> keyroot and nl1(i) �> parent not= nil
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and nl2(j ) �> keyroot and nl2(j ) �> parent not= nil then

fd(i, j ) := min(fd(i, j ),
fd(nl1(li � 1) �> leftmost � 1, nl2(lj � 1) �> leftmost � 1)
+ swap (nl1(i), nl1(li � 1), nl2(j ), nl2(lj � 1)))

end if

end if 40

end for

end for

end if

end for

end if

end for

% �le N2.t
include "Tgamma.t"

include "N1defs.t"

include "Tsize.t"

include "Ta4mkprt.t"

include "Trdtree.t"

var t1, t2 : ^node

var nl1, nl2 : nodeList 10

makeTree(s1, t1, nl1)
makeTree(s2, t2, nl2)
put "Source is of size ", treeSize(t1)
printTree(t1, 1)
put "Target is of size ", treeSize(t2)
printTree(t2, 1)
include "Ta2_1costs.t"

include "N2swap.t"

include "N2edit.t"

put "Distance is: ", d(treeSize(t1), treeSize(t2)) 20
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