Technical Report No. 95-373

Practical Use of Graph Rewriting

Dorothea Blostein, Hoda Fahmy, Ann Grbavec

January, 1995

Department of Computing and Information Science

Queen’s University, Kingston, Ontario, Canada K7L 3N6

Contents

1. Graph ReWriting MEChANISINS c.uiitiiiei ettt e et e e e e e e e e e e e e eneeaneen 1
L B 3 510001 o] (o o PSSP 2
1.2 Classification of Embedding MechaniSms..........ccceeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieeeieeeeeeeeeeeeeeeeees 2
1.3 Practical Considerations for Selecting a Rewrite MechaniSm.............c..covevviiiiiiiniiniiniininieieenn, 4
1.3.1 Power of EMbeddingcc.vuuiiniiiiiii e 4
1.3.2 FOrmal PrOPeItiesovuuiiiniii ittt ettt et et e eanee 4
1.3.3 Readability and Intellectual Manageability...............cooeiiiiiiiiiiiiiiiiiii e, 5
1.3.4 Isomorphisms versus General Graph MoOrphiSmsccuviuieiiiiiiiiineiiiiineeneannees 6
1.3.5 Efficiency of Rewrite-rule AppliCation...............cuuviuiiiiiiniiiniiiii e, 7
2. Extensions to Graph Rewriting MeChaniSmS.......ccouuiuuiiiiiiiiiiiiiiiee ettt eeeeaiie e e eaees 7
2.1 Labels and AttrIDULES.eiiiiiiiiie et e e e e et e e e e et eaaa e aae s 8
2.2 Attribute Transfer FUNCHONSttt 9
2.3 ApPlication CONMAILIONS.cciiiiiiiiiiieee ettt ettt e ettt e e ettt et e e e e eeenabai e eeees 9
2.4 Parameters to Graph Rewrite RUIES..........c.oiiiiiiiiiiii e 10
2.5 Rewrite Rules with Variable Node and Edge Labels...........c.oouviiiiiiiiiiiiiiiiii e 10
2.6 Rewrite Rules with Variable Graph StruCture............oouiiiiiiiiiiri e 11
2.7 Planning for Evolving Graph-Rewriting SyStemsc..cooiiiiiiiiiiiiiiiiiiiiiii e 11
2.7.1 Hierarchical HOst-Graph StruCtUIe............couuviiiiiiiiiiiiiniiii e 11
2.7.2 Effect of (Non)Induced Subgraphs on Graph Evolution...........ccceeoiiiiiiiiiiniieennnneenn. 12
3. Computation via Graph REWITHNZovuiniiiiii ettt et et e e e e e e et e e e e e e eaaas 14
3.1 Unordered Graph ReEWITING.....ccuuiiiiiiiiiiiiiiiieiiiiir et e et e et e e e et e e e et e e eaaieaees 15
3.2 Graph Grammars and Parsers.........c.coooooiiiiiiiiiiiiiiiiiiiii et 15
3.3 Ordered Graph Rewriting: Organization and Modularity for Rewrite Rulesc....ccoocooeiennnt. 16
3.4 Event-driven Graph REWITtNG.........couiiiniiiii e 17
4. Popularization of Graph ReWTTHING......oiiiiiiiriiiiiiieiiiiiie et e e et e e e et e e e eab s eeeanan e 18
4.1 A Graph-Rewriting CUILUIEouiiniiiiii et e e e ens 18
4.2 Graph Rewriting as Part of a Larger SysStemcooooiiiiiiiiiiii e 19
4.3 Graph INSPECLION «....evviiiii ittt ettt et ettt ettt e e e e enane 19
4.4 Efficiency of a Graph ReWriting SYSteMccuiuniiiiiiiie e 20
4.5 Graph-reWrite TOOISueuniiiii et ettt e 20
5. Selected Application Areas for Graph REWTIIHNGouuiiniiniiiiiiii e 21
5.1 Software ENGINEEIINGoouuiiiniiiiiiii ettt et 21
5.2 Syntactic Pattern RECOZNITIONuviiuuiiiiiiiii ittt e e e e 23
5.3 Picture Processing and Document Image AnalysiS.........cccoouuieiiiiiiiiiiiiiiiiiiiiiiiiiieee e 23
5.4 DiHAGram EditOrscc.uieuniiiiiii e et 24
5.5 Databases and Semantic NESccouuiiiiiiiiiiiiiii e 24
5.0 BIOlO@Y cuiniiiit ittt aa e 25
6. Summary and CONCIUSIONSc.uuuiitiiiii ittt et ettt e e e et et et e ea e et e eaieeeaaeeenane 25
AppendixB. Graph Rewriting MeChaniSmS.c.uuuuuuiuuiiiiiiiiiiiiiiee e .27
A.1 Unrestricted Embeddings: EXpression INOtAtiONvuviniiniieiiiiiie e e ieie e e e e e e enes 27
A.2 Unrestricted Embeddings: Diagrammatic INOtAtIONS......euvvvvrruuiiiiiiiiiiiiiiiiiiiiiissessee e eeeeeeeeeeeeeaes 28
A.3 Depthl Embeddings: NCE and NLC............cccciiiiiiiiiiiiiiiiiiie e 30
A.4 Elementary Embeddings: Schneider’s NOtationccuuriiuireiiiniiiiniiineiin et eeieees 32
A5 GIUNG MOEIS ... ettt et et ettt et e 33
A.5.1 The Algebraic ApPProachi........ccoooiiiiiiiiiiiiiiiiiiii e 34
A.5.2 Edge Replacement SYSTEIMS . ..vuuuiineiniieiiieieii ettt e eieieiete i eiaeie et et eneeneaneaneanannes 35
A.5.3 Hyperedge Replacement SYSIEIMISvuiuiiniineiiiiiiie ettt et e e e eie e e enees 35
A.6 Structured Graph Rewriting: Embedding combined with Gluing...........cccocccceevviiiiniiiiinieennne. 36

N (5 (S 1 (o = TR 37

Practical Use of Graph Rewriting

Dorothea Blostein, Hoda Fahmy, Ann Grbavec
Department of Computing and Information Science
Queen’s University, Kingston, Ontario, Canada K7L 3N6
blostein@qucis.queensu.ca

Graphs provide an expressive and versatile data representation. Typically, nodes represent objects or concepts, and
edges represent relationships among them. Hierarchical relationships can be depicted by node-nesting [Hare88] [SiGJ93].
Auxiliary information is expressed by adding attributes to nodes or edges. Given the widespread use of graphs as a data
representation, it is natural that graph manipulations form the basis of many useful computations. Graph manipulations
can be represented implicitly, embedded in a program that, among other things, constructs or modifies a graph.
Alternatively, graph manipulations can be represented explicitly, using clearly-delineated graph rewriting rules that modify a
host graph. The explicit use of graph-rewriting rules offers several advantages. Graph rewriting provides an abstract and
high-level representation of a solution to a computational problem. Also, the theoretical foundations of graph rewriting
ease the task of proving correctness and convergence properties.

Graph rewriting has the potential to be useful in a large variety of applications. However, it is difficult for software
designers to evaluate the merits of using graph-rewriting solutions to their software problems. The literature for graph
rewriting is extensive and highly technical. Here we present an intuitive overview of graph rewriting, with emphasis on
application to practical problems. Detailed definitions and proofs may be found in the references. SectionMreviews the
mechanisms and notations that are available for expressing a single graph-rewriting rule, and discusses practical
considerations related to the selection of a particular rewriting mechanism. Graph-rewriting rules are extended in Sectionl]
to include attribute processing, application conditions, parameters, and variables. Unordered rewriting, graph grammars,
ordered rewriting, and event-driven rewriting (SectionB) provide alternative methods for organizing a computation that
centers on graph-rewriting. SectionBldiscusses considerations related to the practical application of graph rewriting; these
include methods of graph inspection, efficiency considerations, tool availability, and the inclusion of graph rewriting
sections within a larger software system. Existing graph-rewriting systems (SectionB) illustrate the wide range of
methods used in practical application of graph-rewriting.

If graph rewriting is to be used in an application, one has to choose a particular graph-rewriting mechanism, and a
particular notation in which to express the rewrite rules. The choice is large, as seen in Section In addition, it is of
great practical importance is to decide how the desired computation can be expressed using graph rewriting. What role do
attributes play? Should the rewrite be organized as a graph grammar, an unordered rewriting system, or an ordered rewriting
system? (This overview concentrates on sequential graph rewriting, but parallel rewriting is more appropriate for some
problems.) What methods can be used to organize a large collection of rewrite rules, so that they remain intellectually
manageable, and can be debugged and updated? How can information be structured in a graph? For example, how can
alternatives or uncertainty be represented and manipulated? As of yet, there are no general answers to these questions.

Existing graph-rewriting systems provide a useful source of information and inspiration. We are motivated by our
personal experience in applying graph rewriting to diagram recognition. (The goal of diagram recognition is to extract the
meaning conveyed by an image of music notation, math notation, circuit-diagram notation, and so on [[CDAR93]). Graph
rewriting is a powerful tool with a strong theoretical basis. Further research is needed to encourage practical use of graph
rewriting, to give this computational tool the accessibility it deserves.

1. Graph Rewriting Mechanisms

A graph-rewriting rule is applied to a host graph to replace one subgraph by another. The sequential graph-rewriting
mechanisms we consider here involve the replacement of one subgraph at a time; parallel rule application is considered only
briefly. Sequential and parallel rewriting are reviewed by [Nagl79]. Other reviews and overviews include [Nagl87] [Ehri87]
[KrRo90ab] [EhKL91] [FaB192].

This research is supported by Canada’s Natural Sciences and Engineering Research Council.

Graph-rewriting requires a decision on how to attach the new subgraph to the host graph. This can be done via an
explicit embedding specification or implicitly by a gluing isomorphism. Kreowski and Rozenberg combine these two
approaches in their definition of a structured graph rewriting rule; their presentation [KrRo90a] [KrRo90b] is recommended
as a formal introduction to the embedding and gluing approaches to graph rewriting. Before reviewing these approaches, we
must establish terminology, since varied terms are used in the literature.

1.1 Terminology

Terminology for graph rewriting is not standardized; we use the following terms. Note that these definitions
incorporate some assumptions (for example, the use of subgraph isomorphism, where some models actually allow for a
general graph morphism).

Graph g A directed or undirected graph. Nodes and/or edges may be labeled, and may have associated attributes.

Graph Rewrite Rule A rule specified by:
* g — g, g and g, are unattributed graphs. A subgraph isomorphic to g, is to be replaced by one isomorphic to g,

* Embedding information This can be textual or graphical (Appendix@.1 to A.4)
Gluing models specify embedding with a gluing isomorphism (Appendix@A.5)
* Application condition Restrictions on rule application (Sectionl13). Optional.

These can include restrictions on the existence of host-graph nodes and edges,
as well as restrictions on attribute values.

* Attribute Transfer Function Assigns attribute values (SectionZ]2). Optional.
Attribute values for gt are computed from attribute values of g/host

Host graph g The graph to which a rule is being applied.

glh"St A subgraph of the host graph g, isomorphic to g;. In some models, glhOSt must be an induced subgraph:
if an edge of g connects two nodes of glh"“, then that edge must be part of glhOSt.

RestGraph The graph g - g™t (This “-” operator denotes removal of all nodes and edges of g%, as well as edges
with one or both endpoints in glh(’s‘.)

g host A subgraph isomorphic to g; used to replace gt

Pre-embedding edges the set of edges joining g’ to RestGraph (These edges “embed” glhost ing)
Post-embedding edges the set of edges joining grhoSt to RestGraph

The basic primitive being manipulated by graph rewriting varies depending on the approach. It may be a node
(Appendix@A.1 to A.5.1), an edge (Appendix@.5.2), or a hyperedge (Appendix@.5.3). Most approaches assume that the
basic primitive being acted upon is a node.

1.2 Classification of Embedding Mechanisms
A graph rewriting rule implicitly or explicitly provides embedding information. Gluing models use the gluing
isomorphism to implicitly specify an invariant embedding. With explicit embedding models, graph rewriting is
accomplished by locating glhOSt, removing it along with all pre-embedding edges, and then constructing post-embedding
edges according to the embedding information. Embedding mechanisms vary in complexity and power, allowing a varying
amount of computation to be performed in converting the pre-embedding edges to post-embedding edges.
A pre-embedding edge is converted into zero, one or more post-embedding edges. Thus, the embedding mechanism
needs to specify, for each possible pre-embedding edge,
* the direction of the post-embedding edges (if directed edges are used)
* the label of the post-embedding edges (if edge labels are used)
* the endpoints of the post-embedding edges (zero, one or more sets of endpoints). One endpoint is a node in grhOSt.
The other endpoint is a RestGraph node, designated by a path that starts with a pre-embedding edge, and sometimes
continues with a sequence of RestGraph edges.
Some embedding mechanisms permit unrestricted specification of post-embedding edges in terms of pre-embedding edges
and RestGraph. Other mechanisms impose some restrictions, as discussed below. The choice of an embedding mechanism
can involve a tradeoff between using fewer, but complex, rewrite rules, versus using a larger number of simpler rules. Nagl
developed the following classification of embedding mechanisms [Nagl79] [Nagl87], informally summarized here from
most complex to least complex. This classification imposes a useful organization on the many rewrite mechanisms
reviewed in Appendix@l.

Unrestricted — From any glhOSt node, we can follow a sequence of edges (starting with a pre-embedding edge), conditional on

edge orientations and edge labels, ending at a set of RestGraph nodes. A subset of these nodes can be chosen
(based on node label) to act as endpoints for post-embedding edges. The directions and edge-labels of the post-
embedding edges can be chosen freely.

Unrestricted embeddings can be expressed by the textual expressions discussed in Appendix@.1, or by the
diagrammatic notations presented in Appendix@l.2.

Orientation and Label Preserving (olp) — As in the unrestricted case, but when we begin by following a pre-embedding edge
with a certain orientation and edge-label, then all post-embedding edges we construct must have this same
orientation and label. In the expression notation of Figurel.1, the set In ; has to begin by following an I; edge;
the set Out;j has to begin by following an O; edge.

Depthl — As in the unrestricted case, except that the RestGraph endpoints for post-embedding edges are restricted to the
direct neighbors of g"st. A well-known example of a Depthl embedding mechanism is Neighborhood Controlled

Embedding (NCE), defined by [JaRo082] (Appendix@A.3). NCE applies the additional restriction that the
embedding is orientation-preserving (but not necessarily label-preserving).

Simple — Depthl, and Orientation and Label Preserving.

Elementary — Simple, with the additional restriction that the embedding cannot depend on the labels of nodes in RestGraph.
A pre-embedding edge can be identified only by its orientation, edge label, and the glhOSt node it connects to; if

there are several such pre-embedding edges, they must all be transformed the same way, independent of the node
label of the RestGraph nodes they connect to. Schneider's embedding mechanism (Appendix[@A.4) is of the
Elementary type.

Analogous — Elementary, and the embedding transformation is independent of the orientations and labels of the pre-
embedding edges. For example, consider the application of Schneider’s embedding to an undirected, unlabeled
graph.

Invariant - There is a mapping between nodes of g; and g, such that g 15t directly takes over the pre-embedding edges of
glh"s‘ (e.g. [Mont70]). This is the only type of embedding that does not allow the splitting and contracting of

edges: the number of post-embedding edges equals the number of pre-embedding edges.
The gluing models of Appendix@.5 provide an important use of invariant embedding. These models have a
strong mathematical basis, with useful theorems concerning order-independence and parallelism in rule application.

This classification characterizes the class of graph languages generated by a graph grammar. Given a particular production
type T (such as context-free or context-sensitive, Figure®.2), a hierarchy of graph language classes arise based on the
embedding mechanism [Nagl87]:
expression-T 2 olp-T, depthl-T 2 simple-T 2 elementary-T 2 analogous-T 2 invariant-T.
The equalities hold when the productions are of type unrestricted [Uesu78].
At this point it is appropriate to give more detailed consideration to the various graph rewriting mechanisms. Please
refer to Appendix, which reviews the following topics.

* Expression notation provides unrestricted embeddings. The graph-language hierarchy results (Figure A.2).

* Diagrammatic notations provide nearly unrestricted embeddings. The Y, X, and A notations use required context to
notate graph parts common to g; and g, optional context to notate the embedding, and prohibited context to notate
disallowed host-graph structure (which other rewrite mechanisms include as part of the application condition).

* NCE (Neighbourhood Controlled Embedding) and NLC (Node Label Control) provide Depth1 embedding, and have
important theoretical properties.

* Schneider’s mechanism, defined in 1970, provides an elementary embedding.

* Gluing models use an invariant embedding, specified via the gluing isomorphism. Gluing models include the
algebraic approach, edge-replacement systems, and hyperedge replacement systems.

* Structured graph rewriting is a comprehensive model that combines embedding and gluing into one framework.
Review of this model is highly informative.

Given this bewildering diversity of rewriting mechanisms, it is important to consider the practical issues involved in
choosing one particular mechanism.

1.3 Practical Considerations for Selecting a Rewrite Mechanism

No single rewriting mechanism is suitable for all applications. The choice of rewriting mechanism depends greatly
on the application, on the availability of tools, and on the tastes of the system designer. Analogously, a variety of
programming languages continue to be in widespread use, despite the existence of general-purpose programming languages.

Many factors are relevant in choosing a rewriting mechanism, including the power of the embedding, formal
properties of rewrite rules, readability and intellectual manageability, efficiency of rule application, and tools for rule
development and debugging. We include personal observations, influenced by our experience in applying graph rewriting to
diagram recognition. While no definite recommendations can be made, practical use of graph rewriting can be furthered by
clarifying the issues involved in selecting a rewrite mechanism.

1.3.1 Power of Embedding

The complex embedding mechanisms permit significant graph inspection and graph manipulation during the
embedding step. The most restricted embedding mechanisms, such as the invariant embedding of the gluing models, are
inconvenient for expressing certain common graph operations. For example, consider the operation of deleting an A-labeled
node from the host graph. All edges incident on the A-labeled node are to be deleted also. This operation is easily
accomplished using an elementary embedding, but is difficult to accomplish with an invariant embedding (FigureD.

The choice of an embedding mechanism involves a tradeoff between using fewer, but complex, rewrite rules, versus
using a larger number of simpler rules. Some graph-rewrite applications may call for a natural level of embedding
complexity. For example, in reading math notation, we use an elementary embedding mechanism [Grba94], but use of a
complex embedding mechanism would not reduce the number of rules in our particular rule set. Change to a gluing model
does greatly increase the number of rules, as illustrated by Figurellb.

We have not come across practical examples of graph-rewrite systems that make heavy use of complex embeddings.
It appears that many software designers find it is easier to express a computation using more rules of a restricted embedding
type. We cannot judge whether this is inherent to the problem domains, or whether this arises because we have insufficient
knowledge for taking practical advantage of complex embeddings.

L]

L]

L]
node,

(a) (b)

Figure Rewrite rules to delete an A-labeled node and all incident edges. (a) Elementary embedding mechanism.
During rule-application g; is matched to an A-labeled node. When this is replaced by grh‘)st (an empty graph), all embedding
edges are discarded. (b) Collection of rules in a gluing model, using a shorthand notation. The invariant embedding of
the gluing model necessitates that g; be expanded to include all nodes neighboring the A-labeled node. Many rewrite rules
are needed, to enumerate each possible configuration of incident edges. (The “...” notation denotes a variable number of
nodes and edges, and is adapted from [EhHK92, p. 568]; Ehrig et al. do not mention an interpreter for this notation. The *-
groups of A-rewriting, which denote zero or more occurrences of starred graph elements, can be used to implement node-
deletion in a gluing approach [KaLLG91, p478]. A A-rule that deletes a node is syntactic shorthand for an infinite collection
of A-rules that meet the gluing condition.)

1.3.2 Formal Properties

Formal properties of graph rewriting are practically important. The strong theoretical foundations of the gluing
models can offer significant advantages. For example, algebraic graph rewriting allows easy construction of proofs about
the integrity of a database system; the library-transaction system of [EhKr80] provides an example. However, the gluing
models are appropriate only if invariant embedding suffices for conveniently expressing the needed graph rewriting.

Graph rewriting can be used to perform local transformations that preserve well-formedness properties of the host
graph. For example, graph rewriting has been used to formally define the class of well-formed Forrester diagrams
[DoTo88], and the class of well-formed semantic networks [EnHK92].

1.3.3 Readability and Intellectual Manageability

Readability is an important consideration, with effects on intellectual manageability, system development time, ease
of maintenance, ease of debugging. Complex embeddings can be difficult to specify, understand, and debug. Diagrammatic
notations (such as Y notation [Gott79] [Gott83], X notation [GoOtt87] [GOGNI1] [Gott92], A-notation [KaLG91]
[LoKa92], and notation [Reke94]) can help (Section@.2). Diagrammatic notations show embedding edges graphically,
as edges between the context (which is part of RestGraph) and g,. If a complicated embedding is used (e.g. expression graph
rewriting), then diagrammatic notations provide an easily-perceived depiction of the following of edges in RestGraph.
Visual presentation can be simplified by avoiding the duplication of graph-parts common to g; and g (Figurel). In
summary, diagrammatic depiction of embeddings is advantageous for fairly complex embeddings:

* In case a simple embedding suffices, a textual embedding specification can be used, with the embedding easily
perceived from visually-corresponding nodes in g; and g.. The drawings of g; and g, become unnecessarily cluttered
if a graphical depiction of a simple embedding is used (FigureB). Similarly, gluing isomorphisms are effectively
conveyed by the visual correspondence of g and g, nodes, as in [EhHK92].

* Generally, embeddings that are more complex than the elementary type (Section A.4) are easier to perceive if a
diagrammatic notation is used instead of a textual one.

» Selected embedding paths that are very long and highly complex may benefit from textual rather than diagrammatic
depiction. An example is the use of the PROGRES “path” construct, which permits extensive searching and
testing of the host-graph, as part of the embedding process (Section 5.1).

The use of color could be helpful in diagrammatic notations, for example to distinguish optional, prohibited, and required
contexts. Color distinctions can be more readable than textual annotations. For example, the *-groups in the A-notation
of FigureBb might be more easily perceived through the use of color. Of course, an equivalent black-and-white notation
is needed, since color isn’t always available.

Intellectual manageability is an important consideration. Some applications require complex embeddings, others
don’t. In practical uses of graph rewriting that we have seen, rewrite rules tend to be fairly simple, with uncomplicated
embeddings. Generally, the major difficulties arise not in the formulation of individual rewrite rules, but in the structuring
of a large collection of rules that interact in a desired way.

A
T\

(A »(®) *5(6)

O—2®

(a) Y notation [Gott83] (b) X notation [Gott92] (c) A notation [LoKa92]

FigureZl Three notations for a graph-rewrite rule to add a second edge between an A-labeled node and a B-labeled node.
Avoiding duplication of graph-parts common to g; and g, simplifies both the drawing of g, and g, and especially the
graphical depiction of the embedding. Using Y notation, g, and g, are represented separately, with eight edges and four
nodes used to show the embedding. Using X notation, the common parts of g, and g, are shown as required context, the
additional edge is indicated with a + sign, and no embedding depiction is required. The A notation is similar, but depicts
the added edge as looping to the right of the triangle, into the insertion region. (Part (a) reproduces the Y-notation rule of
[Gott92, Fig. 14].)

Above Above
2 Y > ¥

A h

Below Below

O [

Application Condition: (,v = any node label) & (m(2) = undetermined)
Embedding: {(1,1'),(2,2"),(3,3")}
Attribute Transfer: {ALL(1)=ALL(1); ALL_but_m(2')=ALL_but_m(2); m(2") ='/'; ALL(3")=ALL(3)}

(@

Fraction

=

Above . Above l

(b) ()

FigureBl Three equivalent notations of a graph-rewriting rule to replace a Line-labeled node by a Fraction-labeled node,
in the context of incoming Above and Below edges. (This rule occurs as part of a system for recognition of math-notation
[Grba%94].) (a)Ihe analogous embedding is conveyed by similarly-denotated nodes in visually-corresponding places; this is
reinforced by the textual description “{(1,1"), (2,2"), (3,3")}”, which states that all pre-embedding edges connected to node 1
become post-embedding edges connected to node 1°, and so on. Here u and v are variable node labels, matching a variety of
host-graph labels. (b) In X-notation, the embedding is conveyed as optional context, in the upper part of the X. Here one
node (filled-in, indicating arbitrary node label) and two edges are used to depict a node-correspondence; since directed edges
are used, this must be repeated for incoming and outgoing edges. Execution of X-notation performs repeated matching of
the structures in the optional context. (c) In A-notation, the embedding is conveyed similarly, using *-groups to indicate 0
or more occurrences of the starred structures. Here ?x and ?y are variable edge labels; all occurrences of ?x are unified to the
same value, which may be distinct from the value the ?y variable unifies to. (We adopted similar use of x and y in (b),
although this may not be accepted X-notation syntax.)

1.3.4 Isomorphisms versus General Graph Morphisms

For clarity, our exposition assumes that a subgraph isomorphism test is used when finding a subgraph glh"“
matching g,. However, the use of general graph morphisms is certainly possible. The decision to use a general graph
morphism has great practical impact on the resulting rewrite rules. The utility of general graph morphisms is illustrated by
small examples in the literature ((EhHK92, p. 560], [RoKr90a, p. 200]). On the downside, the use of general morphisms
means that rewrite rules easily give rise to unexpected matches. There may be practical examples where general graph
morphisms are advantageous; we would be interested to hear about debugging of such rewrite systems.

A useful compromise is to selectively indicate where general morphisms may be used. For example, A graph
rewriting uses subgraph isomorphism, but with a label-subscript notation (called a fold) to explicitly indicate groups of

nodes / edges which can optionally be matched to single host-graph entities [KaLG91] [LoKa92]. The utility of this
construct is demonstrated by, for example, a rule to insert an element into a circular list; when the host-graph list is long,
each g; node maps to a unique host-graph node, but a short list causes several g nodes map to one host-graph node. In
summary, the fold construct provides controlled deviation from strict isomorphism: a rule-author selectively and explicitly
indicates where g, node identifications are permissible.

1.3.5 Efficiency of Rewrite-rule Application

Graph-rewriting has well-recognized efficiency problems. Application of a graph-rewrite rule requires that glhOSt be
located in the host graph g, which involves subgraph-isomorphism testing. Since the general form of the subgraph-
isomorphism problem is NP-complete, graph rewriting can be computationally expensive. However, it is often possible to
express a computation using small subgraphs g;. Node labels, edge labels, and directed edges drastically reduce the search
space for isomorphic subgraphs. (Efficiency issues related to node labels are discussed in Sectionll1.) In addition, some
graph rewriting systems have certain phrases that frequently appear in application conditions; these can be exploited to
further reduce the search space for isomorphic subgraphs that meet the application condition. For example, picture-
processing applications commonly use host-graph node attributes to record the (x, y) location of the image feature
represented by a node. In this case, it is possible to preprocess the host graph so that computational geometry algorithms
can quickly answer nearest-neighbor queries. This would permit very fast identification of a g"°st subgraph in which two
nodes are not connected by an edge, but are restricted by an image-proximity clause in the applicability predicate. Such
customized subgraph-isomorphism code could be worthwhile for certain applications.

The von Neumann architecture (geared toward instruction fetch and execution, with a bottleneck between processor
and memory), is not well-suited to the interpretation of graph rewriting. Strong demand might motivate the development
of a new computer architecture with graph-rewriting as a fundamental operation. Certainly this has happened for other
styles of computation: there are special architectures (using custom VLSI chips) for fast implementation of neural network
computations and for Al applications. Standard parallel-processing hardware may also prove useful for the implementation
of graph rewriting.

Simpler rewrite formalisms can provide more efficient, and less expressive, alternatives to graph rewriting. These
include tree grammars [Fu82] and coordinate grammars [Ande77]. However, these restricted formalisms are not suitable for
many applications.

Rewriting efficiency depends not only on the subgraph-isomorphism test, but also on the algorithm for applying a
rewrite rule. In some cases this latter time is dominant. (For example, subgraph-isomorphism search can be eliminated by
a unique cursor-node in the host-graph, which indicates where the graph rewrite should occur. Use of cursor nodes is natural
in editing applications, where the end-user specifies an insertion point, e.g. [GoOtt92] [ELNSS92.) Efficient rule-application
requires an implementation that minimizes the updating of host-graph structure. This is achieved by identifying graph
portions that are common to g; and g, thus avoiding the overhead of first removing and then replacing these nodes and
edges. Some rewrite notations explicitly identify the common portions of g; and g, (e.g. X and A notation) whereas others
provide separate descriptions, repeating the common portions (e.g. Y and Schneider's notation). The implementation can
easily identify the common portions of g; and g if the notation fails to do so. Exploitation of these common portions
results in orders of magnitude speedup in the implementation of X-notation versus Y-notation [Gott92].

Here we've looked at the cost of applying a single rewrite rule. The overall structuring of a graph-rewriting system
greatly influences the number of attempted rewrite-rule applications (Sectionf4).

2. Extensions to Graph Rewriting Mechanisms

In practical applications of graph rewriting, extensions are made to the basic rewriting formulations of SectionMand
Appendix@. Extensions to an individual graph-rewriting rule include attributes, application conditions, and
parameterization. The use of such extensions can greatly increase the expressiveness of a graph rewriting rule. However,
the extensions also limit how well the theoretical foundations of pure graph rewriting carry over to practical use. For
example, in a pure graph grammar, a graph rewriting rule can be applied either in the forward direction (as for generating
examples of graphs in the language) or in the reverse direction (as for bottom-up parsing to recognize whether a given graph
is in the language). However, if the graph grammar must be applied to attributed graphs, then attribute computation rules
generally dictate a unidirectional application of rewrite rules; it becomes necessary to create separate graph grammars for
generation and for recognition.

We begin with a discussion of labels and attributes in graph representations. This introduces the need for rewrite-rule
features such as attribute-transfer functions, application conditions, variable labels, and parameterized rules. Finally we
consider the evolution of graph-rewriting systems; the ease of evolution is affected by the use of structuring, and by the
decision to use induced or non-induced subgraph isomorphism.

2.1 Labels and Attributes; Hierarchical Label Organization

In a graph, both node and edge labels can be used to represent information. The organization of possible labels can
be flat (a set of labels) or hierarchically structured (a tree of labels). For subgraphs to be considered isomorphic, they must
match not only in structure, but also in labeling. Using flat labels, an X-labeled node in g; matches an X-labeled node in
glhOSt. Using hierarchically structured labels, an X-labeled node in g; matches a glhOSt node with a label that occurs at or
below X in the label tree. (Thus subgraph isomorphism becomes non-commutative.) Hierarchical node labels have been
used in several graph rewriting systems [ELNSS92] [Gott92]. (The PROGRES language allows multiple-inheritance
among node-classes, resulting in lattice-structured rather than tree-structured node labels [ELNSS92].) For some
applications, hierarchical edge labels might be useful as well. Advantages of a hierarchical label structure are discussed
below.

Both with flat and hierarchical labels, the implementation can make use of label statistics to reduce subgraph-
isomorphism times. The implementation records how many labels of each kind there are in the host graph. Matching
begins with the rarest node-label found in g;.

Graphs are often augmented with attributes, to express non-structural aspects needed to model an application.
Attributes can be associated with nodes or edges, and can have arbitrary data types, such as integer, string, or table. The
attributes available at a node depend on the label of that node. When node-labels are hierarchically organized, inheritance is
used: a sublabel inherits all of the attributes of it’s parent label, and may have additional attributes defined specifically for
the sublabel [Gott92].

A label can be thought of as a special kind of attribute. A label is distinguished from other attributes in that graph
isomorphism requires labels to match, but permits other attribute values to differ. In practice node labels often indicate the
fundamental characteristics of the object represented by the node, whereas attributes provide detailed characterization.

The distinction between labels and attributes is blurred in some systems, such as A-rewriting [KaLG91]. Here labels
are tuples of arbitrary structure, and hence combine the functions otherwise divided among labels and attributes. Unification
is used when matching variable labels in a A-rule to labels in the host-graph.

The use of attributes gives rise to a tradeoff between representing information via graph structure or via the
attributes, and of embodying computations via graph rewriting or via attribute-value computations. Such a tradeoff arises
whenever we choose the set of node-labels for a graph representation -- should we use many labels, to make fine case
distinctions, or should we use a small number of general labels, using attributes to make the fine case distinctions. (For
now we consider only flat label sets rather than hierarchical ones.)

e Option 1: Use highly-specific node labels. For example, the simple library-transaction system of [EhKr80]
[EhHa86] uses unattributed graphs -- node labels encode the names of books, publishers, and library patrons.

* Option 2: Use general node labels. An alternative library-representation uses a small number of node labels (Book,
Publisher, LibraryPatron), with node attributes to record details such as names and titles.

Both readability and efficiency are affected by this tradeoff. Graph readability suffers under Option 1, since a graph node
labeled with a person’s name can be either an author or a library patron. The node’s role cannot be determined locally, but
must be deduced from the topology of the graph, from the nodes and edges along the path to the root node.

Efficiency problems arise under both Options 1 and 2. The problems can be avoided by adopting hierarchically
organized node labels. The efficiency problems are illustrated by our design of a graph-rewriting system for recognition of
math notation [Grba94]

* Option 1: Use highly-specific node labels, such as a, b, c, I, 2, 3.
* Option 2: Use general node labels, such as letter, number, digit, with node attributes recording the actual character
that gave rise to the node.
Graph rewriting can involve operations on individual letters, or on all letters. The above options are efficient for one of
these operations, and inefficient for the other.

» Using Option 1, it is expensive to perform an operation on all letters. Either separate production rules have to be
written for each letter, or a variable node-label notation needs to be introduced (SectionZl5).

* Using Option 2, it is expensive to search for a particular letter (as done by a production rule that looks for the
sequence cos to interpret it as the name of a trigonometric function, rather than as the implied multiplication
c*o%*s). Here g contains a node labeled letter, with an application condition to specify the desired attribute value
“c”. The search for glhOSt is quite inefficient under standard implementations, since matches to all letter nodes in

host-graph are undertaken, with most matches rejected by the application condition. It is possible, but

cumbersome, to make this search efficient by customizing the subgraph-isomorphism code so that application

conditions limit the search space for suitable g5t (SectionM3.5).

The use of hierarchical node labels solves these efficiency problems. The implementation maintains a tree to define the
label hierarchy. The label of a node is represented by a pointer into this tree. To match a “letter”, we search for a node
with label-pointer that goes anywhere into the subtree rooted at “letter”. With a suitable tree-storage scheme, this is a
constant time test, involving comparison of two tree-addresses to determine if one denotes an offspring of the other. Thus,
implementation speed is similar for flat and hierarchical label sets. (This discussion does applies only to single-inheritance
hierarchies, not when node-labels have a lattice structure with multiple inheritance, as in the PROGRES language
[ELNSS92].)

Hierarchies play an important role in many potential applications for graph-rewriting. For example, reading of
sketch maps benefits from hierarchical node labels and hierarchical graph structure (as demonstrated by the schema-based
implementation of [MuMHS88]; graph-rewriting is a promising alternative). As another example, hierarchies (and
inheritance) play a central role in semantic nets. While hierarchies can be represented in a flat graph [EhHK92], a
hierarchical graph representation (Section17.1) combined with hierarchical node labels could prove highly useful.

2.2 Attribute Transfer Functions

In standard graph rewriting, attribute values are calculated by attribute transfer functions: whenever a rule is applied,
values for attributes in grhost are calculated based on values of attributes in glhOSt .

In some applications, host-graph attribute values depend on each other, and an automatic attribute-update mechanism
is desirable. Attribute expressions can be used to encode dependencies among host-graph attributes in [Gott92].
Application of a rewrite rule updates the attribute values or attribute expressions stored with g1t nodes. Eventually (after
several rules have been applied) an attribute-evaluation algorithm iterates over the host graph to find an appropriate
evaluation ordering for evaluating the attribute expressions. To ensure unambiguous results, there must not be a cyclic
dependency among host-graph attributes.

Derived attributes in the PROGRES language are completely separated from graph-rewrite rules [ELNSS92].
(External attributes are set in the standard way, from user input or in conjunction with rewrite-rule application.) The
evaluation mechanism for a derived attribute is defined statically, independent of rewrite rules, via a directed attribute
equation in the graph scheme. (The graph scheme is a type-definition for host-graph, defining node labels, associated
attributes, and permissible edge types). Directed attribute equations can follow complex host-graph paths to locate nodes
required for the attribute-value computation. Alternative paths (or default values) can be specified, for use when the first
path does not exist in the host-graph. Thus, significant attribute computations occur in a data-flow manner, decoupled from
the application of graph-rewriting rules.

2.3 Application conditions

During application of a graph-rewrite rule, we find a glhOSt that is isomorphic to g;. Often a simple isomorphism
test is insufficient for ensuring that rewrite-rule application is appropriate at this location in the host graph. Thus
application conditions are commonly used to express additional constraints on a prospective g1t These application
conditions can be implicit or explicit. Implicit application conditions are used by certain graph-rewriting models, and apply
to every graph rewriting rule. An example is the gluing condition imposed by the gluing models (Appendix@A.5).
Explicit application conditions are under the control of the rewrite-rule author, and are expressed by boolean predicates
associated with individual rules. Ehrig and Habel formally introduce application conditions to algebraic graph rewriting,
and provide illustrative examples drawn from a library system [EhHa86].

The clauses of an explicit application condition can test both graph structure and attribute values. Commonly-tested
graph-structure features include the non-existence of edges in gt (necessary for a non-induced g%, see Section17.2),

10

and the (non)existence of edges between g"°st and RestGraph. For rewrite systems with an attributed host graph,
application conditions are used to express constraints on the attribute values.

Application conditions are often expressed textually as boolean predicates. In A-notation however, application
conditions which pertain to the structural features of the glhOSt are given diagrammatically, whereas the application
conditions which pertain to non-structural features, such as attribute values, are given textually by boolean predicates. The
former category of conditions is given by the restriction part of the A-rule (also termed the prohibited context), and the
latter category of conditions is given by the guard portion of the A-rule [KaLG91] [LoKa92]. A prohibited context
indicates that the rule can be applied only when the subgraph PC cannot be located in the host graph. (Under typical use,
PC is connected to glhOSt; in other words, the rewrite rule specifies PC as a partial graph, with all incomplete edges
connected to g;. During rule application, after glh"“ has been located, an attempt is made to extend the match to include
PC. If this succeeds, rule application is aborted.) For some applications (such as music-notation recognition [FaB194]) it
is useful to have a conditional prohibited context: here rule application is prohibited only if a subgraph PC can be found
which satisfies a given condition. The condition imposes restrictions on PC, in a fashion analogous to the use of
application conditions to impose restrictions on glhOSt. The notation chosen by [FaB194] superimposes a shaded box on the
subgraph and condition that constitute a prohibited context region.

Path expressions in the PROGRES language, connecting two g; nodes, are application conditions that test graph
structure [ZuSc92]. Here path evaluation is integrated with the subgraph-isomorphism test. A path can be used to express
complex relationships between two nodes of g'°st, and can contain subpaths, conditional iteration, guarded alternatives and
transitive closures. For example, for a graph representing the syntax of a program, a path can be used to connect an
identifier-use node with the corresponding, far-removed identifier-declaration node [ELNSS92, p. 156]. In this example,
subgraph-isomorphism begins without search: the host-graph contains a unique cursor node; this cursor node is matched to
g), identifying a particular identifier-use node, and then the path evaluation is undertaken, to locate the identifier-declaration
node that makes up the rest of glh"St.

2.4 Parameters to Graph Rewrite Rules

Parameters are often used to specify attribute values. These parameter values can be used to test attribute values in
the application condition or to assign attribute values in the attribute transfer function. Parameters can also be used to bind
variable node and edge labels, prior to subgraph isomorphism testing.

The use of parameters is possible when rewrite rules are invoked, as when graph rewriting is ordered or event-driven
(SectionB). For example, in an event-driven library system [EhKr80] the event of borrowing a book results in invocation
of a rewrite rule with parameters indicating the catalogue number of the book, and the ID number of the library patron. In
this case, rule parameters are used to bind variable node labels before subgraph isomorphism testing. (Variable node labels
that are not bound by parameters are bound during the subgraph isomorphism operation, thus allowing a generalized g; to
adapt itself to the node labels found in a particular host-graph environment.) Parameters can denote attribute values as well
as node labels. Attribute parameters can be used to test attribute values (in the application condition), or to assign attribute
values (in the attribute transfer function). The PROGRES language has parameterized production rules (both labels and
attribute values can be parameterized); production rules can also return values [ELNSS92] [ZuSc92].

2.5 Rewrite Rules with Variable Node and Edge Labels

Various graph-rewriting notations allow for variable node labels or variable edge labels (FigureB). The use of
variables allows one graph-rewrite rule to apply in a variety of situations. This permits a reduction in the number of rules
needed (Figure), and is an important structuring tool in the design of large rewrite systems. Variable node labels can be
quite general (matching all possible node labels), or quite specific (matching only one or two node labels).

Variables are bound before or during subgraph isomorphism. In the former case, a parameter to the graph rewrite
rule (Sectionll4) binds the value of the variable. It is the latter case which we consider for the rest of this section. Her e,
the subgraph isomorphism code proceeds as usual, except that certain node or edge labels aren’t uniquely constrained in g;.
Once a matching g'°st is found, the particular labels that occur in g’ serve to bind the variable node and edge labels for
the remainder of the application of this graph rewriting rule. (Thus, for example, the application condition can test which
value was bound to a variable node label, as in FigureB)

Variable labels can give rise to a significant performance cost, potentially causing large increases in the search space
for subgraph isomorphism. Hierarchical node labels (SectionlZ11) reduce this problem significantly: the most frequent

11

label-generalizations are stated efficiently via the label hierarchy (avoiding the use of variable node labels), leaving variable
use only to the less common case when rule applicability cuts across the label hierarchy.

2! .

3

Application Condition: (x1(2) > x1(1) > x(3)) & (u € {Nodehead, Accidental})
Embedding: {(1,1'),(2,2",(3,3)}
Attribute Transfer: {ALL(1')=ALL(1); ALL(2')=ALL(2); ALL(3')=ALL(3)}
Figuredl The use of variable node-labels permits a reduction in the number of rewrite rules. This rule removes a

conflicting bar-line association. The application condition states that this rule applies when node u# matches either a
Notehead or Accidental node [FaB193].

2.6 Rewrite Rules with Variable Graph Structure
The successful use of variable node labels leads us to consider more general variability in the structure of g;.
Possibilities include

¢ If g is a directed graph, provide a notation for specifying variable edge direction.
For example, variable-edge direction notation would reduce the number of rewrite rules in our math-recognition
system [Grba94].

* Provide a notation for optional or repeated nodes or edges in g;.
Structures for repetition and optional items are provided by A-notation (Appendix@.2) and others.
Notations for a variable number of nodes and edges are particularly useful for invariant embeddings, such as the
gluing models (FigureD.

As indicated, availability of such structural variability can greatly reduce the number of graph-rewrite rules needed by a
given application. One general rule with variable structure is used in place of many specific rules. This combination of
rewrite rules eliminates duplication of information, which is a crucial aid to debugging, maintenance, and further system
development. Careful implementation is required, so that variable-structure rewrite rules can execute with acceptable
efficiency.

2.7 Planning for Evolving Graph-Rewriting Systems

Design of a graph-rewriting system includes the design of a host-graph encoding suitable for the application, the
design of the rewrite rules, and the design of other components such as a user interface. All of these must be maintained as
the graph-rewriting system evolves. Consider the addition of a new feature to a graph-rewriting system. This may require
extensions to the host-graph representation; for example, new node labels and edge labels may be introduced. It is desirable
that many of the old rewrite rules continue to work properly, and particularly desirable that it be clear which of the old rules
must be updated in response to the expanded host-graph representation. What characteristics of a graph-rewriting system
help to achieve this? Of the many relevant considerations, we discuss two: use of hierarchical host-graph structure, and the
effect of induced or non-induced subgraph matching.

2.7.1 Hierarchical Host-Graph Structure
Hierarchical structures provide encapsulation, thus helping to localize the changes needed during system evolution.
Various aspects of a graph rewriting system can be structured. Elsewhere we discuss hierarchical node labels (SectionlZ1),
and methods for organizing a collection of rewrite rules (SectionB). Here we turn to the structure of the host-graph itself.
Processing or displaying a large graph is difficult. Giving the graph a hierarchical structure permits meaningful
portions of the graph to be treated as units. Zoom-in and zoom-out operations are used to reduce the graph to manageable

12

proportions for viewing, or to delimit selected portions of the graph for processing. Various notations for hierarchical
graph structures are described in [Hare88] [SiGJ93].

Hierarchical graphs can be defined in various ways, depending on whether edges are allowed to cross the hierarchy. In
a strict definition, all edges must go either between siblings or between parent and child nodes. However, many practical
problems cannot be modeled without additional edges that cross the hierarchy, for example to connect “cousin” nodes. The
presence of such hierarchy-crossing edges greatly complicates the construction of tools for hierarchical graph rewriting.

It is possible to consider hierarchical graphs as merely a notational device pertaining to graph display. This is
because a hierarchically structured graph can easily be translated into a flat graph, with the addition of special edges to
indicate parent/child relationships in the hierarchy. However, in a full implementation of hierarchical-graph rewriting,
many special considerations must be given to these edges. There is significant interest in the topic of hierarchical graph
rewriting; the following is an incomplete list of relevant research efforts.

A chart-based parser for hierarchical-graphs is discussed in [MaKI192]; here each production collects a set of nodes into
a supernode. Abstract graphs (in which subgraphs are represented by a single node, and groups of edges are bundled into a
single edge) are supported in the prototype algebraic-rewrite environment of [LoBe93]. This graph structuring is motivated
by the need for convenient selection of subgraphs and morphisms for rule application, not by a desire to rewrite hierarchical
host-graphs.

Hierarchical graph structure can be described by allowing node-labels to be graphs themselves. In the algebraic
rewriting formalism of [Schn93], labels can be complex categorical objects (including graphs), instead of being restricted to
atomic objects drawn from an alphabet. These complex labels can be rewritten during rewrite-rule application (unlike the
label-preserving graph morphisms of more restrictive algebraic rewrite systems). It would be interesting to gain practical
experience in the use of this rewriting formalism.

Hierarchical graph structure can be captured by a flat host-graph combined with a set of graph-rewriting rules. In
[EhHK92], a hierarchical semantic-network is stored as a host graph (which contains the semantic net at some level of
zooming), combined with a set of rewrite rules that implement the zoom-in and zoom-out operations. This is an
interesting proposal, although it complicates semantic-net information-retrieval, since rewrite rules may need to be applied
before the desired information (if present) appears in the host graph.

2.7.2 Effect of (Non)Induced Subgraphs on Graph Evolution

Graph-rewriting systems can use induced or non-induced subgraphs; each option has important consequences for the
structure of rewrite rules, and the extensibility of the system. Recall that If glhOSt is an induced subgraph of g, then glhOSt
must include all local edges of g (i.e. all edges that connect two glhOSt nodes). A non-induced subgraph may omit some or
all of these edges. This is illustrated in FigureBl

Application Condition: ((x(1)-x(2)) < (x(3)-x(1)))

Embedding: {(1,1'),(2,2),(3,3")}

Attribute Transfer: {ALL(1")=ALL(1); ALL(2")=ALL(2); ALL(3")=ALL(3)}
(a)

(b) (c)

FigureBl Induced versus non-induced subgraphs. A rewrite rule (a) is being applied to the host graph shown in (b). If an
induced gn°st is required, the isomorphism test fails and the rewrite rule cannot be applied. On the other hand, if non-
induced subgraph matching is used, a suitable gt is found; rewrite-rule application results in the new host graph (c).
Note the hidden edge-deletion: the edge from the C-labeled node to the B-labeled node is removed in host-graph, an effect
that may or may not have been anticipated by the author of rewrite-rule (a).

Compared to non-induced subgraphs, induced subgraphs meet more stringent matching criteria, and provide more
information about local host-graph structure. The following consequences result.

* Using induced subgraphs increases the number of rewrite rules. A g; cannot match unless the rule-author has
anticipated all the edges present in that part of the host graph. If a variety of edge-configurations might be present,
these must be enumerated in separate graph-rewriting rules (where a single non-induced rewrite rule could suffice).
The rule-author must be able to anticipate all possible edge-configurations.

* Non-induced subgraphs result in extra application conditions, to test the presence of host-graph edges (Figure®]
(Note that the library system in [EhKr80] manages without application conditions both by using induced
subgraphs, and by using unattributed graphs. An extension, still unattributed, but with application conditions is
presented in [EhHa86].)

* Hidden edge-deletion is a major pitfall of non-induced subgraphs. Edges present in host-graph but not mentioned in
g; are deleted by rule application (FigureR).

These points become particularly significant in case of host-graph evolution, e.g. the addition of a new type of edge, with
the new edge label “Grow”. Ideally, we hope that most of the old graph-rewriting rules continue functioning as before, so
that we merely need to create a few new rules that directly process the Grow edges. Both induced and non-induced subgraphs
disappoint us.

 Using induced subgraphs, the presence of a Grow edge prevents application of any of the old rules. The old rules
must be replicated, keeping the original Grow-less form, as well as all possible permutations of Grow edges that
might occur in the g; area.

14

* Using non-induced subgraphs, the old graph-rewrite rules continue to apply, but they perform hidden Grow-edge
deletion. Rewrite rules apply whether or not a Grow-edge is present, but if a Grow-edge was present before rule
application, it is no longer present after rule application.

These problems are independent of the embedding mechanism, arising similarly in gluing models as in unrestricted-
embedding models. A general solution to this graph-evolution problem is needed. Perhaps the greatest need is for
improved treatment of rules which do not delete host-graph nodes. (Rules in this class update attribute values, insert and
delete edges, and insert nodes.) For this restricted rule class, a graph-rewriting system can provide a hybrid of induced and
non-induced subgraph semantics, so that (a) rules apply generally, as in the non-induced case, and (b) no hidden edge-
deletion occurs. This issue is addressed by incomplete removal of non-induced subgraphs in the PROGRES language
[Schu9l, p. 652], although earlier references speak of removal of the corresponding complete subgraph [EnLS87, p. 191].
Similarly, structured graph rewriting [KrRo90a,b] provides non-induced subgraph matching, with no edge-deletion in cases
when there is no node deletion. Gluing models often use induced subgraphs (e.g. [Nagl87]). A compromise in [FaB194]
uses induced glhOSt matching (to avoid hidden edge-deletion) combined with non-induced matching for prohibited contexts
(which represent host-graph structure, that, if present, prevents rule application). Many graph-rewriting papers give scant
mention of their choice to use induced or non-induced subgraph matching. This issue is important both theoretically and
practically.

- @D
1 2 1 2

Application Condition: Not_Edge(1,2) & x(2) > x(1)

Embedding: {(1,1"), (2,2")}

Attribute Transfer: {ALL(1")=ALL(1); ALL(2")=ALL(2)}
FigureBl Structural application condition arising from a non-induced g/"°st. This rewrite rule adds an edge to a graph
[Grba94]. To avoid repeated rule application (when an edge is already present), the application condition must test for non-

existence of an edge. (Note that repeated rule application would waste time, but would not result in parallel edges, since
any existing edges between nodes 1 and 2 are discarded even though they are not mentioned in g;.)

3. Computation via Graph Rewriting

Graph rewriting is an expressive mechanism; many formulations of graph rewriting are theoretically sufficiently
powerful to express any computation. Nevertheless, when faced with a particular application, it can be difficult to
determine how to conveniently and effectively express the computation via graph rewriting. A collection of graph-rewrite
rules can be organized in a variety of ways:

* An unordered rewriting system simply consists of a collection of graph rewriting rules. The system operates by
being presented with an initial host graph. Rewrite rules are applied in any order, until no further rules apply.

* The heart of a graph grammar consists of a set of graph rewrite rules (also called productions). This set of
productions is augmented by (1) a start graph, which provides the initial host graph for rule application, and (2) a
designation of labels as “terminal” or “nonterminal”. In generative use of a graph grammar, rewrite rules are applied
to the start graph until a terminal graph results. (A terminal graph contains no non-terminal labels.) Alternatively,
graph grammars can be applied for recognition: the outside world provides a graph, and a parser is used to determine
whether this target graph can be derived from the start graph by the application of production rules. The parser can
operate either top-down, beginning with the start graph and attempting to transform it into the target graph, or
bottom-up, beginning with the target graph and applying the production rules (in reverse direction) in order to
transform it into the start graph. In practice, the use of attribute computations often makes the set of production
rules directional, so that they can only be applied in the forward (top-down) or reverse (bottom-up) direction. Thus
the style of the rewrite rules limits the applicable parsing algorithms.

15

* Ordered graph rewriting gives the system designer control over the order in which rewrite rules are applied. The
ordering may be complete, or may be partially non-deterministic. The application determines whether execution of
non-deterministic systems requires backtracking. An ordered rewrite system is also referred to as a “programmed
graph grammar” [Bunk82a], since the ordering of rewrite rules is reminiscent of the ordering of statements in an
imperative programming language. An ordered rewrite system does not require a distinction among terminal and
nonterminal labels, since the control specification indicates when rule-application should terminate. Control
specifications can be given as graphical control diagrams, or as textual specifications similar to an imperative
programming language (SectionBI3).

» Event-driven graph rewriting systems have an ordering imposed by an external sequence of events (SectionBl4).

The practical graph rewriting systems of SectionBlillustrate further use of these styles of computation.

3.1 Unordered Graph Rewriting

An excellent example of unordered graph rewriting is provided by A-rewriting [KaLG91] [LoKa92]. (Section@.2
introduces basic constructs of A.) The rewriting system is given an initial host-graph (e.g. the quicksort example of
[LoKa92, p. 177] uses a list of numbers to be sorted, the specification of the Actor language of [KaLG91, p. 484] uses a
graph compiled from an Actor program). This initial host-graph is transformed via graph-rewriting rules, either infinitely
(as in the dining philosophers example of [LoKa92, p. 112]), or with termination (as in the aforementioned quicksort
example).

To divide a large problem into more manageable subproblems, A graph-rewriting rules are organized into platforms
of related rules. The interface between platforms is provided by friggers, special host-graph nodes that are used to trigger
the application of rules in a platform. Every rule in a given platform contains this trigger node as part of its g;. To invoke
rules in a given platform G, the G trigger is placed somewhere into the host graph. (This satisfies one of the preconditions
of rule-application from platform G; successful rule-application from platform G also depends also on proper matching of
gost) The label of the trigger node is a tuple of arbitrary structure, and can include parameters to influence the resultant
application of a G-platform rule. This style of computation has been used to solve a variety of specification and
concurrency problems. Unfortunately, there is no mention of plans to implement an environment for A-rewriting; current
experience is limited to paper-based descriptions of A rewriting systems.

3.2 Graph Grammars and Parsers

Graph grammars have been intensively studied, and have met with some practical success. As described above, graph
grammars can be applied either in a forward direction, to generate sample graphs from the language, or in the reverse
direction, to recognize and parse graphs in the language. In practice it can be difficult to produce one grammar that is
suitable for both generation and recognition. For example, this problem arises in the use of string grammars for natural
language processing. Natural language systems tend to have different grammars for analysis and generation. Analysis
grammars tend to overaccept, being able to parse all legal sentences and some extra ones. Synthesis grammars tend to
undergenerate. A reversible grammar matches analysis and synthesis capabilities, and is easier to maintain; construction of
such grammars is a topic for active research (e.g. [Strz90]). Reversible graph grammars are similarly difficult to construct,
due to the need for attribute processing and variable binding. Rekers mentions the difficulty of predicting the unintended
sentences that are recognized by a graph grammar for a visual language, and suggests that grammar debugging could be
aided if this recognition grammar could be used for generation [Reke94]. In our own work, we are considering the
possibility of reversible notational conventions, which could be used both to generate and to recognize a diagrammatic
notation such as music. This is a challenging research topic, which may be impractical due to differences in the knowledge
needed for generation and recognition [HaB194].

Graph grammars have numerous interesting and useful formal properties. Appendix@ reviews formulations of
context-free graph grammars, the relations between formal properties of graph and string grammars, and the hierarchies of
graph languages that arise from embedding complexity and production complexity.

Practical use of graph grammars is seriously hampered by efficiency problems. Sub-exponential parsers have been
developed for certain restricted classes of graph grammars. A selection of parsing references are as follows. Bunke and
Haller describe an extension of Early’s parser for context-free plex languages [BuHa89] [BuHa92]; this parser permits left-
recursion and is capable of recognizing partial structures. Egar et al. develop a parser for attributed graph grammars, used in
the design of a visual programming environment for clinical protocols [EgPM92]. Lin and Fu recognize three-dimensional

16

objects (in two-dimensional images) using a semantic-directed top-down backtrack parser for plex grammars [LiFu89].
Collin et al. interpret dimensions in engineering drawings using a plex-grammar parser that mixes top-down and bottom-up
processing [CoTV93]. A chart-based parser for hierarchical graphs is discussed in [MaK192]. The following work does not
deal with graph grammars, but contains relevant discussion of parsing complexity. Henderson and Samal discuss efficient
parsing of stratified shape grammars [HeSa86], building on the table-driven methods used for LR(k) string grammars.

In a pure graph grammar, productions can be listed in any order. However, order-dependence often arises in practice.
Once a developer has chosen a particular parser, the developer is usually aware of the order in which the parser tries
alternatives. The developer may make use of this to design a smaller or faster graph grammar. For example, Anderson
[Ande77] uses a set-based “coordinate grammar” (not a graph grammar) to recognize mathematical notation. He describes
his reliance on production-rule ordering to distinguish an input “cos” as a word denoting a trigonometric function, rather
than as an implied multiplication denoting “c*o*s”. It would be possible to rewrite the grammar to avoid this order
dependence, but the grammar would increase in size and complexity. The drawback of such order dependence is that the
language is no longer defined by the grammar alone, but arises through the interaction of the grammar with a particular
parser.

3.3 Ordered Graph Rewriting: Organization and Modularity for Rewrite Rules

For many computations it is convenient to order, or partially order, a collection of rewrite rules. For example,
Bunke recognizes circuit diagrams by first applying a collection of noise-reduction rules [Bunk82a]. It is critical that these
noise-reduction rules be applied first, and exhaustively, before application of rules for recognition of transistors, capacitors,
and so on. Another example is provided by Fahmy's recognition approach for music notation [FaBI93]. Recognition is
ordered into subgrammars, each of which consists of three phases -- Build creates edges, Weed removes inconsistent edges,
and Incorporate prunes the graph while adding semantic information to attributes. The ordering among these phases is
critical to the design and functioning of this graph rewriting system. In addition, ordered graph rewriting can be relatively
efficient compared to parsing with a graph grammar (SectionEl4). On the other hand, the theoretical underpinnings of
ordered graph rewriting are not as strong as for graph grammars and unordered graph rewriting, making convergence and
correctness proofs more difficult. This effect can be mitigated by only partially ordering the rewrite system. For example,
a rewrite system can consist of an ordered sequence of phases, where production rules within each phase are unordered
[FaB194].

Ordered graph rewriting can be partially or completely deterministic. If there is non-determinism, the
implementation may be required merely to follow some path through the control specification, or may be required to
provide backtracking in case a path fails. The following examples illustrate circumstances in which these various options
can be used. Note that non-determinism can arise from the selection of a particular glhOSt (when there are several possible
matches for g;) as well as from the selection of a particular path through the control diagram.

* A completely deterministic system results from using a deterministic control specification, paired with the use of
cursor-nodes (also called demon nodes) to indicate the desired host graph location for rule application. Such
determinism is desirable in editing applications, since end-users expect a deterministic response to an editing
command. For example, in [Gott92] each graph-rewrite rule g; includes a cursor node, which is matched to the
unique host-graph cursor node; g. leaves a new cursor node in the host graph. (Overall control in this editing
system is event-driven; short sequences of ordered, deterministic graph rewrites are used to respond to an individual
editing command. When the end-user selects an insertion point in the diagram, this moves the cursor node in the
underlying graph representation.)

 Partially ordered rewrite systems, without backtracking, have been used for diagram recognition: circuit-diagram
recognition [Bunk82a] and music-notation recognition [FaB193] [FaB194]. Here ordering is used to control the
sequence of phases that make up the recognition process; rules within a phase are unordered. Rewrite rules are
written such that all non-deterministic alternatives lead to a desired result. Such a partially-ordered system has
attractive properties: the unordered portions retain a strong theoretical basis (useful for convergence proofs), and the
partial ordering provides control and encapsulation. The encapsulation into phases simplifies extensions to the
rewrite system, and enhances intellectual manageability, since only a subset of the rules needs to be considered at
any one time.

17

* Partially ordered rewrite systems, with backtracking, can be expressed in the PROGRES language [Z11Sc92]. The
PROGRES interpreter automatically provides backtracking in the search for some successful path through the
control specification -- other matches for g°s!, and other control paths are tried as needed. This allows
straightforward expression of search problems, such as the ferryman’s problem [ZuSc92], as a partially-ordered
collection of rewrite rules.

These approaches differ greatly in execution cost, and in the types applications they are suited to implement. This list of
examples may provide a system designer with some guidance.

Control specifications can be expressed in a variety of forms, including lists, diagrams, or text. The simplest
control specification associates two sets with each production rule. The Success set lists the possible production(s) to try
after successful application of the current production. The failure set lists productions to try after unsuccessful application
of the production. This can be specified in tabular form [Fu82], which quickly becomes difficult to read. Diagrammatic
control specifications (called control diagrams) are used by [Bunk82a], with extensions by [DoTo88], [FaB193], and others.
Sometimes an if-condition is needed, to allow host-graph inspection before determining the next set of allowable
productions. For example, the block condition of [DoTo88] allows the control diagram to test attribute values of any nodes
involved in the most recent production. Notations for non-determinism (FigurelD) and subgrammars are introduced in
[FaB193]. To permit more flexible control constructs, the control specification can take a textual form, similar to an
imperative programming language. For example, the PROGRES language provides both deterministic and non-
deterministic versions of And, Or, and Loop statements [ZuSc92][ELNSS92], in addition to encapsulation tools such as
transactions and subdiagrams. An earlier version of the language adopted Modula-2 control structures [EnL.S87, p. 194].

Y
X Y
M —
Pl P2
Y Y
Gt 5 o | T
P PG
Y
Y N N
P2 > Pl
_/ Y
@
Y Y

Y N

(b)

Figurell A graph-rewriting system may be partially ordered, necessitating a control specification that can express non-
determinism conveniently. Consider the following verbal control description: apply productions 1 and 2 as often as

possible; when neither can apply, apply production 3 as often as possible. (a) The traditional control diagram notation of

[Bunk82a] results in a complex diagram. (b) A modified control-diagram notation for expressing non-determinism

[FaB193].

3.4 Event-driven Graph Rewriting

Whereas ordered graph rewriting systems provide an internally-imposed ordering of the rewrite rules, event-driven
systems have an externally imposed ordering, arising from the ordering of external events.

This is illustrated by the library system of Ehrig and Kreowski [EhKr80]. An external event, such as loaning,
returning, or ordering a library book, results in the invocation of a corresponding rewrite rule. Parameters provide the
rewrite rule with information describing the details of the event. To extend the system, [EhKr80] see the need for control
structures within a single transaction. Thus external events direct the overall sequence of actions. The system response to

18

a given external event is controlled by ordered graph rewriting, which invokes the appropriate parameterized production
rules. (A follow-on to this system, with application conditions, is presented in [EhHa86].)

It is possible to combine ordered graph rewriting with event-driven graph rewriting, as in the Forrester-diagram editor
of [DoTo88]. Here the control specification (which uses host-graph inspection) is used to describe which editing events are
legal at any given point. Events not foreseen by the control specification are disallowed, resulting in an error message to
the user. A similar structure is used by the diagram editors describe in [Gott92].

4. Popularization of Graph Rewriting

Graphs are a popular data structure, and graph-manipulation programs are widespread. Graph-manipulations can be
cleanly, compactly, and explicitly described using graph-rewriting notation. This may convince software developers to
consider using graph rewriting. Commonly, the first task is to convert existing graph-manipulation code (written in a
high-level programming language) to a graph rewriting formulation. Three problems that may be encountered are:

* It can be difficult for a newcomer to develop a feel for how computations are expressed via graph-rewriting
(Sectiondl1).

e It may be difficult or clumsy to express the necessary graph-inspection operations via graph-rewriting
(Sectiond2).

* Graph rewriting can express only part of the computation. Mechanisms are needed to interface graph rewriting with
the remaining programming-language code (SectionB3).

These are three reasons why graph rewriting has not attained more widespread practical use. Other reasons include efficiency
considerations (SectionB4) and the limited availability of development tools (SectionB5). Further related discussion
may be found in [Panel91]. The European COMPUGRAPH working group is carrying out extensive graph-rewriting
research to demonstrate the potential of graph transformation to serve as a unifying paradigm for computing [Comp92];
their recent theoretical results appear in [TCS93].

4.1 A Graph-Rewriting Culture

While we can convince software designers that graph rewriting is a powerful and useful tool, we need further research
and additional experience with how computations can be expressed in graph rewriting. A newcomer to graph-rewriting
must be given access to these collective experiences. Consider, by analogy, the change from C to Lisp programming.
Avid C programmers who cannot use Lisp effectively (due to a C mindset that dominates their approach to programming),
can absorb “Lisp culture” by immersing themselves in an environment of experienced Lisp programmers. These same C
programmers, in attempting to learn graph rewriting, may have trouble locating sources of “graph-rewrite culture”. The
graph-rewriting community can make an effort to promote such a rewrite culture, to allow newcomers to quickly develop a
proper mindset for performing practical, effective computations using graph rewriting. Relevant materials could include the
following:

* Accessible written introductions to the practical use of graph rewriting.

* Easily-available tools for creating, editing, executing, debugging graph rewriting systems. The design and
implementation of such tools is a major undertaking, and yet tool availability is an absolute necessity for
widespread use of graph rewriting. Tools could include libraries of graph-rewriting rules for common operations; an
example is given by parameterized graph-rewrite rules for abstract-syntax-tree manipulation [ELNSS92, p161].

* Easily-available examples of non-trivial, practical uses of graph rewriting. Complete, executable systems are most
helpful. These illustrate various computational styles in which graph rewriting may be used.

* Algorithm-analysis oriented toward graph-rewriting. A user of an imperative programming language can draw on a
large body of algorithms (e.g. searching, sorting, hashing) and algorithm-design techniques (e.g. divide and conquer,
dynamic programming, greedy algorithms). Specialized forms of algorithm analysis are needed for computing
styles that are not based on the operations of a von Neumann computer. For example, chip-layout considerations in
VLSI design give rise to algorithm analysis using area*time as a cost function.

The fostering of a graph-rewriting culture could go far toward the popularization of graph rewriting.

19

4.2 Graph Rewriting as Part of a Larger System

A large variety of computations can be conveniently expressed using the various approaches toward organizing
graph-rewriting rules. However, it can happen that graph rewriting is a suitable formalism for expressing only part of a
computation. If graph rewriting is to be of practical use in such a situation, we need convenient methods to combine graph
rewriting with other styles of computation. This is an interesting research topic. A few possible approaches are as
follows: (1) combine graph rewriting with a blackboard architecture (with the host graph stored as part of the blackboard),
(2) combine graph rewriting with methods for performing major computations on attributes (where attributes can be
complex entities such as tables or lists or even other graphs), and (3) use graph rewriting with or on top of a standard
programming language (as is already being done with some ordered graph-rewriting systems such as PROGRES [ZuSc92]).

4.3 Graph Inspection

One can make a distinction between graph algorithms (mainly concerned with the inspection of graphs) and graph
rewriting (which provides a means for generating, manipulating and reducing graphs) [EhHK92]. However, most existing
graph-manipulation software freely mixes graph-inspection operations with graph-manipulation operations. Thus, if we
want to convince software designers of the benefits of recasting their code in terms of graph rewriting, we must provide
convenient methods for graph inspection. Current graph-rewriting mechanisms offer various graph-inspection capabilities,
but are particularly lacking in graph-inspection capabilities that precede subgraph-isomorphism testing. Here are the current
ways to inspect the host graph during graph rewriting:

* The subgraph isomorphism test inspects the host graph for a subgraph that is isomorphic to g;, with matching node
and edge labels.

* The embedding inspects the graph to identify pre-embedding edges. For non-invariant embeddings, this allows an
operation such as “delete a node and all incident edges”, without requiring g; to state the number or labels of the
incident edges).

* The application condition can arbitrarily inspect the host graph, including graph structure and attribute values.
However, this method is clumsy and expensive for graph inspections that should be undertaken before, or as part of,
the subgraph-isomorphism test.

e The attribute computation rules are used to compute attribute values for gn°st, and may include arbitrary
computations, including graph inspection.

* The control specification can inspect the graph to decide on rule order, and can use rule order to ensure that certain
graph properties hold whenever a particular rule is invoked. Thus a rewrite rule can assume that certain graph
properties hold whenever it is invoked. The control specification provides a powerful and convenient graph-
inspection method, but it is also distances a system from the theoretical underpinnings of “pure” graph grammars.

In our work we feel a need for more natural means of host-graph inspection. During music-notation recognition [FaB194],
we use the application condition to perform general graph inspection, for example to test whether two nodes in glhOSt have
the same neighbors. However, we do not find these application conditions to be a general and natural way to inspect the
host graph. Math-notation recognition requires complex graph-inspection [Grba94], which we would like to express in a
more direct way.

The PROGRES language provides strong integration of graph inspection and graph manipulation, through general
control structures for directing the application of graph tests and graph productions [ZiSc92]. In addition, g; can be
augmented with path constructs, permitting complex, far-reaching examination of graph structure as part of the localization
of glhOSt. The path acts like an application condition that tests graph structure; however, the path evaluation is integrated
with the subgraph-isomorphism test. In a separate mechanism, independent of rewrite-rule application, complex path
descriptions can be used for the computation of values for derived attributes (Section12).

Global on-going graph inspection is proposed for the PROGRES environment in [NaSc91]. Global runtime
conditions could be used to state host-graph conditions that should always (or never) hold. The graph-rewriting
environment is responsible for checking these conditions between rule applications.

In summary, graph rewriting mechanisms could benefit from improved facilities for graph inspection. Current
graph-rewriting mechanisms force the first graph-inspection operation to be a subgraph isomorphism test. This is not
always appropriate or convenient.

20

4.4 Efficiency of a Graph Rewriting System

The cost of applying a single graph-rewrite rule is discussed in Section3.5. The number of rule applications
depends greatly on the organization of a rewrite system. Ordered graph-rewriting systems (versions without backtracking)
tend to be more efficient than graph grammars [Bunk82a]. The non-deterministic nature of grammars necessitates
backtracking during parsing, and may involve frequent testing of inapplicable rules. In contrast, an ordered graph rewriting
system can directly transform an input graph into an output graph. Such transformational graph rewriting greatly reduces
the number of subgraph-isomorphism tests (compared to parsing), because the control specification limits the number of
production rules under consideration at any given time. Event-driven graph-rewriting systems can be highly-efficient in
rule-application, only applying rules directly in response to an action by an external human operator.

These general statements do not imply that event-driven systems or ordered systems are preferable to graph
grammars. Rather, the situation should be viewed the other way around. If an application is such that it can be
implemented using event-driven graph-rewriting, then we have hope that it can run with acceptable efficiency. If the
application calls for ordered (or partially ordered) graph rewriting without backtracking, then we have some hope that the
system might run with acceptable efficiency. If the application calls for graph grammar use, then careful grammar and
parser construction (context free, if possible) are necessary if there is to be hope of parsing speeds allowing large-scale
practical use.

Event-driven graph rewriting seems close to near-term practical use as an implementation language, for example in
implementing diagram editors [DoTo88] [Gott92] [EhHK92] [Reke94]. Here an external human user issues an interactive,
fairly slow stream of editing operations. The primary time constraint is adequate response; Card et al. suggest less than 0.1
seconds for perceptual processing, 1 second for immediate response, and 10 seconds for a unit task [CaRM91]. Since only
very few rewrite rules need be applied (or considered) in response to an editing operation, such a system may be practical
using current graph-rewriting technology. Graph grammars, on the other hand, are further from acceptable performance in
an end-user setting. Advances in parsing will help, but may not be sufficient to make graph grammars practical as an
implementation tool. Thus it is important to expand research into the use of graph grammars at the specification and
design level. A practical software development cycle could include the use of graph rewriting to form an executable
specification (e.g. [ZuSc92]), even if it does not provide an acceptably efficient implementation.

4.5 Graph-rewrite Tools

Practical use of graph-rewriting depends heavily on the availability of development and debugging tools.
Development of these tools is a complex and involved task. Here we briefly consider some of the issues involved.

Graph-rewriting notations have both textual and diagrammatic elements. At minimum, g and g, need to be created
and viewed diagrammatically (since textual graph descriptions are unwieldy and error-prone). Other features, such as the
embedding, can be given either textually or diagrammatically. Some features, such as attribute computations and attribute-
testing (in the applicability predicate) must be given textually. Development tools must achieve a smooth interaction
between textual and diagrammatic elements. Rule displays must portray the relationships between textual and diagrammatic
elements. Editors must integrate the editing both text and diagrams, ensuring that a complete and self-consistent rule is
produced. Debugging may involve trace operations on textual as well as diagrammatic features of a rule.

Complex readability issues arise in development environments for graph-rewriting. Graph layout is an important
and well-studied problem (e.g. [PaTi90]); note that different problems arise in the readable display of small rewrite-rule
graphs versus the display of a large host graph. Debugging tools face the problem of displaying a large, time-varying host
graph in a readable way.

Tools are needed to visualize the interactions among graph rewriting rules. A zoom operation may be needed to
allow a user to see several rules simultaneously, for comparison purposes. Search and substitute operations are central to a
text editor; similar operations are needed for a graph-rewrite-rule editor. The run-time interaction among graph-rewrite rules
is difficult to display, since distributed changes are taking place in a large host graph, and since rewrite rules are often
chosen non-deterministically. The user may need to trace how the application of one rule enables or disables future
application of another rule. Development of graph-rewrite debugging techniques is an interesting research topic.

An extensive collection of tools are implemented or planned for the PROGRES language and the IPSEN
environment. The implementation is organized into four layers: the common graph storage provides data abstraction,
supporting the internal graph layer, the transformation layer, and tool control [NaSc91].

21

Gottler [Gott92] mentions a succession of implementations for executing ordered graph rewriting (Y and X notation).
The unacceptably slow 1983 Fortran implementation was followed by a 1986 Lisp implementation (successfully used for a
variety of structure editors). A new C implementation is under development, including a graphical editor for X notation
graph-rewriting rules.

Pfeiffer describes development plans for a graphical editing environment for algebraic graph rewriting [Pfei90]. In
the meantime, a textual representation of a graph grammar is compiled into C.

The GraphEd system [Hims93] provides extensive facilities for graph layout, with support for context-free graph
rewriting. A derivation-step is accomplished by selecting a host-graph location and a graph-rewrite rule. A graph-rewrite
rule is specified diagrammatically, with the single g node drawn large enough to enclose the g, subgraph. Diagrammatic
depiction of eNCE embeddings is supported. More extensive support of graph-rewriting is planned for the future.

A prototype implementation of algebraic graph transformation is described in [LoBe93]. The tool currently performs
direct derivation steps in the single-pushout approach. Graph morphisms are illustrated graphically as lightly-drawn edges
connecting the identified objects, either a pair of nodes or a pair of edges. Thus morphisms between edges are displayed as
“higher-order edges” (edges between edges). To trigger rule application, the user selects a rule and a morphism for applying
this rule. This selection process is facilitated by the use of abstract graphs (in which subgraphs are abstracted to single
nodes, and bundles of morphism edges are abstracted to a single edge).

5. Selected Application Areas for Graph Rewriting

Graph rewriting has been applied to a variety of problem areas. Selected references are given here. See [Panel91] for
excellent overviews of successes and problems in many graph-grammar application areas; these include developmental
biology (cell division patterns), pattern recognition, parallel programming, visual languages, hypertext systems, software
engineering.

5.1 Software Engineering

Graph rewriting has been successfully applied to various problems in software engineering, including as a
specification tool, for the study of concurrent and distributed systems, for the implementation of functional languages, and
for data-structure manipulation.

PROGRES (formerly called “PROGRESS”) is a comprehensive language for ordered graph rewriting, designed to
specify tools within the software engineering project IPSEN (Integrated Project Support ENvironment), but useful for other
application areas as well. An excellent overview of both PROGRES and IPSEN, illustrated by a realistic example, is
given in [ELNSS92]. Further information may be found in [EnSc85] [Nagl86] [EnL.S87] [NaSc91] [Schui91] [ZuSc92].
Within IPSEN, the PROGRES language is used to specify the operational behaviour of document processing tools like
syntax-directed editors, static analyzers, or incremental compilers and interpreters. For many of these applications, the host-
graph has a dominant tree part, enriched by various context sensitive relations, that are derived via graph-rewriting rules
[NaSc91]. Graph-rewrite rules constitute only a fraction of the text in a PROGRES specification. As discussed in
[ELNSS92, Sectionk], a major part of the specification is structural (node class hierarchy, attributes, attribute evaluation,
edge types, paths); the operational part consists of rules and transactions. Language structures such as paths and derived
attributes are used in place of graph-rewrite rules that only change attribute values or perform graph traversals.

The PROGRES language is designed to combine the advantages of object-oriented languages, attribute grammars,
and ordered graph rewriting within a strongly-typed language. Important features of PROGRES include the following
[Schii91] [ZuSc92] [ELNSS92].

* Node labels are defined hierarchically, with inheritance. Multiple inheritance is permitted [ELNSS92, p148].

* Graph components (nodes, edges and attributes) are strongly typed, within a graph scheme. For example, a
PROGRES edge-type declaration states that an edge with label X can go from a node labeled Y to a node labeled Z.
The resultant type checking is valuable in the construction of large graph-rewriting systems, helping to detect errors
in graph productions, and controlling errors introduced during system extensions (such as the addition of new node
labels). Explicit declaration of all possible edge types is facilitated by the hierarchical (multiple-inheritance)
organization of node labels. For example, “edge type X: Thing -> Word” declares that an X-labeled edge can go
from a node labeled Thing (or any label below “Thing” in the node-label hierarchy) to a node labeled Word (or any
label below “Word” in the node-label hierarchy).

22

Graph schemata prove highly useful in practice; the type-checking of graph rewrite rules detects many specification
errors before runtime (Andy Schiirr, personal communication). This is particularly important for a language such as
PROGRES, where programming errors often result in backtracking, rather than in runtime exceptions. Such errors
can be very difficult to find at runtime.

* Evaluation of derived attributes is described within the graph scheme, decoupled from rewrite-rule application
(SectionZ12).

* Graph rewriting productions are parameterized, and have return values. A transaction concept allows a series of
rewriting steps to be treated as atomic, restoring the host-graph to an unchanged state in case of failure.

* Graph inspection is accomplished using tests and paths. A test is like the left half of a production; test execution
involves locating a glhOSt that meets the stated conditions. Conditions within a g; can include named paths, where a
“path” is a separately-declared structure that describes a possible relationship between two nodes. Path expressions
form the query part of PROGRES, analogous to database query languages [ELNSS92, p 159] -- the functionality of
some tools (browsers, static analyzers) can be almost completely specified by path expressions alone.

* A comprehensive set of control structures direct the nondeterministic selection and application of rewriting rules.
Control structures include nondeterministic and deterministic versions of And, Or, and Loop. Productions,
transactions (composed out of tests and productions), and subdiagrams all have the following three characteristics:
they are boolean and atomic (either succeeding and changing the host graph, or failing and making no change), and
nondeterministic (selecting a particular matching g,"°%, or a particular “yes” or “no” edge in a subdiagram). In case
there is no path through a subdiagram, the PROGRES interpreter restores the host-graph state and backtracks in the
control specification, trying other glhOSt matches, or other paths through subdiagrams.

* The language notation integrates textual and graphical components of a graph-rewriting system. Productions use
graphical notation for g and g.. Elementary embeddings are indicated via node-correspondences within g nodes.
More complex embeddings can be described textually. Graph-structure application conditions (called restrictions) are
described textually, and are invoked by including the application-condition name within g;. (A graphical user
interface for the PROGRES environment is under development.)

[Z1Sc92] reports that a prototype PROGRES-interpreter is under development. In any case, PROGRES specifications can
be transformed (partly by hand) into corresponding implementations in a standard programming language [ELNSS92]. This
long-standing research effort provides an impressive demonstration of the practical utility of graph rewriting.

The A-notation for graph rewriting was proposed by [KaLG91] [LoKa92], as a specification tool for concurrent
languages and systems. Whereas PROGRES provides many powerful mechanisms in addition to graph rewriting, A-
notation offers the attraction of being almost purely a graph-rewriting language. As illustrated in Figure@.3, the
diagrammatic notation uses a A shape to notate the unique part of g; (to be deleted), the unique part of g (to be inserted),
the parts common to g; and g, (the required context), and undesired host-graph structure (the prohibited context). Elements
in a A-rule can form a *-group, a syntactic shorthand for an infinite sequence of A-rules which contain, respectively, 0, 1,
2, 3... repetitions of the elements in the *-group. (Perhaps the term “syntactic shorthand” understates the significance of a
construct that converts a finite set of graph-rewriting rules into an infinite set.) The A-notation is based on double-
pushout algebraic graph rewriting, yet it permits deletion of a node without enumeration of incident edges. (Refer to
FigureM A A-rule containing node-deletion can be translated into an equivalent rule containing a *-group instead of node
deletion; this rule in turn corresponds to an infinite set of rewrite rules that meet the requirements of the double-pushout
construction). A useful style of computation is to structure A-rules into platforms, which communicate via triggers
(SectionB11).

A major strength of A-notation lies in the specification of concurrent systems, and its ability to hide synchronization
details from the programmer. This is illustrated by solutions to a remote client-server problem, the dynamic dining
philosophers problem, and definition of the semantics of the concurrent language Actors [KaLG91]. A variety of
techniques for proving properties such as deadlock freedom and termination are presented in [LoKa92]. The structuring of
A-rules into platforms is helpful for proof construction; for example, a different proof method can be used to demonstrate
termination of each platform.

So far A-notation provides a paper-based specification method; no plans are mentioned for developing an
implementation of A-notation. Implementation of A-program execution involves three steps [LoKa92, p. 100]: (1)
matching (find a set of applicable rewrite rule, each with a suitable glh"s‘ and a unification of variable labels); (2) conflict

23

resolution (find a non-conflicting subset of the applicable rewrite rules); and (3) application (apply the non-conflicting rules
in parallel). Conflict resolution is difficult to implement, since it must guarantee fairness, it must permit maximal
parallelism, and it must prevent parallel application of rules A and B if application of rule A modifies the host-graph so
that rule B is no longer applicable. (The “prohibited context” construct greatly complicates this latter test: rule A might
add host-graph structure that matches rule B’s prohibited context.) This complex conflict-resolution step provides the A
environment with many desirable concurrency properties, allowing elegant solutions to traditional problems such as the
dining philosophers and the bounded buffer.

Algebraic graph rewriting is being used for high-level data structure manipulation [Pfei90]. Graph rewriting is used
in place of pointers, allowing the compiler to prevent common errors such as access to unallocated or deallocated structures,
and failure to deallocate structures. Graph rewriting defines an abstract data type, which can be included as a separately
compiled module in a source program. A flat label set is used, with enumeration of all legal host-graph edge-types
(restricting the legal source and target node-labels, based on the edge label). Expression-labeled nodes are used as
applicability predicates, and for recursive invocation of graph-rewriting rules. A graphical editing environment for graph-
rewriting is under development. In the meantime, a textual representation of a graph grammar is compiled into C.

Graph rewriting is commonly used to implement functional programming languages [PeJo87]. A program is
converted to an abstract syntax tree, which becomes a DAG (directed acyclic graph) due to repeated expressions. Graph
rewriting is used to reduce this DAG to a single node. Only a few rewrite rules are needed, due to the limited number of
constructs in a functional programming language. Carefully-tuned methods are used to achieve efficient implementation of
this select set of rewrite rules.

5.2 Syntactic Pattern Recognition

Classification problems can be solved syntactically by constructing a separate grammar for the recognition of each
pattern class. For example, [Fu82] uses string grammars to define the shapes of submedian, telocentric, and other
chromosomes. Similarly, string grammars have been used to define normal and abnormal electrocardiograms. These
applications involve a difficult grammatical inference problem, constructing appropriate grammars based on a set of
samples from each pattern class. “Transformation systems” provide an alternative [Gold92]. While a grammar must
generate all the patterns in a pattern class from an artificial origin (the start symbol), Goldfarb’s transformation system uses
weighted substitution operations to capture the differences between positive and negative patterns. The transformation
system is only required to discriminate between classes, not to reconstruct the classes as a whole. This discussion is phrase
in terms of string grammars, but carries over to graph grammars as well.

Graph grammars are difficult to use in pattern recognition, due to the grammatical inference problem, the high cost
of parsing, and the problem of noisy and distorted input (Bunke, in [Panel91, p45]). However, often these problems can be
reduced by using ordered graph-rewriting instead of a graph grammar. This applies particularly to problems where a
structural description, rather than a classification, is desired. The diagram-recognition systems of SectionBl3 illustrate th is
point.

5.3 Picture Processing and Document Image Analysis

Graph grammars were originally proposed in [PfRo69] [Pfal72] as a means of solving picture-processing problems.
String grammars had proven highly successful in the manipulation of one-dimensional problems. Since strings are not
well-suited to the description of two-dimensional data, as in a picture or image, the extension to graph grammars was
proposed. In the graph-representation of an image, image primitives are represented by labeled attributed nodes. Node
attributes typically include the (X, y) image location of the primitive that gives rise to the node. Graph edges represent
relations among the primitives; these can be spatial relations (such as “above”, “below”, “near”) as well as other relations
derived during the course of graph-rewriting. The success of a graph-rewriting application depends heavily on the proper
choice of image primitives, and on the reliability of the primitive-detection algorithms.

Some applications have a straightforward mapping from image to graph. These include graph-based notations such
as circuit diagrams [Bunk82a], or software engineering diagrams such as SDL and SADT [Gott92]. In other cases, such as
for music notation [FaB193], difficult decisions are involved in mapping an image to a suitable graph representation.
Further research may result in general guidelines to assist in devising a graph-representation of an image.

Although graph-rewriting research was instigated by picture processing problems, graph rewriting has not gained
extensive use in this field. This is due, in part, to the following problems: (1) large graph-rewriting systems are difficult to

24

write and debug; (2) parsing with graph grammars is computationally expensive; and (3) graph rewriting is difficult to use
when uncertainty (associated with the identity of a picture primitive) is present. Research on these problems continues.

Ordered graph-rewriting has been used for various diagram-recognition applications, including circuit diagrams, music
notation and math notation. In [Bunk82a], ordered graph rewriting is proposed for the recognition of circuit diagrams. The
high cost of parsing is avoided; instead rule ordering is used to transform an input graph (representing line-segment
primitives in a circuit-diagram image) into an output graph (representing a circuit, with recognized components such as
transistors and capacitors). Rule ordering permits exhaustive application of error-correcting rules (which close small gaps
in lines and eliminate small overhanging lines) prior to the application of the component-recognition rules. This approach
is extended to music-notation recognition in [FaBI93]. The semantics of music notation depend both on nearby symbols
(such as a sharp preceding a note) and on distant symbols (such as a distant key signature and a note). Thus, the necessary
node-interactions cannot be predicted during construction of the input graph. Instead, a discrete input graph is used, and the
necessary edges are built using Build, Weed, Incorporate phases of rewrite-rule application. (The Build phase creates edges
between potentially-interacting nodes. The Weed phase deletes excess or conflicting associations. The Incorporate phase
collapses the information from nodes and edges into the attributes of the remaining nodes.) This work is extended to
address the uncertainty that may be associated with the identity of the notational primitives [FaB194], and to perform
recognition of mathematical notation [Grba94].

A plex-grammars recognition system for three-dimensional objects is discussed in [LiFu89]. A 3D surface may be
partially or totally occluded in the image plane. This makes it difficult to construct a three-dimensional plex as input for
the recognizer. A semantic-directed top-down backtrack recognizer is used. Results are shown for several images of
machine parts.

Plex-grammars have been used to interpret dimensions in engineering drawings [CoTV93]. The parser mixes top-
down and bottom-up processing. The processing of errors and uncertainty is postponed until after contextual information
is obtained from higher-level analysis.

Graph-grammars are used in [EgPM92] to develop a visual programming environment for medical protocols. To
achieve good response time and free-form editing, a syntax-neutral graph editor is used in conjunction with compilers for
various diagram types. This arrangement avoids the effort of producing custom-tailored diagram editors for each visual
language. It also avoids the rigid top-down approach imposed on users by syntax-directed editing. The authors have built a
graph-grammar parser and tested it in three visual-language compilers. They conclude that attributed graph grammars are an
appropriate tool for the specification and generation of visual-language parsers.

5.4 Diagram Editors

Graph rewriting has been applied to the editing of a variety of diagrams. Gottler et al. use X and Y notation
(Section@.2) to express executable requirements-specification for diagram-editing, used to created editors for SADT,
EADT, Petri-nets, and HIPO [Gott83] [Gott87] [GOGNI1] [Gott92]. Rekers [Reke94] applies the F— notation
(SectionBl.2) to the definition of syntax for graphical editors. A syntax for diagrams of finite state machines is provided as
an illustration.

Dolado and Torrealdea use graph-rewriting to formally describe Forrester diagrams [DoTo88]. Nodes in a Forrester
diagram denote rates, materials sources, material delays, information delays, and so on. Edges denote information or flow
coupling. Graph-rewrite rules define primitive operations for modifying a Forrester diagram -- productions insert and delete
various types of nodes and edges. The control specification uses host-graph inspection to limit the currently-allowable set
of productions, so that a legal Forrester diagram is guaranteed to result. This ordered graph rewriting system is capable of
generating all legal Forrester diagrams. In practical use as an editor, a human operator issues commands that direct the
application of production rules, with the system issuing error messages in the event the operator selects an operation that is
currently disallowed. As of 1988, the system was formally defined but not implemented.

5.5 Databases and Semantic Nets

Ehrig and Kreowski [EhKr80] discuss the application of graph rewriting in the construction of data base systems. A
small library system is constructed as an example. The library database is represented as an attributed graph, with nodes for
books, authors, library patrons, publishers, and catalog numbers. Each rewrite rule represents a transaction, such as
loaning out a book, accepting a returned book, acquiring a new book, or adding a new library patron. Parallel rule
application is permitted in this distributed database. It is critical to ensure that proper synchronization is observed and
consistency is maintained. Thus the authors choose the algebraic approach to graph rewriting (Section@.5.1), which has

25

strong theoretical results (such as the Church Rosser theorem) that are used to analyze interactions among transactions,
achieve synchronization, and prove consistency conditions. A follow-on to this system is presented in [EhHa86],
illustrating the use of application conditions to enforce constraints including (1) reader-numbers must be distinct, and (2) a
maximum of ten books can be checked out by a single reader.

Ehrig et al. propose the use of algebraic graph grammars to generate well-formed semantic networks [EhHK92], and
mention this as a possible basis for a syntax-directed editor used to build up a semantic net. The authors discuss the need
for structuring principles, to organize the information in a large semantic net. Graph-rewrite rules are proposed as a method
for defining the hierarchical structure of a graph, applying a rewrite rule in the forward direction to expand a parent node into
the components it encompasses, and applying the rewrite rule in the reverse direction to collapse the components back into
a representative parent node. This is an interesting proposal, but one that hampers the accessibility of the information in a
semantic net. The information in the semantic net is no longer stored purely as a graph; much of the information is
encoded in the graph rewrite rules themselves. In order to find information in such a semantic net, we must search all
graphs derivable from the current host graph. Further research is needed to establish whether this can be done practically.
A more straightforward solution is to encode hierarchical graphs in a static data structure [Hare88] [SiGJ93], with zoomed
graph views generated on request for the user. Graph rewriting could be applied to hierarchical graphs, probably with
minimal modifications to the graph rewriting mechanism.

5.6 Biology

Parallel graph rewriting is extensively used in biology and in computer graphics (visualization of biological
structures). Parallel rewriting is needed to model cell divisions; the graph rewriting captures both the developmental
process and the final structure of the organism [Panel91, pp. 41-43, 47-48]. Details are omitted here, since our focus is on
sequential graph rewriting.

6. Summary and Conclusions

Graphs are high-level, versatile constructs with widespread practical use. Graph rewriting is a natural way to specify
the manipulation of these high-level constructs. We have reviewed a variety of notations and mechanisms that have been
proposed for graph rewriting. We have discussed various approaches that have been used to express computations via graph
rewriting. Graph rewriting is a promising formalism, well-understood theoretically, with the potential to be practically
useful in a tremendous variety of application areas.

A variety of important tradeoffs face a software developer choosing to use graph rewriting. Proper resolution of
these tradeoffs is often application dependent, or a matter of taste.

* Selection of a rewrite mechanism has important consequences for the power of the embedding, formal properties of
the rewrite system, readability and intellectual manageability, and efficiency (Sectionld3).

* Details of the rewrite mechanism have important practical consequences: isomorphisms versus general graph
morphisms (SectionM3.4), variable node and edge labels (Section15), induced subgraph matching
(Section17.2).

* Design of the host-graph representation is critical and involves a tradeoff between using graph structure or graph
attributes to represent certain information. Hierarchically-organized labels can be very helpful (SectionZ1).

* Given a particular rewrite mechanism, graph rewriting rules can be organized to use unordered rewriting, graph
grammars, ordered rewriting (partially or totally ordered, with or without backtracking), or event-driven rewriting
(SectionB). The choice of rule organization has great impact on the nature, theoretical properties, and efficiency of
the graph-rewriting system.

Faced with this bewildering array of choices, a software designer can feel ill-equipped to address a fundamental question:
how should he or she express, develop, and debug computations using graph rewriting? For practical use of graph
rewriting, a “computational style” is at least as important as the exact choice of graph rewriting formalism (Sectionf).
Abstraction facilities are critical, to allow structuring of large host graphs and of large graph-rewriting systems.
Possible structuring facilities include hierarchical labels (Sectionll1), hierarchical graphs (SectionZ17.1), and control
abstractions such as subgrammars and rule-parameters. In addition to these abstraction capabilities, rewrite-rule authors
need technology for incorporating graph rewriting into a larger software system (Section#2). Finally, many graph-

26

rewriting mechanisms could benefit from more flexible host-graph inspection operations (SectionB#3). Further difficulties
facing practical use of graph-rewriting are discussed in [Panel91].

Ideally, anyone faced with implementing a graph-oriented computation should consider whether graph rewriting is an
appropriate mechanism. However, it can be enormously difficult to envision how to perform the graph rewriting. The
graph-rewriting community can respond by providing better tools, better notations, and a “graph-rewriting culture” -- a
readily-accessible body of knowledge, experience, and algorithms relating to the practical application of graph-rewriting.

27

Appendix@Al. Graph Rewriting Mechanisms

Graph rewriting mechanisms are reviewed in the order from most-powerful to least-powerful embedding mechanisms.

A.1 Unrestricted Embeddings: Expression Notation

Nagl formalizes and generalizes embedding specifications using an expression notation [Nagl79] [Nagl87].
Expression graph rewriting operates on an (un)directed, edge-(un)labeled, node-labeled graph, with gt required to be an
induced subgraph. An embedding specification consists of 2n expressions, where each pre-embedding edge has one of n
edge labels, and one of two edge directions. The symbol In; represents the incoming edges of label i, and Out; represents
the outgoing edges of label j. The notation is illustrated in Figure@&.1.

)
J

1

2 3
CO==CD
j - X7

5
Embedding: Inj= (D Ik Oj (1); 3,4); Outj =(3; Oj U Ik Ik (1,2)); etc.

(a) a rewrite rule using the expression notation

(b) initial host graph (c) resultant graph

FigureB@l.1 Illustration of the expression embedding mechanism defined by [Nagl79]: the production of part (a), applied
to the host graph (b), produces the result (c). Node labels are inside the node while node denotations are outside. In;
embeds incoming edges of label i, and Out; embeds outgoing edges of label j. In; specifies that the set of nodes “D Ik O;j
(1)” are source nodes of i-labeled edges ending in nodes 3 and 4 of g °st. The expression “D I Oj (1)” describes the follow-
ing set of nodes: starting from node 1 of g/h°st, follow an outgoing edge with label j (Oj) and then an incoming edge with
label k (Ik); include those nodes that have the label D. Similarly, Outj specifies that the set of nodes “0j U Ix Ik (1,2)” are
target nodes of j-labeled edges originating in node 3 of g"°st. The expression “0j U Ik Ik (1,2)” describes the following
set of nodes: starting from nodes 1 or 2 of g'°st, follow a chain of two incoming edges with label k or one outgoing edge
with label j.

The theoretical significance of expression graph grammars is apparent in the hierarchy for graph languages shown in
FigurelA.2 [Nagl79]. Monotone, context-sensitive, and context-free graph grammars produce the same graph languages,
despite the differences in restrictions on g;. This is because the expression mechanism provide a means of inducing context
by embedding rather than by complex forms for g;.

Expression graph rewriting is the most general form of graph rewriting. Formulation of embedding expressions is
undoubtedly difficult, yet such expressions permit a compact and time-efficient graph rewriting system. It may take several
rewrite rules of a non-expression type to simulate the effect of a single expression rewrite rule. Time-efficiency results from
subgraph-isomorphism testing involving a smaller number of nodes: g; can be relatively small since expressions provide
contextual information. It is difficult to visualize the effect of an embedding expression; this problem is reduced by the

28

diagrammatic X, Y and A notations for rewrite rules (Section@.2). Alternatively, paths in the PROGRES language
provides a more readable textual notation for complex embeddings [EnLS87, p. 193].

[Exp-unrestricted] = [Recursively enumerable graphs]
U
[Exp-monotone] = [Exp-context-sensitive] = [Exp-context-free]
U

[Exp-linear] = [Exp-regular]

FigureAl.2 The hierarchy for graph languages generated by graph grammars using the unrestricted expression embedding
mechanism [Nagl79]. (The language of a graph grammar is defined to be the set of all terminally labeled graphs that can be
derived from the initial graph S.) Three language classes emerge, where production types are defined as follows (assuming
that the basic primitive being manipulated is a node):
* unrestricted production — no restriction on gj or g,
* monotone production — the number of nodes in gj is less than or equal to the number of nodes in g
* context-sensitive production — a portion of gj exists as a subgraph of g,
* context-free production — g| consists of exactly one node. (This node has a nonterminal label.)
* linear production — a restricted context-free production, where g, contains at most one nonterminally-labeled node
(plus any number of terminally-labeled nodes).
* regular production — a restricted context-free production, where g, has a unique maximum node; all other g. nodes
are predecessors of the maximum node. The maximum node may have a terminal or non-terminal label, all other g,
nodes have terminal labels.

Recently, [AiNa91] propose node-replacement graph rewriting with path-controlled embedding (n-PCE). Although
the authors do not remark on this, their approach strongly resembles expression graph rewriting: RestGraph nodes which
take part in the embedding are connected to gt by a path, where a path is characterized by a sequence of edge labels.
Differences between n-PCE and the expression approach are: (1) n-PCE restricts g to be one labeled node (as in NLC,
SectionA.3); and (2) n-PCE does not use node labels in the selection of source and target nodes of post-embedding edges.

A.2 Unrestricted Embeddings: Diagrammatic Notations

Textual specifications of embedding mechanisms can be difficult to read. To address this problem, diagrammatic
notations for embedding have been developed. Gottler’s Y notation [Gott79] [Go6tt83] and X notation [Gott87] [GOGNI1]
[Gott92] have been used extensively in specifying and implementing diagram editors. Kaplan’s A notation [KaLG91]
[LoKa92] has been used for concurrent system specification. These diagrammatic notations can describe unrestricted
embeddings, since they allow the following of paths within RestGraph to determine the source and target nodes of post-
embedding edges. An overview of these notations is given in Figurel.3. The depiction of embedding is illustrated by the
Y notation of FigureB.4. Further illustrations are provided by Figurelland FigureBl

29

Optional Context Application Condition
(Embedding) Optional Context (the "guard")
(Embedding)

unique part of g unique part of g,

unique part of the "insertion"
que p g

(to be deleted)

unique part of g, (the "retraction")

(to be added) Required

Context

Required Context
(parts common to g; and g)

Prohibited Context
(the "restriction")

@ (b) ©

Figure@l.3 Three diagrammatic notations for graph-rewriting operations; diagrammatic depiction is used not only for g;
and g, but also for the embedding. In Y and X notations, the embedding is shown in the so-called optional context: these
diagrammatic depictions of embedding are used if they match in the host graph. The required context, on the other hand,
must match in order for the rewrite rule to be applied. In the A notation, the center of the A is used both for required and
optional context, with a * placed next to the optional parts. (Elements of a * group may occur zero, one or more times.)
The A notation includes application conditions: host-graph structure that must be present is placed in the required context,
host-graph structure that must not be present is placed in the prohibited context, and restrictions on labels and attributes are
expressed textually in the guard.

(a) rewrite rule in Y notation (b) the host graph (c) the resulting graph

FigurelA.4 An example of Y notation. The rule shown in (a) is applied to the graph shown in (b) resulting in the
graph shown in (c). Rule (a) displays g; on the left, g. on the right, and the embedding specification on top. Edges
between g; and the embedding specification depict a subset of pre-embedding edges. Edges between g, and the embedding
specification depict the corresponding post-embedding edges. (Edges between g; and g are not permitted.) The embedding
specification is an optional context -- after g"st has been located, the embedding specification is matched to the
surrounding RestGraph. If node n’ of the embedding specification finds a match in RestGraph, then any edge between n’
and g, causes the formation of a post-embedding edge. An optional-context node must have a connection to g, in order to
have an effect on the graph rewrite. For example, node C and its i-labeled edge (in (a)) emphasize that the i-labeled edge is
deleted (if present), but the rewriting effect would be the same without their inclusion in the embedding specification.

In many graph-rewrite rules, g; and g, have parts in common. In most notations, including the Y notation of
Figure.4, these common parts are notated twice, once in the definition of g | and again in the definition of g.. The X and
A notations instead notate the common parts just once, in a separate area called the required context. The required context
must exist for the rewrite to occur, but it is left unchanged by the rewrite.

X-notation rules are analogous to Y-notation rules except that the bottom part of the X contains the required context:
the subgraph which is common between g; and g.. The unique portion of g; is given in the left-hand side of the X, and the

30

unique portion of g is given in the right-hand side of the X. The embedding (the optional context) is given in the upper
portion of the X. In implementing graph rewriting using X-rules, only the portion of g given in the left-hand side of the
X needs to be removed. Gottler reports that this improves the efficiency of the implementation by orders of magnitude
[Gott92]. This increase in efficiency may seem astounding, since the costly subgraph-isomorphism test is not affected by
the change from Y to X notation. However, in Gottler’s rewriting systems subgraph isomorphism is extremely fast due to
the presence of unique cursor nodes (demon nodes) that indicate the location of the desired g"°st. Thus most of the
execution time is spent directly on graph manipulations during rule application, which for simple rules (add an edge, update
an attribute value) are far more involved for Y notation than X notation.

As a practical matter, the choice between Y and X notations should be made on the basis of user preference, not
implementation efficiency. (The implementation can easily make an internal conversion of rules from the Y to the X
form.) In our limited trials, we find Y notation easier to use: during rewrite-rule development we frequently update either g,
or g, and can do this without concern about the exact portions that are common to g; or g.. On the other hand, for
applications where rewrite rules have large required contexts, developers may prefer the X notation for its compactness.
This compactness results not only from savings in depicting g or g, but also from savings in depicting the embedding
(FigurelD.

The A-notation was proposed by [KaLG91] [LoKa92], as a specification tool for concurrent languages and systems.
A-notation is a superset of X-notation. The portions of an X-notation rule are placed as follows: the unique part of g; is to
the left of the A, the required and optional contexts are in the middle of the A (with a * next to each node of the optional
context), and the unique part of g is to the right of the A. In addition, the area below the A contains the prohibited
context, a subgraph connected to gj; if this subgraph can be matched to the host-graph area surrounding glhOS‘, then rule
application is forbidden. Thus, in A notation the application condition is given in two portions: graph-related restrictions
are shown diagramattically as the required and prohibited context, whereas attribute-related restrictions are given textually.
A-notation uses *-groups to denote repetition: elements of a *-group are repeated zero, one or many times. This is used
both for optional context (the embedding) and to express complicated graph matches. The fold construct, denoted by
subscripts on node labels, is used to permit several nodes to be matched to a single host-graph node. While isomorphism
is used to locate glhOS‘, the use of folds permits selected application of a more general morphism. This is convenient, for
example, in describing a rewrite of a circular list of nodes: a long list can provide unique node-matches for g;, where a short
list requires several host-graph nodes to match a single g; node. The dining philosopher problem illustrates this [LoKa92].
To structure A rewriting systems, rules can be organized into platforms, with special trigger nodes placed into the host-
graph to communicate among platforms.

Compared to A notation, the X notation has a more readable separation between required and optional context. On
the other hand, the prohibited context of the A notation is useful in practice. This same restriction would have to be
expressed textually in Y or X notation. (An extension of this construct to a conditional prohibited context is discussed in
SectionlZ13.)

Rekers independently introduces another graphical notation for rewrite rules [Reke94]; this notation uses a
delimiter, with g, above the line, and g, and required context below. Dotted lines are used to distinguish required-context
from g.. A diagrammatic notation for a limited prohibited context is proposed; for example, the required absence of an edge
is indicated by a crossed-out edge starting or ending in g;.

Special diagrammatic notations can be developed for context-free graph-rewrite rules. For example, the GraphEd
system [Hims93] limits g; to a single node. This node is drawn quite large, defining two regions (inside and outside). The
g, subgraph is drawn inside, and optional-context nodes are drawn outside. An eNCE embedding is specified as a set of
edges between g, nodes and optional-context nodes. This provides a compact and readable notation for context-free rewrite
rules.

A.3 Depthl Embeddings: NCE and NLC

In [JaR082], Janssens and Rozenberg formally define graph rewriting with neighbourhood controlled embedding
(NCE). This is a Depthl embedding mechanism -- a post-embedding edge can connect to a RestGraph node only if that
node used to be connected to a pre-embedding edge. Edge labels may change, but edge-orientation is preserved in the
transformation from pre-embedding edges to post-embedding edges. This is illustrated in Figure@.5.

The NCE model is predated by the related and theoretically significant Node Label Control (NLC) model of graph-
rewriting [JaRo80a] [JaRo80b]; see also [Roze87], [Welz87], [EnLR87], [EnR091]. The NLC approach is restricted to

31

cases where g, consists of one non-terminally labeled node; a collection of NLC rewrite rules is used to define a context free
graph grammar. Instead of specifying a separate embedding for each rewrite rule, one global embedding is defined for the
grammar as a whole. This embedding consists of a set of pairs (x,y) where x is the label of a node in grhoSt and y is the
label of a node in the direct neighbourhood of glhOSt. A pair (x,y) implies that a post-embedding edge is to be added between
a node in g "5t with label x and a node in the direct neighbourhood of glh"St with label y. Hence, this approach is node-
label controlled. To apply NLC to directed graphs, the embedding consists of two sets of pairs (x,y); one set embeds the
incoming edges, while the other embeds the outgoing edges. Optionally, to alter the direction of embedding edges, four
sets of pairs (x,y) can be used; two to embed edges that don’t change direction and two to embed edges that do change
direction. Finally, if the graph has edge labels, then the pairs (X, y) can be replaced by four-tuples (X, a, y, b), to convert a-
labeled pre-embedding edges to b-labeled post-embedding edges. One can see that NCE (FigureA.5) is a variant of this that
is applicable when g; consists of more than one node.

The NLC approach is theoretically significant in that it defines a (node-oriented) class of context-free graph
grammars. This is useful in determining whether properties of string context-free grammars can be generalized to graph
grammars. For example, string context free grammars have the property that the result of a derivation is independent of the
order in which the productions are applied. This property guarantees the existence of derivation trees. However, NLC
graph grammars, do not necessarily have this property. Graph grammars with this property are said to be confluent or
order-independent. For NLC grammars to be confluent, no edge can connect two non-terminally labeled nodes in g or the
initial graph. NLC grammars with this restriction are called boundary NLC or B-NLC [RoWe86] [Welz86] [Welz87]
[EnLR87] [EnLW90]. Boundary NLC grammars do not have normal forms. However, Chomsky and Greibach normal
forms do exist for the boundary form of eNCE grammars [EnLW90]. Here “eNCE” denotes an edge-labeled context-free
NCE grammar.

The context-free nature of NLC graph grammars limits their expressive power. Extending the model to “handle
NLC” grammars, where g; consists of two nodes connected by an edge, greatly increases expressive power [MaRo87a].
Handle NLC grammars are capable of generating the recursively enumerable set of terminally labeled graphs.

Edge-label controlled (ELC) grammars have been proposed by [MaRo87b] [MaR090]. These grammars are
analogous to the NLC approach, except that the basic primitive which is rewritten is a labeled edge rather than a labeled
node. Hence, the embedding is defined in terms of edge labels.

32

1 2 3 b ° 4
a
CO— = X7
s
Embedding: In = {(1,3,a,b,E), (1,5,b,b,F)}
Out = {(2,4,b,a,F), (2,5,c,a,E)}
(a) the rewriting rule (b) the initial host graph

(c) after processing the In part of Embedding (d) final result

Figure.5 An example of the NCE rewriting mechanism, applied to an edge-labeled directed graph (edNCE). In the
rewrite rule (a), node labels are inside the node while node denotations are outside. The embedding specification consists of
two sets In, Out. The set In handles pre-embedding edges which terminate in g'°st, while the set Out handles those which
originate from glh(’s‘. Each set consists of quintuples of the form (n,n’,w;,w,,v), where n denotes a g; node, n’ denotes a g,
node, w; and w, are edge labels, and v is a node label in RestGraph. To apply a quintuple, look for any pre-embedding edge
that has label w, and connects node n of g% to a RestGraph node labeled v; if such an edge is found, it becomes a post-
embedding edge of label w, connecting node n’ of g " to that same v-labeled RestGraph node. In this example, the pre-
embedding edge with label ¢ does not match any quintuple, and hence does not give rise to a post-embedding edge.
Similarly, pre-embedding edges that match several quintuples give rise to several post embedding edges.

As noted in [JaR082], this depthl embedding mechanism can be restricted to a simple embedding mechanism
(which preserves the labels of the pre-embedding edges), by using triplets (n,n',v) instead of the quintuplets (n,n',w;,w,,v).
In this case, all pre-embedding edges between node n and a v-labeled host-graph node are transformed into post-embedding
edges connecting to node n’. One could also use quadruplets (n,n',w,v), if the desired embedding of an edge depends on its
edge label.

A.4 Elementary Embeddings: Schneider’s Notation

Early work with graph grammars [PfRo69] [Mont70] sparked interest in the embedding problem. In 1970, Schneider
provided the first formal definition of the embedding problem; a summary can be found in [Nagl79]. Schneider’s mechanism
is illustrated in Figurel.6. Comparing this to the NCE mechanism shown in Figure@.5, Schneider’s mechanism cannot
express (1) embedding conditional on the label of a RestGraph node, or (2) a change in the label of embedding edges. On
the other hand, the simplicity of Schneider's mechanism makes it relatively readable and easy to use, as in [Bunk82a],
[FaB193].

33

SN

Embedding: Inj = {(1.3),(1,5)}; Inp ={(1,3)}; Outp ={(2:4),(2.5)}
(a) The rewriting rule (b) the initial host graph

g

(c) after processing the Iny, parts of Embedding (d) final result

Figurel.6 An example of Schneider's embedding mechanism. In the rewrite rule (a), node labels are inside the node
while node denotations are outside. The embedding specification consists of sets In;, Out;, which specify the transformation
of edges with edge label i. Each set In; and Out; contains pairs of the form (n,n'), where n denotes a node in g and n'
denotes a node in g.. Such a pair causes a pre-embedding edge connected to node n in glhOSt to be transformed into a post-
embedding edge connected to node n' in grh"St. The orientations, labels, and RestGraph-endpoints of the embedding edges
remain unchanged. The notation simplifies if there are no edge labels (use only one set In and one set Out) or if edges are
undirected (use one set instead of two In Out sets).

A.5 Gluing Models

In the gluing approach to graph rewriting, a rule’s gluing isomorphism acts as the embedding specification. Both
nodes and edges can be used as gluing points; here we consider the case of nodes. The rewrite rule designates a subset of g,
nodes as gluing nodes, the gluing isomorphism puts these nodes into correspondence with a subset of g.nodes. To apply a
rewrite rule, glh"st is located in RestGraph. Next, the gluing condition is checked: every pre-embedding edge must connect
to a gluing node in ghost. (If there is a pre-embedding edge that connects to a non-gluing node in g"°st, then the rule
application is disallowed.) The gluing isomorphism provides an invariant embedding, specifying which g n°st node inherits
the embedding edges of each gluing node in glhOSt. Because of the simplicity of invariant embedding, a graph rewrite step
does not need to remove pre-embedding edges and replace them by post-embedding edges. Instead, it removes glhOSt except
for the gluing nodes, and then adds grhOSt except for its gluing nodes (connecting, instead, to the gluing nodes left by
ghosY). This carries over the embedding edges unchanged.

The restricted nature of this model has important advantages for the analysis of rewrite-rule interactions. The effect
of a rewrite rule is localized to g;"st, and perhaps even localized to the non-gluing part of g'°st. (Some models allow
gluing nodes and/or edges to change label or direction, for example [Schn93].) This localization allows analysis of parallel
or order-independent rule application. Theoretical results are derived from a formulation of gluing in terms of category
theory.

Of course, the restricted nature of the invariant embedding also limits the expressiveness of a gluing rewrite rule. A
rewrite rule expressed with a more complex embedding can be translated to an invariant embedding by suitable expansion of
gy and g. In the original rule, graph changes are accomplished by the embedding process as well as by subgraph

34

replacement; in the new rule, all graph changes must be explicit in the expanded g; and g.. To enable such translation to
invariant embedding, additional notation for g; and g may be needed. Referring back to Figurel consider the example of a
rewrite rule to “delete a node with label A”. Using an analogous embedding, g is a single node labeled A, g is a null
graph, and the embedding specification is null. To translate this to an invariant embedding, g; must explicitly include all of
the neighbors of node A. (These neighbors become gluing nodes.) Since we don’t know the number of neighbors, we
would have to express g; using some notation for replicated nodes and edges.

We now briefly review three main gluing models: the algebraic model (SectionB.5.1); edge replacement systems
(Section.5.2), and hyperedge replacement systems (Sectionf.5.3).

A.5.1 The Algebraic Approach

The algebraic approach to graph grammars ([EhPS73], [Ehri87], [EnKL91]) was first proposed in 1973 as a way of
generalizing string concatenation to a graph operation. (It is also referred to in the graph-grammar literature as the Berlin
approach. Ehrig et al. extend the approach from graphs to more general structures such as partial graphs [EKMRW&81].)
The pushout construct of category theory is adopted in this approach; well-known techniques and results from category
theory are applied to graph derivations. Because of its strong mathematical basis, this approach has received much attention
by those interested in the theory of graph grammars.

As outlined above, a graph rewrite rule consists of g; (with designated gluing points), g. (with designated gluing
points), and an (iso)morphism between the two sets of gluing points. Thus, g, consists of gluing points (which are not
deleted), and other graph structure (which is deleted); g, consists of a replication of the gluing points, along with new
graph items. The gluing morphism can be modeled using a double (or single) pushout, applied in the category of graphs
and total (partial) graph morphisms.

O—

N\

—

O'/—\-—\‘ - OoO-—0O—0—0O i

(a) the rewriting rule (b) the initial graph

OO0 @Aj)_fﬁ
@) @) O‘—i— O

(c) the context graph (removable parts of glhOSt are removed) (d) the resulting graph

Figure@l.7 Application of a rewrite rule using the algebraic approach. Shaded nodes in (a) represent the injective
mapping of the distinguished gluing points. Application of the rule shown in (a) to the graph shown in (b) results in the
graph shown in (d). The context graph (c) is an intermediate step.

Figurel.7 illustrates a rewrite rule in the double-pushout approach, as well as the definition of the context graph.
The application of a rewrite rule, transforming a graph g into a graph g’, can be viewed as a double gluing: the gluing of
glhOSt and the context graph along the gluing points (which produces g), and the gluing of grhOSt and the context graph along
the gluing points (which produces g'). This can be represented by a pair of gluing diagrams [Ehri87]. Since gluing

35

diagrams are pushouts in the category of graphs, techniques and results from category theory can be applied to graph
derivations. This enables proofs of the Church-Rosser Property, parallelisms, amalgamation, and concurrency [EhKL91].

The algebraic approach is advantageous in applications where concurrency and synchronization must be proven. For
example, the algebraic approach has been used to develop a toy database system for managing library transactions [EhKr80]
[EhHa86], and is being used for high-level data-structure manipulation [Pfei90].

A.5.2 Edge Replacement Systems

The edge replacement grammar discussed in [HaKr83] and [HaKr87a] is a restricted case of both the algebraic
approach (Section@.5.1) as well as the hyperedge replacement approach (Section@.5.3). Here, g is restricted to be a
handle: a graph consisting of two unlabeled nodes connected by a non-terminally labeled edge. This restricted form of g
makes the search for an isomorphic g"°st inexpensive. The two endpoints of the handle are gluing nodes. The gluing
condition is automatically satisfied, since all nodes in g, are gluing nodes. Application of a rewrite rule results in
replacement of an edge by the graph grh"St (Figure[.8). Of all the gluing models, the rewriting mechanism of edge-
replacement grammars is most similar to that of string grammars: the labeled edge is analogous to a character.

Edge-replacement grammars define context-free graph languages, since each production specifies the replacement of
one labeled edge by a graph. (This edge-based definition contrasts with the node-based definition of context free graph
grammars given by the NLC grammars of Section.3.) Edge-replacement grammars are considered analogous to context-
free string grammars. Carrying string-grammar properties over to edge-replacement graph grammars, Chomsky’s pumping
lemma has a graph-grammar analogue [Kreo79], but no analogue of Chomsky normal form has been defined.

(b) the initial graph (c) the resulting graph

FigureAl.8 An application of an edge-replacement rewriting rule. Shaded nodes in (a) represent the injective mapping of
the distinguished gluing points. Application of the rule shown in (a) to the graph shown in (b) results in the graph shown
in (c)

A.5.3 Hyperedge Replacement Systems

The hyperedge replacement systems described in [HaKr87b] [HaKV89] [DrKr91] manipulate hypergraphs, which
consist of hyperedges. Each hyperedge has a label, m ordered incoming tentacles, and n ordered outgoing tentacles
(Figurel@.9a). A hypergraph consists of a set of hyperedges joined at sockets (Figure@.9b). Each rewrite rule specifies
the replacement of a hyperedge by a hypergraph. Thus these systems define another class of context-free graph languages.
The embedding is implicitly specified: the terminal nodes of the g hyperedge act as the set of gluing points k;. The g,
hypergraph consists of a set of gluing points k., where there is a bijective mapping between k; and k.. This type of

36

rewriting is highly similar to Feder’s plex grammars [Fede71]. If all hyperedges have exactly one incoming tentacle and
exactly one outgoing tentacle, then we have an edge replacement system, as above.

The significance of hyperedge systems is that they deal with a sophisticated primitive, and yet are rich in results
corresponding to the properties of context-free string languages. Additionally, they are rich in decidability results
concerning graph-theoretic properties of the members of the generated languages [DrKr91]. Hyperedge systems have

furthered graph-language theory. We are not aware of their use in applications.
r-j
E
z I
Ny /o][]
°®
A

A ¢
'V \”] T

(b)

Figure@l.9 (a) A hyperedge with label A. (b) A hypergraph; the solid nodes are sockets joining hyperedges.

A.6 Structured Graph Rewriting: Embedding combined with Gluing

The structured graph rewriting model of Kreowski and Rozenberg unites a wide variety of graph-rewriting approaches
under one general framework [KrRo90a] [KrRo90b]. A complex model results from this effort to accommodate both the
embedding and the gluing approaches to graph rewriting. While this model may be too complex for practical use, it
provides an excellent overview of graph-rewriting mechanisms. Existing approaches to graph rewriting are modeled using
selected subsets of the features present in the structured graph rewriting model. This clarifies the similarities and differences
among various approaches to graph rewriting.

Structured graph rewriting is applied to directed graphs with labeled nodes and edges. A structured rewrite rule has
the following components.

* The graph g;. This is a structured graph, meaning that it contains three designated subgraphs.
A subset of the nodes of g is designated as the contact part of g;.
A subgraph of g; is designated as the protected part of g. i
A subgraph of the protected part is designated as the glﬁing part of g;.

* The graph g. This is a weakly structured graph, meaning that it contains one designated subgraph.
A subgraph of g, is designated as the gluing part of g ..
* The gluing isomorphism, which maps the gluing part of g; to the gluing part of g_.

* An NCE-like embedding specification (Section@.3): the relations C ;, and C_, embed incoming and outgoing
edges according to five-tuples that specify the g; node, the g. node, the pre-embedding edge label, the post-
embedding edge label, and the node-label of the affected RestGraph node.

Rule application involves five steps.
(1) Choose an occurrence of g;in g. The result is glhOSt.

(2) Check the application condition. This includes the contact condition, a generalization of the gluing condition of
SectionA.5: any node in g lhOSt which is adjacent to nodes in RestGraph must be in the contact part of glhOSt. The

37

application condition may also include conditions on attribute values (SectionZ12). Rule application proceeds only if
all conditions are met.

(3) Remove the unprotected parts of g"°st. Many graph rewriting approaches require the complete removal of ghost.
Exceptions are the diagrammatic X and A notations (Section@.2), and the gluing models of Section.5, which
require removal of only part of glhOS‘. The remaining graph is called ContextGraph. (If glhOSt is completely removed,
then ContextGraph = RestGraph.)

4) Add grhoSt to ContextGraph, by gluing according to the gluing isomorphism. For pure embedding approaches, the
Add is a disjoint union of ContextGraph and grhOSt; the embedding edges are formed next, in the Connect step.

(5) Connect grh‘)St to ContextGraph. Post-embedding edges are formed according to the embedding specification.

Various graph-rewriting models fit into this framework. The gluing models of SectionA.5 rely completely on
gluing (the Add step) to embed grh‘)St in the host graph. Here the gluing and protected parts of g; are identical, and contain
the contact part of g;; the gluing isomorphism is used; and the embedding specification is null. Embedding approaches to
graph rewriting are modeled using null gluing parts and null protected parts; the embedding specification can express
embeddings that are orientation-preserving and depthl. Existing graph-rewriting mechanisms that are modeled in [KrRo90a]
use either the Add or Connect steps, but not both. An example requiring both Add and Connect is provided by the
diagrammatic X and A-notations of Sectionfl.2. Recall that these models have a required context: a subgraph common to
g; and g, which is unaltered by the graph rewrite, but must be present for the rewrite to occur. To model this with
structured graph rewriting, the required context becomes the gluing (and protected) part of g;; the Add step models this
gluing. The Connect step models a (depthl, orientation-preserving) subset of the embedding specification, which is
represented via the “optional context” of X and A notations.

References

[AiNa91] K. Aizawa, A. Nakamura, “Graph Grammars with Path-Controlled Embedding,” Theoretical Computer Science,
Vol. 88, No. 1, Sept. 1991, pp. 151-170.

[Ande77] R. Anderson, “Two Dimensional Mathematical Notation,” in Syntactic Pattern Recognition, Applications, K. S.
Fu editor, Springer 1977, pp. 147-177.

[Bunk82a] H. Bunke, “Attributed Programmed Graph Grammars and Their Application to Schematic Diagram
Interpretation,” IEEE Pattern Analysis and Machine Intelligence, Vol. 4, No. 6, Nov. 1982, pp. 574-582.

[Bunk82b] H. Bunke, “On the Generative Power of Sequential and Parallel Programmed Graph Grammars,” Computing,
Vol. 29, 1982, pp. 89-112.

[BuHa89] H. Bunke and B. Haller, “A parser for context free plex grammars,” Proc. 15th Intl. Workshop on Graph-
Theoretic Concepts in Computer Science, June 1989, (in LNCS 411, Springer), June 1989.

[BuHa92] H. Bunke and B. Haller, “Syntactic Analysis of Context-Free Plex Languages for Pattern Recognition,” in
Structured Document Image Analysis, Eds. Baird, Bunke, Yamamoto, Springer 1992, pp. 500-519.

[CaRMI1] S. Card, G. Robertson, and J. Mackinlay, “The Information Visualizer, An Information Workspace,” Proc.
ACM SIGCHI 1991 Conference on Human Factors in Computing Systems, pp. 181-188, New Orleans, Louisiana,
April 1991.

[CoTV93] S. Collin, K. Tombre, and P. Vaxiviere, “Don’t Tell Mom I’m Doing Document Analysis; She Believes I'm in
the Computer Vision Field,” Proc. Second International Conference on Document Analysis and Recognition, Tsukuba,
Japan, Oct. 1993, pp. 619-622.

[Comp92] COMPUGRAPH Computing by Graph Transformation: Final Report, ESPRIT Basic Research Working
Group No. 3299, edited by H. Ehrig and M. Lowe, March 1992.

[DoTo88] J. Dolado and F. Torrealdea, “Formal Manipulation of Forrester Diagrams by Graph Grammars,” IEEE Trans.
Systems, Man and Cybernetics 18(6), pp. 981-996, Nov. 1988.

[DrKr91] F. Drewes, H.-J. Kreowski, “A Note on Hyperedge Replacement,” in [IWGG91], pp. 1-11.

[EgPM92] J. Egar, A. Puerta, M. Musen, “Automated Interpretation of Diagrams for Specification of Medical Protocols,”
AAAI Symposium: Reasoning with Diagrammatic Representations, Stanford University, March 1992, p 189-192.

[Ehri87] H. Ehrig, “Tutorial Introduction to the Algebraic Approach of Graph Grammars,” in [[WGGS87], pp. 3-14.
[EhHa86] H. Ehrig, A. Habel, “Graph Grammars with Application Conditions,” in [RoSa86], pp. 87-100.

38

[EnHKO92] H. Ehrig, A. Habel, H. Kreowski, “Introduction to Graph Grammars with Applications to Semantic Networks,”
International Journal of Computers and Mathematical Applications, Vol. 23, No 6-9, pp. 557-572, 1992.

[EhKL91] H. Ehrig, M. Korff, M. Lowe, “Tutorial Introduction to the Algebraic Approach of Graph Grammars Based on
Double and Single Pushouts,” in [[WGG91], pp. 24-37.

[EhKr80] H. Ehrig and H. Kreowski, “Applications of Graph Grammar Theory to Consistency, Synchronization, and
Scheduling in Data Base Systems,” Information Systems, Vol 5, pp. 225-238, 1980.

[EKMRWS81] H. Ehrig, H.-J. Kreowski, A. Maggiolo-Schettini, B. Rosen, J. Winkowski, “Transformation of Structures:
An Algebraic Approach,” Math. Syst. Theory, Vol. 14, 1981, pp. 305-334.

[EnPS73] H. Ehrig, M. Pfender, H. J. Schneider, “Graph Grammars: An Algebraic Approach,” Proc. IEEE Conf. SWAT
73, lowa City, 1973, pp. 167-180.

[EnLR87] J. Engelfriet, G. Leih, G. Rozenberg, “Apex Graph-Grammars,” in [IWGG87], pp. 167-185.

[EnLWO90] J. Engelfriet, G. Leih, E. Welzl, “Boundary Graph Grammars with Dynamic Edge Relabeling,” Journal of
Computer and System Sciences, Vol. 40, 1990, pp. 307-345.

[EnRo91] J. Engelfriet, G. Rozenberg, “Graph Grammars Based on Node Rewriting: An Introduction to NLC Graph
Grammars,” in [IWGG91], pp. 12-23.

[ELNSS92] G. Engels, C. Lewerentz, M. Nagl, W. Schafer, A. Schurr, “Building Integrated Software Development
Environments Part 1: Tool Specification,” ACM Trans. Software Engineering and Methodology, Vol. 1, No. 2, Apr.
1992, pp. 135-167.

[EnLS87] G. Engels, C. Lewerentz, W. Schafer, “Graph Grammar Engineering: A Software Specification Method,” in
[TIWGGST7], pp. 186-201.

[EnSc85] G. Engels, W. Schafer, “Graph Grammar Engineering: A Method used for the Development of an Integrated
Programming Support Environment,” Proc. International Joint Conference on Theory and Practice of Software
Development, (in Lecture Notes in Computer Science, Springer Verlag, Vol. 186, 1985), pp. 179-193.

[FaB192] H. Fahmy and D. Blostein, “A Survey of Graph Grammars: Theory and Applications,” 11th International
Conference on Pattern Recognition, Delft, Netherlands, September 1992, Vol 3, pp. 294-298.

[FaB193] H. Fahmy and D. Blostein, “A Graph Grammar Programming Style for Recognition of Music Notation,”
Machine Vision and Applications, Vol 6, No 2, pp. 83-99, 1993.

[FaB194] H. Fahmy and D. Blostein, “Reasoning in the Presence of Uncertainty via Graph Rewriting,” pre-proceedings of
Fifth Intl. Workshop on Graph Grammars and Their Application to Computer Science, Nov 1994, Williamsburg,
Virginia, pp 95-100.

[Fede71] J. Feder, “Plex Languages,” Information Sciences, Vol. 3, 1971, pp. 225-241.

[Fu82] K. S. Fu, Syntactic Pattern Recognition and Applications, Prentice Hall 1982.

[Gold92] L. Goldfarb, “Transformation Systems are More Economical and Informative Class Descriptions than Formal
Grammars,” 11th International Conference on Pattern Recognition, Delft, Netherlands, September 1992, Vol 2 pp.
660-664.

[Gott79] H. Gottler, “Semantical Description by Two-Level Graph-Grammars for Quasihierarchical Graphs,” in Workshop
WG 78 on Graphtheoretical Concepts in Computer Science, Applied Computer Science, Vol. 13, Hanser-Verlag,
Munich, 1979.

[Gott83] H. Gattler, “Attribute Graph Grammars for Graphics,” in [IWGGS83], pp. 130-142.
[Gott87] H. Géttler, “Graph Grammars and Diagram Editing,” in [IWGGS87], pp. 216-231.

[GOGNI1] H. Géttler, J. Gunther, G. Nieskens, “Use Graph Grammars to Design CAD-Systems!” in [TIWGG91], pp. 396-
410.

[Gott92] H. Gottler, “Diagram Editors = Graphs + Attributes + Graph Grammars,” International Journal of Man-Machine
Studies, Vol 37, No 4, Oct. 1992, pp. 481-502.

[Grba94] A. Grbavec, “Recognition of Mathematical Notation using Ordered Graph Rewriting,” MSc Thesis, Department
of Computing and Information Science, Queen’s University, February 1995.

[HaKr83] A. Habel, J.-J. Kreowski, “On Context-free Languages Generated by Edge Replacement,” in [[IWGGS83], pp. 143-
158.

[HaKr87a] A. Habel, J.-J. Kreowski, “Characteristics of Graph Languages Generated by Edge Replacement,” Theoretical
Computer Science, Vol. 51, 1987, pp. 81-115.

[HaKr87b] A. Habel, J.-J. Kreowski, “May We Introduce to You: Hyperedge Replacement,” in [[WGG87], pp. 15-26.

[HaKV89] A. Habel, J.-J. Kreowski, W. Vogler, “Decidable Boundedness Problems for Hyperedge-Replacement Graph
Grammars,” in Lecture Notes in Computer Science, Vol. 351, 1989, pp. 275-289.

39

[HaBI194] L. Haken and D. Blostein, “Shared Processing in Automatic Diagram Recognition and Generation: A Case Study
of Music Notation,” in preparation.

[Hare88] D. Harel, “On Visual Formalisms,” Communications of the ACM, Vol 31, No 5, pp. 514-530, May 1988.

[HeSa86] T. Henderson and A. Samal, “Shape Grammar Compilers,” Pattern Recognition, Vol 19, No 4, pp 279-288,
1986.

[Hims93] M. Himsolt, “Konzeption und Implementierung von Grapheneditoren,” Dissertation, Universitat Passua, 1993.
The GraphEd system is freely available for non-commerical use (himsolt@fmi.uni-passau.de).

[ICDARO93] Proc. Second International Conference on Document Analysis and Recognition, Tsukuba, Japan, Oct. 1993.

[IWGGT9] International Workshop on Graph Grammars and Their Application to Computer Science and Biology. (Lecture
Notes in Computer Science, Vol. 73, V. Claus, H. Ehrig, G. Rozenberg Eds, Springer Verlag, 1979)

[IWGGS3] Second International Workshop on Graph Grammars and Their Application to Computer Science. (Lecture
Notes in Computer Science, Vol. 153, H. Ehrig, M. Nagl, G. Rozenberg Eds, Springer Verlag, 1983)

[IWGGS8T7] Third International Workshop on Graph Grammars and Their Application to Computer Science. (Lecture Notes
in Computer Science, Vol. 291, H. Ehrig, M. Nagl, G. Rozenberg, A. Rosenfeld Eds, Springer Verlag, 1987)

[TWGG91] Fourth International Workshop on Graph Grammars and Their Application to Computer Science. (Lecture
Notes in Computer Science, Vol. 532, H. Ehrig, H. Kreowski, G. Rozenberg Eds, Springer Verlag, 1991)

[JaRo80a] D. Janssens, G. Rozenberg, “On the Structure of Node-Label Controlled Graph Languages,” Information
Sciences, Vol. 20, 1980, pp. 191-216.

[JaRo80b] D. Janssens, G. Rozenberg, “Restrictions, Extensions and Variations of NLC Grammars,” Information
Sciences, Vol. 20, 1980, pp. 217-244.

[JaRo82] D. Janssens, G, Rozenberg, “Graph Grammars with Neighbourhood-Controlled Embedding,” Theoretical
Computer Science, Vol. 21, 1982, pp. 55-74.

[KaLG91] S. Kaplan, J. Loyall, S. Goering, “Specifying Concurrent Languages and Systems with A-grammars,” in
[IWGGOI1], pp. 475-489.

[Kreo79] H.-J. Kreowski, “A Pumping Lemma for Context-free Graph Languages,” in [IWGG79], pp. 270-283.

[KrRo90a] H.-J. Kreowski, G. Rozenberg, “On Structured Graph Grammars, I,” Information Sciences, Vol. 52, 1990, pp.
185-210.

[KrRo90b] H.-J. Kreowski, G. Rozenberg, “On Structured Graph Grammars, I1,” Information Sciences, Vol. 52, 1990, pp.
221-246.

[LiFu89] W. Lin and K.S. Fu, “A Syntactic Approach to Three-Dimensional Object Recognition,” IEEE Trans. Systems
Man and Cybernetics, Vol 16, No 3, May 1986, pp 405-422.

[LoBe93] M. Lowe, M. Beyer, “AGG -- An Implementation of Algebraic Graph Rewriting,” Proci Fifth Intl .Conf. on
Rewriting Techniques and Applications, Montreal, Canada, June 1993, in LNCS 690, Springer Verlag, pp. 451-456.

[LoKa92] J. Loyall and S. Kaplan, “Visual Concurrent Programming with Delta-Grammars,” Journal of Visual Languages
and Computing, Vol 3, 1992, pp. 107-133.

[MaRo87a] M. Main, G. Rozenberg, “Handle NLC Grammars and R.E. Languages,” Journal of Computer and System
Sciences, Vol. 35, No. 2, Oct. 1987, pp. 192-205.

[MaRo87b] M. Main, G. Rozenberg, “Fundamentals of Edge-Label Controlled Graph Grammars,” in [TIWGG87], pp. 411-
426.

[MaRo090] M. Main, G. Rozenberg, “Edge-Label controlled Graph Grammars,” Journal of Computer and System Sciences,
Vol. 40, 1990, pp. 188-228.

[MaK192] J. Mauss and C. Klauck, “A Heuristic Driven Parser Based on Graph Grammars for Feature Recognition in
CIM,” Proc. International Workshop on Structural and Syntactic Pattern Recogntion, Bern Switzerland, August 1992
(in Advances in Sructural and Syntactic Pattern Recognition, Ed. H. Bunke, World Scientific, 1992), pp. 611-620.

[Mont70] U. Montanari, “Separable Graphs, Planar Graphs and Web Grammars,” Information and Control, Vol. 16, pp.
243-267.

[MuMHSS8] 1. Mulder, A. Mackworth, W. Havens, “Knowledge Structuring and Constraint Satisfaction: The Mapsee
Approach,” IEEE Pattern Analysis and Machine Intelligence, Vol 10, No 6, November 1988, pp. 866-879.

[Nagl79] M. Nagl, “A Tutorial and Bibliographical Survey on Graph Grammars,” in [[WGG79], pp. 70-126.
[Nagl86] M. Nagl, “Graph Technology Applied to a Software Project,” in [RoSa86], pp. 303-321.

[Nagl87] M. Nagl, “Set Theoretic Approaches to Graph Grammars,” in [IWGGS87], pp. 41-54.

[NaSc91] M. Nagl, A. Schurr, “A Specification Environment for Graph Grammars,” in [IWGG91], pp. 599-609.

40

[Panel91] “Panel Discussion: The Use of Graph Grammars in Applications,” in [IWGG91], pp. 41-60.

[PaTi90] F. Paulisch and W. Tichy, “EDGE: An Extendible Graph Editor,” Software Practice and Experience, Vol.2D, pp.
63-88, 1990.

[PeJo87] S. Peyton Jones, The Implementation of Functional Programming Languages, Prentice Hall, 1987.

[PfR069] J. Pfaltz, A. Rosenfeld, "Web Grammars," Proc. Ist Int. Joint Conf. on Artificial Intelligence, Washington,
1969, pp. 609-619.

[Pfal72] J. Pfaltz, “Web Grammars and Picture Description,” Computer Graphics and Image Processing, Vol. 1, 1972, pp.
193-220.

[Pfei90] J. Pfeiffer, “Using Graph Grammars for Data Structure Manipulation,” in Proceedings of the 1990 Workshop on
Visual Languages, 1990, pp. 42-47.

[Reke94] J. Rekers, “Graphical definition of graphical syntax,” in preparation.
[Roze87] G. Rozenberg, "An Introduction to the NLC Way of Rewriting Graphs," in [IWGGS87], pp. 55-70.
[RoSa86] G. Rozenberg, A. Salomaa (Eds.), The Book of L, Springer-Verlag, Berlin, 1986.

[RoWe86] G. Rozenberg, E. Welzl, “Boundary NLC Graph Grammars - Basic Definitions, Normal Forms, and
Complexity,” Information and Control, Vol. 69, 1986, pp. 136-167.

[Schu91] A. Schiurr, “PROGRESS: A VHL-Language Based on Graph Grammars," in [IWGG91], pp. 641-659.

[Schn93] H. Schneider, “On categorical graph grammars integrating structural transformations and operations on labels,” in
[TCS93], pp. 257-275.

[SiGJ93] G. Sindre, B. Gulla, H. Jokstad, “Onion Graphs: Aesthetics and Layout,” Proc. 1993 IEEE Symposium on
Visual Languages, Bergen, Norway, August, 1993, pp. 287-291.

[Strz90] T. Strzalkowski, “Reversible Logic Grammars for Natural Language Parsing and Generation,” Canadian
Computational Intelligence Journal, Vol 6, No 3, pp. 145-171, 1990.

[TCS93] Theoretical Computer Science, Vol 109, 1993, special issue on computing by graph transformation.

[Uesu78] T. Uesu, “A System of Graph Grammars which Generates all Recursively Enumerable Sets of Labelled Graphs,”
Tsukuba Journal of Mathematics, Vol. 2, 1978, pp. 11-26.

[Welz86] E. Welzl, “On the Set of All Subgraphs of the Graphs in a Boundary NLC Graph Language,” in [RoSa86], pp.
445-459.

[Welz87] E. Welzl, “Boundary NLC and Partition Controlled Graph Grammars,” in [IWGG87], pp. 593-609.

[Z1Sc92] A. Zundorf and A. Schiurr, “Nondeterministic Control Structures for Graph Rewriting Systems,” Proc 17th Intl.

Workshop on Graph-Theoretic Concepts in Computer Science WG91, (in Lecture Notes in Computer Science, Vol
570, Springer Verlag, 1992).

