
Technical Report No. 95-374

On the Power of Arrays with

Recon�gurable Optical Buses�

Sandy Pavel, Selim G. Akl

Department of Computing and Information Science

Queen's University, Kingston, Ontario, K7L 3N6

CANADA

February 1st, 1995

Abstract

This paper examines some computational aspects of di�erent arrays enhanced with

optical pipelined buses. The array processors with optical pipelined buses (APPB) are

shown to be extremely exible, as demonstrated by their ability to e�ciently simulate

di�erent variants of PRAMs and bounded degree networks. A model of computation is

introduced, the array with recon�gurable optical buses (AROB), which combines some

of the advantages and characteristics of the classical recon�gurable networks (RN) and

the APPB. A number of applications of the APPB and AROB are presented, and their

power is investigated. It is shown that beside AROB's capability of simulating classical

recon�gurable networks, the enhanced communication mechanisms allow for an important

system reduction when compared with the classical RNs.

Keywords: optical interconnections, pipelined optical buses, recon�gurable networks,

bounded degree networks, PRAM models.

1 Introduction

Interprocessor communication networks are often the main bottlenecks in parallel machines.
There are a number of fundamental constraints which bound bus interconnections in electronic
systems in general: limited bandwidth, capacitive loading, and cross-talk caused by mutual

�This research was supported by the Telecommunications Research Institute of Ontario and the Natural

Sciences and Engineering Research Council of Canada.

inductance. Another limitation concerns the exclusive access to the bus resources which limits

throughput to a function of the end-to-end propagation time. Optical communications have

emerged as alternative solutions to these problems. Unlike the signal propagation in electronic

buses, which is bidirectional, optical channels are inherently directional and have predictable

delay per unit length. As it is shown in [21, 12], this allows a pipeline of signals to be created

by the synchronized directional coupling of each signal at speci�c locations along the channel.

The possibility in optics to pipeline the transmission of signals through a channel provides

an alternative to exclusive bus access. Using this kind of spatial parallelism the end-to-end

propagation latency can be amortized over the number of parallel messages active at the same

time on the bus. A number of arrays with optical pipelined communications are proposed in

[21, 12, 27, 11, 29].

In this paper we analyze the possibility of using the arrays with optical pipelined buses

in order to simulate di�erent PRAM models and bounded degree networks. Our results com-

plement the results previously obtained and extend the algorithmic study of these structures,

making it possible to better understand the implications of using optical interconnections for
massively parallel processing.

In order to overcome the ine�ciency of long distance communications, the use of broad-
casting bus systems has been proposed. When the con�guration of such a bus system can be

dynamically modi�ed, the network is referred to as recon�gurable. A recon�gurable network
is able to obtain a precise topology that mirrors the connectivity required by an algorithm
through the use of data-dependent switch settings, [18]. We introduce in this paper a model
which incorporates some of the advantages and characteristics of two existing models, namely
the classical recon�gurable networks and the arrays with optical pipelined buses. The new

array with recon�gurable optical buses, AROB, complements the communication and compu-
tation capabilities of the arrays with optical pipelined buses and switches given in [27, 29, 11],
by using slightly di�erent recon�guration rules and functional characteristics. It is shown that
beside the capability of the AROB to simulate classical recon�gurable networks, the enhanced
communication mechanisms allow for an important system reduction when compared with the
classical RNs.

When using optics, techniques which are unique and/or suitable to optics must be developed.
Some of these techniques are either revised or are introduced in this paper.

In section 2 the basic concepts used in this paper are presented. In section 3 the AROB

model is introduced. Simulations of PRAMs and bounded degree networks by the APPB, and
of recon�gurable networks by the AROB are described in section 4. Some applications are

presented and the power of these models is investigated in section 5. Section 6 presents our
conclusions and some open problems.

2 Basic Concepts

2.1 Linear arrays with optical pipelined buses

Consider a linear array of n processors connected to an optical bus as in Fig. 1. Each processor

is connected to the bus through two directional couplers. One is used to write data on the

2

End
processor

P
i P

n-1
P

0

Leader
processor

Reference

Selection

Message

d

P
1

transmitting bus segment

receiving bus segment

Figure 1: The linear array with pipelined optical buses APPB.

bus and the other to read the data from the bus. Each processor sends data on the upper

(transmitting) segment of the bus and reads messages from the lower (receiving) segment of the

bus. The optical bus is constructed from three identical waveguides. One waveguide is used for
message transmission, the message waveguide, and two are used for carrying address related

information, the reference (Ref) and select (Sel) waveguides. During a write cycle, the data
written by a processor into the bus propagate as indicated with arrows in Fig. 1, and may be
read by any subsequent node on the bus. Due to the directionality of the signal propagation
and the predictable delay of the signal, the same bus may be used to transmit messages between
other nodes in the same time. Let us consider that each message is b bits long. Each bit is

represented by an optical signal of width w seconds for a binary value of 1. The absence of
such a signal represents a 0.

Two conditions appear to be essential for this kind of transmission: (1) all transmissions
are synchronized and (2) the length of the optical path on the waveguide between any two
adjacent nodes, d in Fig. 1, is larger than or equal to bwcg, where cg is the velocity of light
in the waveguide. These two conditions ensure that the signals corresponding to two di�erent

messages, which travel in a waveguide in the same direction at the same time, do not physically
overlap at any point on the waveguide, i.e., are space multiplexed. The initiation of a consecu-
tive transmission on the bus is possible only after a bus cycle ends. The end-to-end propagation

time is �b = 2n� seconds, where n is the number of processors in the linear array and � , is the
time taken for a message to traverse the optical distance d. This system is called linear Array

Processors with Pipelined Buses (APPB), and its principles have been introduced in [21, 12].

Several approaches can be used to route messages in a linear APPB structure from one
processor to another. In [21, 12] a time waiting function is introduced. In [9, 16, 28] a coincident
pulse technique is described. Various message routing patterns can be realized using these

techniques, most of which are suitable for both SIMD and MIMD implementations. Next

we describe a version of the time-division multiplexing scheme, [27], which is also used to
implement a part of the synchronous communications needed by the AROB. We consider two

cases: (1) message receiving, when the destination processor knows the index of the sender and
(2) message sending, when the sender knows the destination address.

Message receiving: To specify the time at which a processor should receive a message, a

control function wait(i; j) is introduced in [21, 12]. Function wait(i; j) is de�ned as the time
that processor i should wait, relative to the beginning of the bus cycle, before reading the

3

message sent on the bus from some other source processor j. Thus, wait(i; j) = (i� j)� . This

technique assumes that the receiver knows the identity of the sender. In this communication

scheme all processors start the transmitting phase at the same moment, that is, the beginning

of a bus cycle. From the receiver's point of view, taking into consideration the receiving time

for each transmitted message, each source processor has a �xed, exclusive, transmitting time

slot. In [27], due to the one-to-one mapping between a source processor and the corresponding

time slot this mechanism is called time-division source-oriented multiplexing (TDSM). Multiple

processors can read the same message in the same bus cycle.

Message sending: Each message is written on the bus during the receiving time slot associ-

ated with its destination processor. Denote by si the receiving time slot associated to processor

Pi, for all i, 0 � i � n � 1. The message communication process begins by making slot sn�1
available to Pn�1, on the transmitting segment of the bus. After � time, slot sn�1 advances

through the waveguide, reaching Pn�2, and slot sn�2 becomes available to Pn�1. This process

is repeated, making all slots available to all processors. The train of time slots propagates,

through the folded segment into the receiving segment, until sn�1 reaches the directional cou-
pler of Pn�1. In this moment all processors read their messages on the receiving segment of
the bus. Since there is a one-to-one mapping between a destination processor and a time slot,
a technique similar to this is called time-division destination-oriented multiplexing (TDDM),

[27]. An error can occur if several sources want to send messages to the same destination.
The address information can also be encoded using the coincident pulse technique presented

in [9, 16, 28, 27], see Fig. 2. The unit delay is de�ned to be the spatial length of a single optical
pulse, i.e. w � cb, [27]. Initially the processors are connected to the three waveguides of a bus
such that between any two processors the same length of �ber is used in all three waveguides.

Thus, the propagation delays are the same for all three waveguides, in both transmitting and
receiving segments. It is also assumed that the bus interfaces can introduce delays between
any two processors on the receiving (lower) segment of the bus. For the moment we consider
that unit delays are added only to the reference and message waveguides. One such delay is
represented by a loop in Fig 2.a. As a consequence, the propagation delays on the receiving
segments of the select and reference waveguides are no longer the same.

The coincident pulse technique can be used when the source processor knows the address
(index) of the destination processor. The address of a destination processor is unary encoded
by the source processor in an address frame, which is composed of the selection and reference

pair of frames, Fig. 2.b. This encoding is performed before the actual bus cycle. The time

di�erence between the two pulses in the address frame, in units of delay, is selected to be equal

to the absolute di�erence between the addresses (indices) of the source and destination proces-
sors. During the bus cycle, the source processor sends the address frame on the transmitting

segment. Since there are no delays on the transmitting segment, the address frame arrives
unmodi�ed at P0 on the receiving segment. After these two pulses propagate through their

corresponding waveguides on the receiving segment, a coincidence of the two occurs at the des-

tination processor, Fig 2.c. A message frame is sent on the message waveguide synchronously
with the reference pulse. A simple hardware mechanism can be used by the destination pro-

cessor in order to detect the coincidence of a reference and select pulses and to read, in this
case, the message frame on the message waveguide. We denote by tref the time when processor

4

1
P

j
P

n-1
P

0
P

Ref

j
P

Sel

Ref

(a)

unit delay

d

Ref

(c) At the destination processor,

SelSel

(b) Initially

n-1 j 1 n-1 j 1 00

Figure 2: Coincident pulse technique. (a) Processor connection; the
message waveguide and the transmitting segment are omitted. (b) Ad-
dress frame (c) Pulse coincidence at the destination.

Pi transmits its reference pulse and by tsel(j) the time when it transmits a select pulse. These
two pulses will coincide at processor Pj if and only if tsel(j) = tref + j, 0 � i; j < n.

A selection frame contains n pulse slots, each corresponding to a destination processor. The

presence of a pulse in one of these slots speci�es the address of a destination processor. Thus,
multiple processors can be addressed by a single address frame if multiple pulses are speci�ed in
the selection frame. For example, a processor can use the same addressing mechanism in order
to broadcast a value to all other processors [25]. In this case if all the slots in the selection frame
contain optical pulses then a coincidence between a selection pulse and the reference pulse will

occur at each processor connected to the bus. Many other communication patterns are described
in [9, 16, 28] using the same coincident pulse technique. The decoding of the destination address
is done through the detection of the coincidence of two pulses at the destination processor. The
coincident pulse mechanism seems to avoid the traditional bottleneck which characterize most
of the on-line address decoding techniques [27].

A bus cycle length is given by the time taken by the end-to-end propagation of the messages
together with the time required to process a message at the source and destination processors.

The latter operation includes message generation and detection, synchronization, bu�ering, etc.
[12]. The message processing is done in parallel by all source processors, at the beginning of

the bus cycle, and/or by all destination processors after the message propagation ends. The
ratio, �, of message processing time to communication over distance d time is appreciated to be

on the order of 10 to 1000, see [12]. In order for the message processing time to be in the same

order of magnitude as the end-to-end propagation time, �b, the number of processors should
satisfy n � �. In this case the bus cycle length can be considered to be O(�b).

In order to allow multiple source processors to initiate communications in parallel, the
overlapping between the packets sent by di�erent source processors during the same bus cy-

5

ASOB node APPBS nodeAPPB node

Figure 3: 2D arrays with optical pipelined buses and di�erent switching

capabilities.

cle, should be avoided. A packet is represented by the message frame and the address frame

(selection and reference pulse frames) sent by a processor on the bus. Thus, the condition

d > maxfb; ngwcg must be satis�ed. For big values of n the length of the address frame (n)

could be much larger than the length of the message frame (b), resulting in very long buses
which are ine�cient.

There are also other factors that limit the size of an optical bus. All passive devices, as the
directional couplers or optical �bers, exhibit loss. In the same time each directional coupler,

used by a processor to read a message from the waveguide, taps a percentage of the energy
carried by the signal. One solution for these problems is to provide some means of amplitude
restoration. The use of an active switch instead of the directional coupler could solve this
problem, [13], but it has the main disadvantage that introduces more delay. Otherwise, the
number of the devices connected to a bus must be restricted to an admissible value, i.e.,

which does not introduce errors. This second solution reduces also the value of the end-to-end
propagation delay. Two-dimensional arrays with optical pipelined buses have been proposed in
order to reduce the number of processors connected to a linear optical pipelined bus from O(n)
to O(

p
n).

2.2 2D array processors with optical pipelined buses and switches

The two-dimensional arrays presented in [27, 29, 11] are versions of the same structure, called

Array Processors with (Optical) Pipelined Buses (2D APPB) [12], enhanced with di�erent
switching capabilities. The system used in each row and each column of a 2D APPB is the

linear APPB [21, 12]. The connection of a 2D APPB processor is depicted in Fig. 3.
A node of the Array with Spanning Optical Buses (ASOB) presented in [27, 29] is also

shown in Fig. 3. This structure is based on the utilization of 2n linear APPBs, each used
to interconnect the processors in a row or a column. One segment of each row optical bus is

connected through a switch to one segment of each column optical bus. An extended variant
of this structure, the Array Processors with (optical) Pipelined Buses using Switches (APPBS),

is presented in [11]. This architecture is similar to that of the basic two-dimensional APPB

and also to that of ASOB. The di�erence lies in the use of optical switches at the intersections
between all bus segments of the column and row buses, see Fig. 3. Also, di�erent switching

rules are used.

6

In the next subsection we use the basic concepts presented for the APPB in order to de-

scribe another two-dimensional array which uses optical pipelined buses for communication,

the AROB.

3 Two-dimensional Array with Recon�gurable Optical

Buses

The Array with Recon�gurable Optical Buses, AROB, we propose uses the basic architectural

and functional structure of a classical recon�gurable network. The communication system of

this network is modi�ed in order to allow the implementation of the pipelined optical com-

munication mechanisms as they are introduced in [21, 12] and also presented in the previous

section.

3.1 Recon�gurable networks

A linear recon�gurable network consists of n processors and has a simple topology. The pro-
cessors P0; P1; : : : ; Pn�1 are arranged in a row. Switches are used to connect processor Pi to

processors Pi�1 and Pi+1 if 1 � i � n � 2. Thus, for a switch of a linear network there are
only two local con�gurations: either connect or disconnect the edges corresponding to the two
adjacent processors. Many recon�gurable two-dimensional network architectures have been
proposed in the literature. These include the polymorphic torus [17], the recon�gurable mesh
with buses (RMESH) [23], the processor array with a recon�gurable bus system (PARBUS)

[32], and the recon�gurable network (RN) [6]. An n � n PARBUS [32] consists of a mesh of
processors each of which is connected to its neighbors through links, as shown in Fig. 4.a.
The up to four interprocessor links to which a processor has access can be connected internally
in arbitrary subsets. This can be done by an internal switching system associated with each
processor. Of particular interest here is a modi�ed version of this model, namely the RN, which

is proposed in [6]. In the RN model the processors and the bus links are exactly as for the
PARBUS. However, there are only ten local con�gurations that may be taken by a switch of
the mesh. These con�gurations are depicted in Fig. 4.b.

A common basic assumption regarding any recon�gurable model is that the transmission on
any bus obtained through recon�guration takes constant time. This is based on the experimen-

tal results obtained with the YUPPIE architecture [22] for a systems using a few hundreds of
processors, see also [18]. The above assumption ignores the fact that up to O(n2) processors can

be connected to a bus and also ignores the fact that all electrical signal propagation problems

described in the introduction worsen with the increase of the number of processors. In order to
alleviate some of these problems, and also to make the constant time delay assumption more
realistic, the replacement of electrical buses and switches with optical ones has been proposed

in [6]. This optical recon�gurable architecture does not allow message pipelining.

7

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

N

E

S

W

(b)(a)

Figure 4: (a) Two-dimensional recon�gurable network; (b) Switch con-

�gurations.

3.2 The Two-dimensional AROB

Consider n2 processors connected in a two-dimensional recon�gurable structure as depicted in
Fig. 4.a. The switching system of a processor is able to connect the four ports (N;S;E;W)
in one of the con�gurations shown in Fig. 4.b. The interconnection network is assumed to use
optical waveguides and optical switches for communication and recon�guration, respectively.
We call this structure Array Processors with Recon�gurable Optical Buses, AROB. We describe

in this section some of the most important functional and architectural characteristics of the
AROB. Speci�cally, we show that the local switch setting provides a mechanism for building
arbitrary APPB-like linear structures on the AROB. As one of the main objectives is to exploit
the great communication capabilities of these linear APPBs, a number of basic requirements
which must be satis�ed in order to be able to implement time division and/or coincident pulse

techniques, are identi�ed.
A bus link between the ports of two neighboring processors is composed of two segments,

the signal propagation direction on each of the two bus segments being indicated with arrows in
Fig. 5.a. A processor sees these segments as transmitting and receiving segment, respectively.

Note that a transmitting segment of a processor is in the same time a receiving segment for

its neighbor. Each transmitting or receiving segment contains all three waveguides, i.e., the
message, selection and reference waveguides. When required, delays can be introduced in the

path of any of these waveguide.

Linear bus construction

If during a switch setting operation two ports of a processor must be connected, then the

receiving segment from one port is connected internally to the transmitting segment of the

other port and vice versa. Another possible case is when two or all four ports of a processor
remain unconnected.

8

Processor
+

Switching
System

Processor
+

Switching
System

(a)

bus link

(i) Leader

(ii) End

processor

processor

N-linkE-link W-link S-link

W

N

E

S S

E

N

W

(iii) Intermediary
processor

(b)

Figure 5: (a) The processor connection in a 2D AROB. (b) Possible
processor connection to an arbitrary bus.

When pipelined communications are sought, an algorithm to be implemented on the AROB

is required to specify a rule in order to uniquely identify the leader processor of each linear array
obtained by recon�guration (similar to P0 in Fig. 1). It is assumed also that the designated

leader is able to connect a folded optical bus between the transmitting and receiving segments
of the port through which it connects to that bus.

Thus, multiple arbitrary linear structures, similar to the linear APPB, can be constructed
through recon�guration. A processor can be connected to up to four such buses at a time.

The algorithms to be simulated on the AROB are not necessarily required to specify to each

processor the length of the linear buses to which it is connected or its indices relative to these

buses. Note that these values are needed in order to be able to implement the time division

or coincident pulse techniques. If they are not speci�ed, the technique described below can be
used in order to determine the relative position of each processor in each linear bus to which it

is connected and, implicitly, the length of each bus.

9

There are essentially three di�erent ways of connecting a processor to a linear structure

obtained through recon�guration, Fig. 5.b. As the recon�guration process is the result of

some local decision, after the switch setting operation each processor knows if it is either an

intermediary, or a terminal processor in the linear bus obtained. If two ports of a processor

are connected internally then that processor is described as intermediary for the corresponding

bus. Any port which is not connected internally to another port designates the associated

processor as terminal. When a processor is determined (or speci�ed) as the leader of a bus, its

connection is similar to one of those depicted in Fig. 5.b (i). Any terminal processor which is

not a leader is an end processor and its connection is one of the four depicted in Fig. 5.b (ii).

At the time of recon�guration there is no way of knowing by an intermediary processor what is

its position in the linear bus or, which of the two bus segments is the transmitting and which

is the receiving one in the new linear APPB-like bus. Another bus cycle is required in order

to determine the receiving and, implicitly, the transmitting segments of the linear bus. The

processor connection given in Fig. 5.b (iii) allows the processor to monitor both bus segments

for signals coming from either of the two directions. The leader processor sends a pair of pulses
on the transmitting segments of the selection and reference waveguide, respectively. Note that
as the propagation directions on the bus segments are predetermined, the leader knows their
function designation. The optical pulses propagate through the folded segment and then into

the receiving segment of the bus. As they travel synchronously their coincidence is detected by
each processor connected to the bus. The particular segment of the bus on which these pulses
are detected is set to be the receiving bus segment.

Arbitrary buses which connect O(n2) can be obtained through recon�guration. Unless
otherwise state, in order to avoid the problems created by long buses we restrict the use of

the AROB to applications which require buses of O(n) length. Also, it is assumed that each
processor in an AROB has O(1) memory. The limited memory restricts to O(1) the number of
di�erent messages sent and/or received in a bus cycle by a processor.

Index determination

We describe next a technique which can be used in order to determine the index of each
processor connected to a linear bus obtained in an 2D AROB by recon�guration. Consider the

linear array depicted in Fig. 6.a. The leader processor is the only one in this structure which

knows its index (0). Note that the transmitting and folded bus segments are not shown in Fig.
6.a, and that the message waveguide is entirely omitted. Each processor, with the exception
of P0, introduces a unit delay on the receiving segment of the selection waveguide. This is

followed by a bus cycle at the beginning of which P0 sends a pair of pulses on the selection

and the reference waveguides. The pulses arrive at P0 on the receiving segment at moment

t0. From one processor to the next the selection waveguide has added unit-delay loops. The

di�erence between the arrival times of the selection and reference pulses is incremented with
one time unit at each new processor. The selection pulse arrives at the jth processor with j

time-units delay relative to the reference pulse. The reference pulse is used to trigger at each
processor the load of the selection frame. Thus, the relative delay, between the two pulses gives

the actual index of each processor in the linear structure.

10

t
0

0
t +n-1

Sel
Ref

Sel
Ref

Sel
Ref

Sel
Ref

Sel
Ref

0

0

t + 1

t + j
1

j

n-1

n-1 j 0 j 01 1n-1

(a)

Ref

Sel

0
P

(c) At the j-th processor(b) Initially

(1) (j) (n-2) (n-1)

determined indices

leader

Figure 6: Index determination.

11

This is actually the reversed process of the coincident pulse addressing technique presented

in the previous section. It starts with two synchronized pulses, Fig. 6.b, and after a number

of delays the unary-encoded information (the index) is obtained at each processor, Fig. 6.c.

In this case it is no longer required that the length of a packet to be increased to maxfb; ng
as is the case with the coincident pulse technique. No more than one pulse frame is sent on a

waveguide during a bus cycle, and thus the possibility of collision is eliminated.

Comparison with other arrays with optical pipelined buses

The ASOB [27, 29] and APPBS [11] structures are basically array processors with pipelined

buses, enhanced with di�erent optical switches at the intersections of row and column buses.

Compared with the 2D APPB, these switching capabilities allow improved communications

between the rows and columns. The use of switches provides all-optical paths between any

pair of processors, reduces the number of message transfer steps and reduces or even eliminates

the bu�ers used in the basic 2D APPB. Our approach in combining recon�guration and optical
message pipelining is slightly di�erent. The AROB architecture has two major objectives: (1) to

be able to simulate e�ciently the recon�guration mechanism of a recon�gurable network (RN),
and (2) to add to the recon�gurable network the great optical communication capabilities of
the APPB-like structure.

(1) The simulations of RNs by AROBs are investigated in section 4.2 where it is shown
that an AROB with n2 processors can e�ciently simulate any n2-processor RN. One advantage

of the recon�gurable networks is the possibility to build arbitrary buses which allow direct
connections between di�erent points in the network. If this would be the sole purpose of the
AROB, our model would not bring anything new because direct connections between di�erent
nodes can also be obtained, under certain conditions, using the ASOB or the APPBS. The power
of the recon�gurable networks is also given by the possibility of using the bus recon�guration

as a computation tool. In order to illustrate this claim we give as example the summation
algorithm presented in [15]. It is shown in [15] that given N k-bit numbers, 1 � k � N ,
these numbers can be added in O(1) time on an N �Nk recon�gurable network. Besides the
usual binary representation of numbers within a processors, the data are also represented using
the input/output ports of a group of processors in the recon�gurable mesh. The 1UN and

2UN representations use n processors to represent an integer i in [0; n � 1]. The designated
port of processor k, 0 � k � i carries a 1-signal and the designated ports of the rest of the

processors carry a 0-signal, [15]. See the left-most column of the array in Fig. 7. For the

2UN representation of an integer i, the designated ports of some subset of i processors carry
a 1-signal and the designated ports of the rest of the processors carry a 0-signal. See the
�rst three processors of the top-most row in Fig. 7. Note that the 2UN representation of an

integer is not unique. In Fig. 7 is shown one block of the mesh which is used to compute

1UN(Cj+1) = (2UN(Sj) + 1UN(Cj)) div 2, where S and C represent sum and carry values,
respectively. The 2UN(Sj) + 1UN(Cj) and div 2 operations are performed by the appropriate

bus setting and the result is obtained in the right-most column after the 1-signals propagate
through the buses. See [15] for details.

(2) The APPB communication capabilities can be exploited by setting the AROB's switches

12

j
+ 2UN(S)

1

1

1

1

0

0

1 0 1

1

1

1

0

0

0

1UN(C)1UN(C) j+1
j

div 2

Figure 7: Bus con�guration for the computation of 1UN(Cj+1) =

(2UN(Sj) + 1UN(Cj)) div 2 for Cj = 3 and Sj = 2.

13

such that multiple processors of the AROB are connected in \contiguous" linear and/or two-

dimensional APPB-like structures. For example, this type of communications is used in order

to obtain an e�cient 2D compaction algorithm, see claim 8.

The ASOB and the APPBS systems cannot be easily and directly compared with the AROB

because they use di�erent switching techniques. Some of the communication patterns imple-

mentable in the APPBS cannot be simulated on an AROB with exactly the same time complex-

ity. For example, the AROB model, unlike APPBS, does not allow switch setting operations to

take place in the same time with the message transfers during a bus cycle. Minor modi�cations

in the hardware and functional speci�cation of the switching system of an AROB are required

in order to implement the communication patterns of the APPBS, with exactly the same time

complexity. In the same time, the switching system used in APPBS allows the implementation

of only a subset of the switch state con�gurations speci�c to a RN system. Again, only minor

modi�cation are needed in order to transform the APPBS into an AROB.

3.3 Time complexity issues

Evaluating the time complexity of algorithms simulated on structures which use some kind
of global, �xed or recon�gurable, broadcasting buses remains a controversial issue. Initially

the propagation delay on a global (electrical) bus was expressed as a function of its length,
i.e., the number of processors connected to it [5]. It was noticed later that the propagation
time on the bus can be considered constant for practical values of the number of processors
[22]. This assumption is systematically made when recon�gurable networks are used. In reality
the communication time increases with the number of processors in the system, regardless the

technology employed. This is true even if other communication techniques, like the free-space
optical beams, are used.

Let a step be either an internal operation or a communication step. It has been argued
that counting the number of steps of an algorithm simulated on an array with optical pipelined
buses allows for a better comparison between algorithms, [10]. This method has the advantage
that it abstracts from the details introduced by the technology dependent parameters, as �b, for

example. Obviously this is true only if the same assumptions regarding the bus cycle lengths are
made. The assumption made in [21] is that the bus cycle length in a linear APPB is compatible
with the computation speed in the nodes. In [12, 11] and [25] the time complexity of di�erent
algorithms simulated on arrays with optical pipelined buses is also expressed in terms of the

number of steps and it is shown that these results compare favorable with those obtained on

di�erent classical networks.
We adopt in this paper the same method of specifying the time complexity in number of

steps. However, one must be aware that for a more accurate comparison of our results with
those obtained on other architectures, as the RN or the mesh with global broadcasting buses

for example, would imply the explicit use of the bus cycle length parameter, O(�b). Obviously,

the communication delays encountered in the actual implementations of the other architectures
should also be accounted for.

14

4 PRAMs, BDNs and RNs simulations

In this section we investigate the power of the linear APPB in relation to some of the PRAM

models and bounded degree networks (BDN). We give two algorithms to simulate the Common-

and Priority-CRCW PRAM, respectively, on a (slightly modi�ed) linear APPB for the case

when each processor has constant-size memory, i.e., the total memory in the system is m =

�(n). These simulations are further extended, using a two-dimensional APPB, to the general

case n = o(m). This second technique allows us to also give a simulation algorithm for the

Combining-CRCW PRAM model. It is shown further that the 2D APPB structure can e�-

ciently simulate any bounded degree network which has the same number of nodes. Finally, the

simulation by the AROB of the RN, is presented. The time complexities of these simulations

are also analyzed.

4.1 PRAM simulations using the linear APPB

An (n;m)-PRAM consists of n processors and m memory locations, where each processor is

a random-access machine, see for example [2]. All processors communicate via the shared
memory. Each processor may read or write a memory location or perform any logical or
arithmetical operation on some date stored in its local memory. There are di�erent types of
PRAMs depending on whether or not concurrent access to the same memory location is allowed.
In this paper we consider the model variants which allow concurrent read (CR) operations.

For the write operation, the simulation of both exclusive (EW) and concurrent (CW) cases
are investigated. When several processors attempt to write into the same arbitrary memory
location of a CW variant, the model must specify what value ends up stored in that memory
location. Examples of these rules are:

� Priority-CRCW PRAM: the processors are assigned �xed priorities, and only the one

with the highest priority is allowed to write in a memory location in case of conict;

� Common-CRCW PRAM: in case of conict, the processors wishing to write into some
memory location are allowed to do so only if they are attempting to write the same value,

otherwise the value in that memory location remains unchanged;

� Combining-CRCW PRAM: the value written in a memory location is a linear combina-

tion, using some associative and commutative operation, of all values which were concur-

rently written.

First we consider the linear APPB structure, Fig. 1, with n processors, each with �(1)
memory. Part of this local memory is used to implement the PRAM's global memory. We

want to simulate any operation of an n-processor PRAM model having m = �(n) memory.
Let both the linear APPB and the PRAM use processors of the same type. Thus, any internal

arithmetic and/or logic operation of a PRAM processor is executed in the same amount of

time by a APPB processor. It remains to show how to simulate the PRAM memory read/write
operations and to give their time complexity.

15

If in the message receiving and message sending procedures, described for the linear APPB,

the messages are replaced by PRAM memory values, we already have the CREW PRAM

simulations algorithm. Indeed, the message receiving cycle can be used to implement a PRAM

memory concurrent read operation and the message sending cycle to implement a PRAM

memory exclusive write operation. In order to avoid contention during the write operation,

either the algorithm (program) ensures that no two processors write in the same location in

the same bus cycle or, a mechanism to detect possible errors is used. An example of such an

mechanism is presented bellow for the Common CRCW PRAM which can also be used for the

CREW PRAM. Thus, an n-processors linear APPB can simulate any n-processor and �(n)-

memory CREW PRAM operation in a constant number of bus cycles and O(�b) time. For the

simulation of the Common- and Priority-CRCW PRAM models, we rely on two algorithms for

the following problems.

Subset binary OR problem: Given a linear APPB with n processors each having a one-

bit value vi, for 0 � i � n� 1, it is required to compute the binary OR of the values stored by

an arbitrary, speci�ed, subset of processors S. The result should be stored in memory location
mj which is associated with some processor Pj . The index j of this processor is known to all
processors in S. Because in a linear APPB during a write cycle all processors have writing
access to each message frame, a single memory write cycle su�ces in order to compute the

subset binary OR value. Indeed, during the memory write cycle each processor Pi 2 S writes
its binary value on the transmitting segment of the bus when the jth message slot reaches that
processor, that is, after (n� i+ j)� time from the beginning of the bus cycle. The directional
coupler used to connect a processor to a waveguide acts as an optical equivalent of a wired OR
gate. The result, which obviously is the binary OR of all these values, is read by Pj on the

receiving segment of the bus after (n+ i+ j + 2)� time from the beginning of the cycle. 2
The coupler can be replaced by a true OR gate made from an active switch when interference

between coherent input signals is a concern, [13]. A true OR circuit provides in the same time
synchronization and signal amplitude restoration, [13], but has the disadvantage that introduces
its switching time as delay on the optical path.

Subset binary pre�x OR problem: A binary pre�x OR operation over one-bit values,

vjk , stored by an arbitrary subset of processors S of a linear APPB requires the computation
of bi = vj0 _ vj1 _ : : : _ vjh, with jk < i, for all k, 0 � k � h, h < i, for all processors Pi 2 S.
The indices associated with each processor (and value) are given by the relative position in

the linear APPB. Thus, the subset binary pre�x OR problem requires to compute for each
processor Pi 2 S the OR function of the one-bit values stored by all the processors in S which

have indices smaller than i. The subset S has associated a work memory location mx, for some
x 2 [0; n � 1] which is initialized to zero. The index x is speci�ed by the algorithm and is

known by all processors in S. The subset binary pre�x OR problem can be solved by a linear
APPB where the processors are connected as in Fig. 8. At the beginning of the bus cycle Px

sends mx on the transmitting segment of the bus. All other message slots remain unoccupied.

When the message frame associated with mx reaches some processor Pjk 2 S on the receiving

segment, Pjk reads the value stored by mx. The read operation is performed using the input

directional coupler A after (n+ jk)� seconds from the beginning of the cycle. When mx reaches
the output directional coupler B of the same processor, the vjk is written on the bus. The value

16

P
iP

0

P
n-1P

1

A B

input
directional
coupler

output
ditectional
coupler

Figure 8: Processor connection for the BPS problem.

read by each processor Pi 2 S is the OR of the one-bit values, vjk , stored by the processors in

S which have indices jk smaller than i. A similar technique can be used if the order of indices

is reversed, i.e. if the pre�x OR of the values from the right of each processor are needed. In

this case the transmitting segment is used similarly in a TDDM cycle and the pre�x OR values

are obtained in one bus cycle. 2

Multiple binary OR and pre�x OR values can be computed in the same bus cycle if their
destination addresses are distinct and the subsets of processors involved are disjoint. These
algorithms take a constant number of steps.

Di�erent variants of the Common-CRCW PRAM model are mentioned in the literature,
see [2] for example. The basic de�nition of the Common-CRCW PRAM does not require the
machine to check if the values, written by a subset of processors in the same memory location,
are indeed equal. Instead, the model requires this to be guaranteed by the algorithm. Thus,
we could use the message send/receive procedures to implement the Common-PRAM memory
read/write operations. Other variants require that the integrity of a value written in a memory

location be checked and some decision be taken accordingly. For example, the COLLISION
Common variant requires a \failure" label to be stored in the memory location in case the
concurrent write does not succeed, i.e., the processors attempted to write di�erent values in
the same location. Next we provide a mechanism for checking the integrity of a value written
in a memory location. This can further be used to implement di�erent variants of the Common

model.
Suppose that a subset of processors wish to write in the same memory location mj, stored by

Pj. A write bus cycle is used,. This is followed by a read bus cycle during which each processor
of the above subset reads the result stored in the mj memory location and compares it with the

value it has written previously. If for some processor these two values di�er, than an internal

ag is set. Another bus cycle is used in order to compute the binary OR value of all these ags,
the result being also stored by Pj . Each such ag could be used individually or combined with

other similar ags in order to determine the decision to be taken by the particular variant of
the Common-CRCW PRAM simulated. For example, in the COLLISION Common model all

the processors which have detected an error, use one more bus cycle to write the same failure

label in the corresponding memory location. Thus,

Claim 1 An n-processors linear APPB can simulate any Common-CRCW (n;�(n))-PRAM
operation in a constant number of steps.

17

To simulate a Priority-CRCW PRAM we want to implement a mechanism to ensure that

only the processor with the highest priority, from the subset of processors wanting to write in

the same memory location, can write in that memory location. The priority is given by the

position on the bus and the processor with the highest priority is the leader, P0, and that with

the lowest priority is the end processor, Pn�1. The simulation of a Priority-CRCW PRAM

memory write operation consists of three steps.

The �rst step is a multiple binary pre�x OR cycle. One binary pre�x OR computation

is associated with each memory location mj which is to be written later during this Priority

concurrent write operation. Only those processors which want to write in a given memory

location are supposed to take part in the binary pre�x OR operation associated with that

memory location. Initially they set an internal ag to 1. In the next bus cycle these ags are

used in a binary pre�x OR operation. During the (multiple) binary pre�x OR operation each

processor wanting to write into mj, reads a 1 value if and only if there is another processor

with higher priority which also wants to write into mj. Then, each processor which has to write

into mj checks the value read in the previous step. If this is 1 then the processor inhibits itself.
Otherwise, it is the processor with the highest priority wanting to write into mj. In the third
step, which is a writing cycle, the unique processor with the highest priority writes into the mj

memory location. This is done in parallel for all memory locations to be written.

Claim 2 An n-processors linear APPB can simulate any Priority-CRCW (n;�(n))-PRAM

operation in a constant number of steps.

The above results have mainly theoretical signi�cance because it is assumed that m = O(n).
In practice it is expected that any realistic parallel machine to simulate the PRAM has a �xed
number of processors, say n, each having associated a memory module of size O(m=n), where
m is the maximum memory required by any algorithm to be implemented on this machine.
By \realistic parallel machine" we mean one with distributed memory and an interconnection

network of �xed degree. Clearly, a 2D APPB architecture with n processors and m memory,
n = o(m), satis�es this description. The simulation techniques used when m = �(n) can no
longer be used for n = o(m). In order to do this, we use a number of intermediate results.
We show that any machine which uses a bounded degree interconnection (electrical) network
G for communications, can be simulated in a constant number of steps on a two-dimensional

APPB with the same type and number of processors. An immediate implication of this is the

possibility to simulate, in a constant number of steps, an n-processor buttery network [19] on

an n-processor APPB. Further, this allows us to use Ranade's result [30] and give a simulation
algorithm for any variant of the CRCW (n;m)-PRAM, on a 2D APPB. This algorithm has a

slowdown factor of only O(log n).

Bounded degree network simulation on arrays with optical pipelined buses

It is mentioned in [12] that any arbitrary one-to-one permutation can be implemented in a

two-dimensional APPB in a three-phase routing approach. The �rst step of this routing is a

preprocessing step which redistributes messages in each row (column) such that the messages
going to the same row (column) will occupy di�erent columns (rows). Then, the second and

18

third steps will route the messages to their destination rows (columns) and columns (rows),

respectively. The entire routing takes 3 bus cycles. A somehow similar three-phase o�-line

permutation routing algorithm is given in [1] and is described also in [19] for di�erent types of

classical networks. These techniques use the (o�-line) construction of a bipartite graph which

is further partitioned into perfect matchings in order to determine the initial preprocessing

permutation in each row (column). The same technique can be used for o�-line permutations

on higher-dimensional meshes and on networks like the buttery [1], for example. It turns

out that it can also be used to implement the simulation of any constant degree network on a

two-dimensional APPB. For completeness, in what follows we give a short description of this

technique, the details of implementation being similar to those in [1, 19], for example.

We show now how to simulate the communication steps which take place in any n-node

network G with maximum degree k, on an n-processor two-dimensional array with optical

pipelined buses. Assume that the ith node of G is initially mapped to the ith processor of the

APPB, where for example, the ith processor of the APPB is (r; c) with i = (r� 1)
p
n+ c, and

1 � r; c � n and 1 � i � n. Clearly, the neighboring nodes of G might not be mapped to
neighboring processors of the APPB. Thus, we need to simulate the single step communications
which take place in the G network between any two neighboring processors. For this, we
construct a bipartite graph of G with 2n nodes and with the edges representing the neighbor-

to-neighbor communications in G. It is shown in [19], for example, that we can label the edges
of the bipartite graph with integers from [1; k] so that no pair of edges with the same label
are incident to the same node. This labeling can be used to identify up to k disjoint one-to-
one permutations which describe the communications in the G network. Thus, by applying
k permutation routings, we have simulated the communications in G. As the preprocessing

is done o�-line, the permutations take a constant number of steps on an array with optical
pipelined buses.

Claim 3 The communications which take place in any constant degree, n-node network, can

be simulated on an n1=2 � n1=2 APPB in a constant number of steps.

One important consequence is that an n-node two-dimensional array with optical pipelined
buses is universal, in the sense that it can simulate, in a constant number of steps, the majority

of the networks which have been proposed as possible practical solutions for the interconnection
networks of parallel systems. It is well known that networks like the shu�e-exchange, for exam-

ple, cannot be e�ciently implemented using VLSI technology, that is, without having long wires

for some of the links in the network. However, the use of arrays with optical pipelined buses
o�ers an opportunity to increase the e�ciency with which such networks can be simulated, yet

with a reduction of the communication system complexity. Many of the emulation results pre-
sented in [12, 11] for di�erent classical networks are better than this three steps technique. Our

result is a proof of principle rather than a constructive method. For example, the simulation of
an n-node buttery-like network we can be done even more e�cient than in the general case of

constant degree networks. Suppose that we want to simulate a buttery with (l+1) levels and

n = (l + 1)2l nodes. A simple and e�ciently layout of the array with optical pipelined buses

to simulate the buttery is the (l + 1)� 2l array. In this case the communication patterns are

19

straightforward, no o�-line preprocessing being necessary.

It is shown in [30] that an n-processor buttery-like network withO(m) memory can simulate

one step of a CRCW (n;m)-PRAM in O(log n) steps with high probability. Thus,

Claim 4 One step of a CRCW (n;m)-PRAM can be simulated on an n1=2 � n1=2 array with

optical pipelined buses in O(log n) steps with high probability.

Note that the concurrent write operation can be any of the Priority, Common or Combining,

and that there is no limit imposed on the number of memory locations, m.

4.2 RN simulation by the AROB

Consider an AROB with n2 processors. We want to simulate a recon�gurable network (RN)

using the AROB model. We assume that processors are identical and thus, any internal or

switch setting operations take the same time on both models. The only operation we have to
simulate is the broadcasting of a value by an arbitrary processor, on the bus to which that
processor is connected. An example of processors connected to a bus obtained after the switch
setting operation is presented in a simpli�ed manner in Fig. 9. Note that in this case no leader
processor needs to be speci�ed.

As it is the case with the classical recon�gurable networks [6], an error should be detected
and reported if two or more processors attempt to broadcast a value during the same bus cycle.
The broadcasting of a value is done in three bus cycles. In the �rst bus cycle each processor
which wants to broadcast sends a pair of selection and reference pulses on both segments of
the bus. If a processor detects at least one pulse coincidence on either of the two bus segments,
sets an internal ag to 1, otherwise the ag is set to 0. If there is a processor which wants

to broadcast and in the same time has the internal ag set to 1, then a broadcasting error is
detected. Note that there are at least two processors which have detected such an error, if any.
A similar bus cycle is used in order to inform all processors connected to the bus that an error
has occured. In this case the coincidence of at least two pairs of pulses are detected by each
processor on the bus. If no error has occured then no pair of pulses is sent during this last

cycle, and the next cycle is used by the unique broadcasting processor to send the data to all

other processors using both segments of the bus.
The coincident pulse technique [9, 16, 25] (see the previous section) can be used for this

broadcast, only that this requires packet frames of maxfn; bg length. A better technique is to

send the message frame, containing the datum to be broadcast, synchronously with a pair of

reference and selection pulses. The detection of the coincidence of the two pulses triggers the
load of the message frame by each processor. Thus,

Claim 5 An AROB with n2 processors can simulate any n2-processor RN operation in a con-

stant number of steps. If the propagation times on buses of the same length in the two systems

are identical, than the simulation is time and cost optimal.

20

Sel

Ref

Figure 9: Processors in an arbitrary bus obtained through recon�gura-

tion.

For this RN simulation using the AROB model, the algorithms are no longer required to

specify the leader of each broadcasting bus. This requirement appears only when time division

communications are needed. It is important to emphasize the di�erences between RN and

AROB. By contrast with the classical RN, the AROB structure can use pipelining in order to
allow multiple broadcasting of di�erent messages on the same arbitrary bus, during the same
bus cycle. The internal time-related operation and the coincident pulse techniques, represent
other important enhancements over the classical RN. The relative powers of the AROB and
RN are more formally presented below in claim 10.

5 Applications and Performances

5.1 Binary Pre�x Sums on a linear APPB

Given n one-bit values, vi, 0 � i � n � 1, the binary pre�x sums (BPS) problem requires the
computation of psi = v0 + v2 + : : : + vi�1, for all 0 � i � n � 1, where \+" is the addition

operation. Consider the linear APPB structure with n processors, each storing one bit of the
input sequence.

We show that this structure can compute the binary pre�x sums of n one-bit values in a
constant number of steps. The BPS is a simple adaptation of the index computation algorithm
used by the processors connected to a bus obtained on an AROB after recon�guration. The
only di�erence is that initially only the processors whose one-bit values are 1 introduce a unit

delay on the selection waveguide of the receiving segment of the bus, Fig. 6. At the beginning

of the bus cycle P0 sends a pair of pulses on the selection and reference waveguides. The time
di�erence between the two pulses is incremented with one unit at each processor which has a

1 as input value. The select pulse arrives at the ith processor with k time-units delay relative
to the reference pulse, where k is the number of 1-values stored by the processors with indices

smaller than i, i.e. psi = k. The relative time delay between the two pulses is detected by each

processor. Thus,

Claim 6 The n-values BPS problem can be solved on a linear APPB with n processors in a

constant number of steps.

21

Note that the BPS of n binary values can be computed in a constant number of steps on ap
n�n [24], or on a log2 n�n RN [15]. If we assume the same propagation times for the signals

in the two models, RN and linear APPB, the BPS takes the same time but with considerably

fewer processors on the linear APPB model. Note that delay lines and the coincident pulse

technique are also used in [10] to compute the binary sum of n binary values on a linear array

with pipelined buses enhanced with switching capabilities.

5.2 Compaction

5.2.1 Compaction on a linear APPB

Given an array of values x0; : : : ; xn�1 of which k are nonzero, the compaction problem is the

problem of moving the nonzero elements into the �rst k consecutive array locations. One

can in addition require that the elements remain in the same order, leading to the ordered

compaction problem. Compaction without any bound on k is harder than computing any
symmetric function, and so the lower bound of
(log n= log log n), shown for the parity function

in [4], holds for any computation on a Priority-CRCW PRAM with a polynomial number of
processors [31]. If k is much smaller than n, this problem can be solved in O(log k= log log n)
time on a Common-CRCW PRAM with n processors [31].

We associate xi with 1 if xi 6= 0 and with 0 if xi = 0, and apply the binary pre�x sums
algorithm over these values. The pre�x sum value, psi, gives the number of 1 values stored by

processors with indices smaller than i. Knowing psi is equivalent with knowing the position of
the element stored by Pi in the compacted sequence, i.e., psi+1. Thus, after determining psi, a
single permutation routing su�ces in order to obtain the compaction of the k values on a linear
APPB. As the destination addresses of nonzero values are known and unique, the permutation
routing can be implemented using a single bus cycle.

Claim 7 The ordered compaction problem can be solved on a linear APPB with n processors

in a constant number of steps.

The compaction algorithm could be used when we want to apply some PRAM algorithm
over a subset of keys, arbitrarily distributed on a linear APPB. In order to e�ciently apply a
PRAM algorithm, each processor involved should have a unique identi�cation number and all

neighboring processors should be at the same optical distance d apart. This can be obtained

easily by compaction. Another useful application of the ordered compaction could be the
dynamic re-scheduling of task in a parallel system.

5.2.2 2D Compaction

Let us consider an n � n AROB, and a set of k nonzero input keys vij arbitrarily dispersed

among the nodes of the array. All other positions are �lled with zeros. The 2D compaction
problem requires moving all k values to the �rst dk=ne rows of the array. In [20] this problem

is solved in constant time on a recon�gurable array with n � n � n processors (switches). We

could also ask that the values be packed in a k1=2 � k1=2 mesh at, say, the lower-left corner.
This problem is solved in [3] in O(k1=2) time on a recon�gurable network with n�n processors.

22

We give an algorithm, which runs in a constant number of steps on an n�n AROB. Initially

the AROB is con�gured as a 2D APPB, i.e., each row and column is structured as a linear

APPB. In the �rst step, the BPS algorithm is used in each row. This determines, for each

nonzero value, its relative position psij in that row. The number Si, 0 � Si � n, of nonzero

values in each row i, 0 � i � n� 1, is also obtained. The Si values are stored by the processors

in the rightmost column.

In the second step, the pre�x sums algorithm given in [24] is applied over the integer values

Si stored in the rightmost column. This can be computed in a constant number of cycles. We

know now, for each row i , the number of nonzero values located in the rows below, Ci. The Ci's

are broadcast in their rows. Each processor in row i which has a nonzero value, receives the Ci

and then computes Fij = psij +Ci which gives the possible position of vij in the compacted set.

The Fij values are unique for each nonzero value, vij. Processor Pij computes the destination

row rij = bFij
n
c and the destination column cij = Fij mod n of the value it stores. As for any

two values in the same row the destination columns are di�erent, we can use a permutation

routing cycle within each row to move all nonzero values to their destination columns. Two
nonzero values in the same column cannot have the same row destination, and we can apply

another permutation on each column, thus moving all nonzero values to their �nal positions.
This takes a constant number of steps.

Claim 8 The two-dimensional compaction problem can be solved on an n � n AROB in a

constant number of steps.

We have an example of an algorithm for the AROBmodel which solves the compaction prob-
lem in the same time as RNs but with a considerably smaller number of processors (switches),

that is, with a factor of O(n) fewer processors. A natural open question is : Are there other
problems for which this is true?

6 On the power of the APPB-like models

The simulation results obtained in this paper are signi�cant because they allow us to compare
the new models which use the optical pipelined buses for communication with the more classical
one as the PRAM. In the extreme case when �b = O(1), and in view of the
(log n= log log n)

lower bound on the compaction problem for the Priority-CRCW PRAM, and claims 2 and 7,

we could claim that the linear APPB having n processors is more powerful than a Priority-
CRCW (n;�(n))-PRAM. In reality it seems impossible to build an APPB-like system having a

constant time propagation delay for a bus of arbitrary length, and nor it is possible to implement
a PRAM with constant time memory access for any number of processors, n. Therefore, care

must be taken in interpreting the comparisons between the PRAM models and the arrays with

optical buses. More important is the fact that, due to their ability to simulate the PRAM
models, the arrays with optical pipelined buses inherit a great number of algorithms designed
for the PRAM.

In order to compare the AROB structures with the RNs we give next a lower bound for the

ordered compaction problem on the classical RN.

23

Claim 9 The (ordered) compaction has an
(n) lower bound on a Linear RN with n processors.

For the two-dimensional O(n2)-processor RN, the lower bound on the compaction problem is

also
(n).

Proof: The proof of this statement is immediate. Let the linear RN be extended to a c1 � n

structure, where c1 is constant. Consider a cut C which splits the linear RN in roughly two

halves. The number of bus segments intersected by C is constant, i.e. c1. Assume an instance

of the compaction problem with c2n nonzero values, and c2 � 1=2 for example. These values

are stored in the right-hand half and they must be compacted starting with the left-most

processor in the other half of the network. Clearly, moving the nonzero values requires
(n)

time. Similar arguments can be used to prove the lower bound of the compaction problem on a

two-dimensional recon�gurable network. Actually this is true for any type of two-dimensional

recon�gurable network with electrical buses because the lower bound does not depend on the

interconnection capability of the switching system.

Taking into consideration claims 5, 8 and 9, we can say that:

Claim 10 The two-dimensional AROB model is more powerful than the two-dimensional re-

con�gurable network RN.

Claim 10 is true only if the end-to-end propagation delays on the two models are equal.
Note that this is not a restrictive condition.

7 Conclusions

We have shown that the APPB can e�ciently simulate some of the PRAM models, and that
the implementation complexity of the simulation algorithms is somehow \proportional" to the

power of the model being simulated. As an intermediate result it is shown that the 2D APPB is
universal in the sense that can simulate e�ciently any bounded degree network. An interesting
problem that remains open is how to simulate e�ciently and deterministically the Combining
CRCW PRAM model, using either the APPB or the AROB models.

We have also shown how a 2D AROB can simulate a 2D RN. It is easy to check that these

simulations are time and cost optimal (within a constant factor) as long the propagation delays
on buses of the same length in the two models are considered identical. Furthermore, from a

practical viewpoint, the signal propagation delay on a bus is more likely to be smaller in the

case of an optical implementation. In general, the fact that in the time period given by the
end-to-end signal propagation on an optical bus, up to n data can be communicated, leads us
to believe that important speedups can further be obtained. We therefore seek to investigate

whether similar e�cient and cost optimal algorithms can be obtained for other problems using

the AROB model.
Our description of di�erent models is given at a high level, i.e., it abstracts as much as

possible from technological details. In the same time, the use of electronic digital processors,
�ber interconnections and opto-electronic couplers, is assumed. Some of the issues not analyzed

in this paper are the synchronization of processors, clock distribution, pulse positioning, optical

24

fanout, etc. These problems have been investigated in [8, 27, 26]. The current opto-electronic

technology is still immature and many problems remain to be solved. One example is given

by the increasing optical power consumption along an optical bus, making it necessary to use

optical ampli�ers on buses connecting more than 1000 processors. However, although expensive,

all the opto-electronic devices assumed by our model exist. Present devices limit the operating

speed to a few hundreds of MHz. It is expected that future devices could increase this speed

by a factor of 1000 or more [13].

References

[1] Annexstein, F., and Baumslag, M. A uni�ed approach to o�-line permutation routing on

parallel networks. Proceedings 2nd Annual ACM Symposium on Parallel Algorithms and

Architectures. 1990, 398-406.

[2] Akl, S. G. On the power of concurrent memory access. Proceedings of the International

Conference on Computing and Information ICCI'89. 1989, 49-55.

[3] Ben-Asher, Y., and Schuster, A. Ranking on recon�gurable networks. Parallel Processing
Letters. 1(2), 1991, 149-156.

[4] Beame, P., and Hastad, J. Optimal bounds for decision problems on the CRCW PRAM.

Journal of the ACM. 36, 1989, 643-670.

[5] Bokari, S.H. Finding maximumon an array processor with a global bus, IEEE Transactions

on Computers, C-33(2), 1984, 133-139.

[6] Ben-Asher, Y., Peleg, D., Ramaswami, R., and Shuster, A. The power of recon�guration.
Journal of Parallel and Distributed Computing. 13, 1991, 139-153.

[7] Cook, S. A. A taxonomy of problems with fast parallel algorithms. Journal of Information

and Control. 64, 1985, 2-22.

[8] Chiarulli, D. M., Levitan, S. P., Melhem, R.G. Optical bus control for distributed multi-

processors, Journal of Parallel and Distributed Computing, 10, 1990, 45-54.

[9] Chiarulli, D. M., Melhem, R.G., and Levitan, S. P. Using coincident optical pulses for

parallel memory addressing. The Computer Journal. Dec. 1987.

[10] Guo, Z. Sorting on array processors with pipelined buses. Proceedings 1992 International

Conference on Parallel Processing. 1992, III 289-292.

[11] Guo, Z. Optically Interconnected Processor Arrays with Switching Capability. Journal of

Parallel and Distributed Computing. 23, 1994, 314-329.

[12] Guo, Z., Melhem, R. M., Hall, R. W., Chiarulli, D. M., and Levitan, S. P. Pipelined

communications in optically interconnected arrays. Journal of Parallel and Distributed

Computing. 12, 1991, 269-282.

25

[13] Heuring, V. P., Jordan, H. F., and Pratt, J. P. Bit-serial architecture for optical computing.

Applied Optics. 31(17), 1992, 3213-3224.

[14] Harris, T. J. A Survey of PRAM Simulation Techniques. ACM Computing Surveys. 26(2),

June 1994, 187-206.

[15] Jang, J.-W., Park, H., Prasanna, V.K. A fast algorithm for computing a histogram on

recon�gurable mesh, IEEE Transactions on Pattern Analysis and Machine Intelligence,

17(2), 1995, 97-106.

[16] Levitan, S. P., Chiarulli, D. M., and Melhem, R. G. Coincident pulse technique for multi-

processor interconnection structures. Applied Optics. 29(14), 1990, 2024-2033.

[17] Li, H., and Maresca, M. Polymorphic-torus network. IEEE Transactions on Computers.

C-38(9), 1988, 1345-1351.

[18] Li, H., and Stout, Q. F. (eds). Recon�gurable Massively Parallel Computers. Prentice Hall,
1991.

[19] Leighton, F. T. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hy-

percubes. Morgan Kaufman Publishers, 1992.

[20] Merry, M.S., and Baker, J. W. A constant time sorting algorithm for a three-dimensional
mesh and recon�gurable network. accepted by Parallel Processing Letters.

[21] Melhem, R. G., Chiarulli, D. M., and Levitan S. P. Space multiplexing of waveguides in

optically interconnected multiprocessor systems. Computer Journal. 32(4), 1989, 362-369.

[22] Maresca, M., and Li, H. Connection Autonomy in SIMD Computers: A VLSI Implemen-

tation. Journal of Parallel and Distributed Computing. 7, 1989, 302-320.

[23] Miller, R., Kumar, V. K. P., Reisis, D. I., and Stout Q. F. Data movement operations and
applications on recon�gurable VLSI arrays. Proceedings 1988 International Conference on

Parallel Processing. 1988, vol. I, 205-208.

[24] Olariu, S., Schwing, J. L., and Zhang, J. Integer problems on recon�gurable meshes, with

application. Proceedings 1991 Allerton Conference. vol. 4, 1991, 821-830.

[25] Pan, Y. Order statistics on optically interconnected multiprocessor systems, Proceedings
First International Wokshop on Massively Parallel Processing using Optical Interconnec-

tions, 1994, 162-169.

[26] Prucnal, P., Blumenthal, D., Perrier, P. Self routing photonic switching demonstration

with optical control. Optical Engineering, 26(5), 1987, 473-477.

[27] Qiao, C, and Melhem, R. G. Time-division communications in multiprocessor arrays. IEEE

Transactions on Computers. 42(5), 1993, 577-590.

26

[28] Qiao, C, Melhem, R. G., Chiarulli, D.M., Levitan S.P. Optical multicasting in linear arrays,

International Journal Optical Computing, 2, 1991, 31-48.

[29] Qiao, C. E�cient matrix operations in a recon�gurable array with spanning optical buses.

to appear in Parallel Processing Letters.

[30] Ranade, A. G. How to Emulate Shared Memory. Journal of Computer and Systems Sci-

ences. 42, 1991, 307-324.

[31] Ragde, P. The parallel simplicity of compaction and chaining. Journal of Algorithms. 14,

1993, 371-380.

[32] Wang, B. F., Chen, G. H., and Lin, F. C. Constant time sorting on a processor array with

recon�gurable bus system. Information Processing Letters, 34. 1990, 187-192.

27

