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Abstract. A large number of di�erential equation problems which admit traveling waves have
very large (typically in�nite) naturally de�ned domains, with boundary conditions de�ned at the
domain boundary. To be able to numerically solve these problems in smaller subdomains of the
original domain, arti�cial boundary conditions must be de�ned for these subdomains. One such
arti�cal boundaryconditionswhich can minimize the size of such subdomainsare absorbingboundary
conditions. A techniqueused to reduce the necessary spatial domainwhen numerically solving partial
di�erential equations that admit traveling waves is the imposition of absorbing boundary conditions.
Such absorbing boundary conditions have been extensively studied in the context of hyperbolic
wave equations. A general absorbing boundary condition will be developed for the Schr�odinger
equation with one spatial dimension, using group velocity considerations. Previously published
absorbing boundary conditions will be shown to reduce to special cases of this absorbing boundary
condition. The well-posedness of the Initial Boundary Value Problem of the absorbing boundary
condition, coupled to the interior Schr�odinger equation, will also be discussed. Extension of the
general absorbing boundary condition to higher spatial dimensions is demonstrated. Numerical
simulations using initial single Gaussian, double Gaussian and Pseudo-delta function distributions
will be given, with comparision to exact solutions, to demonstrate the reectivityproperties of various
orders of the absorbing boundary condition.
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1. Introduction . A large variety of numerical calculations involving the so-
lutions to partial di�erential equations require the imposition of arti�cial boundary
conditions to delimit the computational domain to a manageable size. This often
happens when the natural domain for the problem being solved is in�nite and thus
the natural boundary conditions for the problem are de�ned at in�nity. But if we de-
sire the numerical solution on only a �nite section of the domain, the use of arti�cial
boundary conditions is necessitated. It is a requirement of such arti�cial boundary
conditions to not adversely a�ect the numerical calculation in the interior domain.
Speci�cally, we will consider problems where traveling waves are present.

If standard Dirichlet or Neumann boundary conditions are used for our arti�cial
boundary conditions, then in many cases, a traveling wave evolved via a wave equation
will view the boundary condition as an impenetrable barrier and the wave would be
completely reected back into the interior domain. Obviously, this boundary condition
would not serve our purposes since the reected wave would disrupt the interior
solution. The only way that such a boundary condition could be used would be to
place the boundary condition at a large distance from the relevant interior solution,
such that the reected wave would not e�ect the interior solution until a large number
of time steps (before which the solution would be obtained). This approach would
be costly for multi-dimensional problems or problems evolving over many time steps.
It would be preferable to use arti�cial boundary conditions which do not a�ect the
interior solution but which don't have to be removed to a large distance from the
relevant interior solution.

Since the boundary condition must be coupled with the interior solution, the
boundary condition must be well-posed with respect to the interior solution, and
the boundary condition must be stable, such that the numerical solution will remain
bounded. Also the arti�cial boundary condition should annihilate all incident waves
such as to produce no reections which will then propagate into the interior domain.
Boundary conditions which satisfy all these conditions are called absorbing (or open,
or radiation, or transparent) boundary conditions. The use of absorbing boundary
conditions allows for the numerical solution of problems involving traveling waves
with a minimal number of spatial points while maintaining the accuracy desired for
the solution. This can result in problems being solved more quickly, and allow for the
solution of more complex problems, especially in higher dimensions.

In this paper, we will review the previous work that has been done with respect to
absorbing boundary conditions for wave equations and similar di�erential equations.
Then we will introduce the Schr�odinger equation for which we will develop absorb-
ing boundary conditions. We will discuss previously considered absorbing boundary
conditions for the Schr�odinger equation and then derive a new absorbing boundary
condition. We will show that the previously published absorbing boundary conditions
reduce to special cases of the new absorbing boundary condition. We will consider the
well-posedness properties of the Initial Boundary Value Problem of the Schr�odinger
equation coupled to the absorbing boundary condition. Also, we will outline how the
general absorbing boundary condition can be extended higher dimensional problems.
Finally, we will use a �nite di�erence scheme to solve the Schr�odinger equation, and
consider the properties of several numerical simulations, using various orders of the
absorbing boundary condition.

2. Review of Absorbing Boundary Conditions . In this section, we will
consider previous work that has been done to devise absorbing boundary conditions
for various wave equations. Absorbing boundary conditions may be divided into
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boundary conditions for dispersive or non-dispersive equations. A dispersive equation
is one that admits plane wave solutions of the form e�i(!t�kx); and the speed of
propagation of the wave is partially, or completely, a function of the wave number
k. For solutions for a given wave equation, ! is a function of k and is called the
dispersion relation for the di�erential equation. The dispersion relation allows us

to de�ne the phase speed, c(k) = !(k)
k

; of individual waves, and the group velocity,

C(k) = d!
dk
(k) of wave packets. Energy, for instance, travels with group velocity.

Although a di�erential equation may be non-dispersive (for example, the scalar wave
equation) its discretization will nearly always be dispersive [41], so we will consider
only dispersive equations. We will review work that has been done to devise absorbing
boundary conditions for particular di�erential equations, exploiting these properties
and other properties of dispersive equations.

2.1. Absorbing Boundary Conditions for Wave Equations. A fundamen-
tal requirement of an absorbing boundary condition is that the interior solution that
is generated is close to the same unique solution as that produced if the boundary
conditions were placed at a large distance (say, in�nity) from the interior region. For
interior schemes involving traveling waves, then the absorbing boundary condition
must have the ability to absorb waves incident on it rather than reecting them back
into the interior of the domain.

2.1.1. Damping Regions. The earliest approaches to developing such bound-
aries used a narrow region extended past the required boundary where dissipation
is added to the wave equation [25]. Then the wave impinging on the boundary is
damped on the way into the region, reected by a conventional boundary condition
at the end of the appended region, and further damped on the way out. The minimum
width of the region must be the width of several of the longest wavelengths to be ef-
fective. Therefore, this method can be costly in terms of space and time requirements
to implement, especially in higher dimensional problems.

2.1.2. Sommerfeld Radiation Boundary Condition. In 1949, Sommerfeld
de�ned the condition of radiation as \the sources must be sources, not sinks of energy.
The energy which is radiated from these sources must scatter to in�nity; no energy
may be radiated from in�nity into ... the �eld" [40,p.189], thus de�ning a \radiation
boundary condition". A number of researchers have put Sommerfeld's absorbing
boundary condition in mathematical form for wave equations

@u

@t
+ c�

@u

@x
= 0;(1)

where u is the solution we are seeking in the interior of the computational domain, c�

is some e�ective phase velocity, and (1) is applied at the x = L right-hand boundary.
A number of approaches were considered to determine the optimal value for c� to
minimise reections. Pearson considered gravity wave propagation in strati�ed ow
where c� is a function of wavelength [35]. Pearson suggested �xing c� to the Doppler-
shifted phase speed of the dominant vertical mode. Another approach was suggested
by Orlanski of calculating c� from a point just within the boundary at each time step,
using a \oating phase velocity" approach [34]. \Floating" implies that the c� used
changes value with respect to the measured phase speed of the incident wave at the
boundary. Miller and Thorpe expanded on this \oating phase velocity" approach
with higher order approximations to c� [32] whereas Hedley and Yau used Orlanski's
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original calculation of the oating phase velocity but added constraints on the value
of c� to avoid instabilities [13].

The Sommerfeld radiation boundary condition was expanded to two dimensions
by Raymond and Kuo with

@u

@t
+ c�x

@u

@x
+ c�y

@u

@y
= 0;(2)

where c�x and c�y are the x and y components of the phase velocity [36]. Also Lick et

al. generalised the Sommerfeld boundary condition to allow for partial reection and
incoming disturbances (from exterior to the domain) for wave equations in one [28]
and two dimensions [29].

Lindman considered a further variation of the Sommerfeld radiation boundary
condition of the form

@u

@t
+ c�x

@u

@x
= 2

@S

@t
� c�x

�x

NX
n=1

hn;

on the x = 0 boundary where S is a source function which generates waves into the
domain and the hn's are correction functions to the absorbing boundary condition
which are functions of past data on the boundary, tailored to minimise reections for
incident waves at di�erent angles to the normal of the boundary [30]. This necessitates
the updating of up to N functions on the boundary at each time step.

2.1.3. Engquist and Majda Approach. In their paper [5], Engquist and Ma-
jda proposed a pseudo-di�erential operator which acts as a perfectly absorbing bound-
ary condition for the scalar wave equation,

@2u

@t2
� @2u

@x2
� @2u

@y2
= 0;(3)

with the related dispersion relation

!2 = k2 + l2:(4)

The exact absorbing boundary condition is obtained by inverting this dispersion re-
lation to get an expression for k;

k = �
p
!2 � l2 = �!

p
1� l2=!2:(5)

If the positive branch of this equation is choosen and a mapping is made between
the dual of a variable and its related di�erential operator (via a Fourier transform
which involves integrating over all possible values of the duals), the result is a pseudo-
di�erential equation which applied to the x = L boundary which would perfectly
absorb all right-traveling waves impinging on the boundary. But since the pseudo-
di�erential form of the absorbing boundary condition is non-local and thus not di-
rectly implementable in a �nite-di�erent scheme, Engquist and Majda derive local
approximations to Equation (5) by expanding out the square root into terms of the
Pad�e series, to various orders of accuracy. For example, using the approximationq
1� l2

!2
= 1 + O( l

2

!2
) for the square root in Equation (5), and mapping (via a

Fourier transform) the duals to their respective di�erential forms yields�
@

@x
� @

@t

�
ujx=0 = 0:(6)
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as a �rst approximation to the perfectly absorbing boundary condition whose symbol1

is given in (5). Note the equivalence of this absorbing boundary condition to those
of the Sommerfeld radiation boundary condition (1) with c� = �1: A hierarchy of
local absorbing boundary conditions may derived using higher order approximations.
In a second paper, Engquist and Majda introduce a two-dimensional version of their
approximations based on an expression in the angle of the wave measured with respect
to the normal of the boundary [6].

Durran et al. [4] recently compared the oating phase velocity approach of Orlan-
ski [34] and Hedley and Yau [13] with that of Engquist and Majda [5], and found that
the latter gave better results for the simulations of a one-dimensional shallow-water
ow model and a two-level shallow-water model.

Clayton and Engquist consider absorbing boundary conditions for the acoustic
wave equation. They consider an interpolation of the dispersion relation for the
acoustic wave equation to develop rational expressions which can be applied at the
boundary [3]. The use of a number of di�erent interpolation points in the approx-
imation of the dispersion relation permits the better absorption of more complex
impinging waves composed of a number of dominant phase velocities to the bound-
ary as compared with the Pad�e series using a single interpolation point, which will
ideally absorb only one component. Approximating the duals (kx; kz; !) by their cor-
responding di�erential operators leads to an explicit di�erential equation which can
be discretized and applied to the boundary, with good results. Although Clayton and
Engquist's approach allows for exible interpolation of the dispersion relation, their
solution lacks a general approach of derivation.

Israeli and Orszag consider the idea of mixing damping regions with absorbing
boundary conditions [21]. The damping regions act to reduce the amplitude of the
outgoing waves as well as any waves that are reected by the absorbing boundary
condition at the end of the damping region. Although this approach combines the
general reduction properties of the damping region, with the more speci�c elimination
properties of the absorbing boundary conditions, but there is still a trade-o� with
respect to the extra grid points which have to be solved at each time step.

2.1.4. Bayliss and Turkel Approach. Bayliss and Turkel consider another
approach to develop high order absorbing boundary conditions [1]. Bayliss and Turkel
de�ne the following operator

Bm =

mY
l=1

�
L +

2l � 1

r

�
;(7)

where

L =
@

@t
+

@

@r
:(8)

Then it follows that Bmp = O(1=r2m+1); leading them to de�ne the following ab-
sorbing boundary condition Bmp = 0: Note that this boundary condition becomes
asymptotically more accurate as r ! 1: In two-dimensional Cartesian coordinates,
(8) has the form L = @

@t
+ a @

@x
+ b @

@y
; a2 + b2 = 1; a > 0; analogous to the radiation

boundary condition of Equation (2).

1 A symbol is the dual form of a di�erential equation for the absorbing boundary condition, or
equivalently, its dispersion relation.
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2.1.5. Canonical Absorbing Boundary Conditions. Higdon showed that
the higher order approximations to (5) with their accompanying substitutions of cor-
responding di�erential operators (i! ! @

@t
; etc.), may be expressed in the following

canonical form [14] [16],

2
4 pY
j=1

�
@

@x
� (cos�j)

@

@t

�3
5ujx=0 = 0:(9)

This canonical form reduces to Engquist and Majda's boundary conditions, based
on Pad�e approximations, when �j = 0: Further, the relationship between Engquist
and Majda's higher-order approximations and Bayliss and Turkel's general boundary
condition (7) is revealed by the product form of (9). Boundary conditions of this
form were also derived independently by Keys [24]. Higdon was able to generalise
Engquist and Majda's approximations of the exact absorbing boundary condition (5)
in two important ways. First, he showed that Engquist and Majda's approximations
could be factorized into �rst order di�erential operators, similar to approximation (6).
Further, he generalised the factors such that they would annihilate waves incident on
the boundary at any angle, rather that optimally at the normal. This more general
form greatly simpli�es implementation and stability analysis.

Another approach, using group velocity, to derive absorbing boundary conditions,
was proposed by Jiang and Wong [22]. Their global absorbing boundary condition
applies to any linear hyperbolic equation with constant coe�cients were the disper-
sion relation is known (for example, the wave equation or Klein-Gordon equation).
Jiang and Wong's approach considers the group velocity, C(k), of the solution at the
boundaries. Remember that the ow of energy propagates at the group velocity. If we
again consider the x = 0 boundary, any component of the solution which has a pos-
itive group velocity would obviously be a component of a reected wave. Therefore,
this boundary condition can be expressed in the following manner,

C(k)jx=0 = � jC(k)jx=0j :(10)

Unfortunately, like Engquist and Majda's perfectly absorbing boundary condition (5),
this absorbing boundary condition, when mapped into di�erential form, is non-local,
due to the absolute value function, and thus a rational approximation is necessary.

To do this, Jiang and Wong use an approach similar to that utilized by Higdon
[14]. First, a �rst order approximation is developed from the exact boundary condition
(10) by assuming that the incident wave has a certain group velocity, b; which is then
absorbed at the x = 0 boundary by

C(k)jx=0 + b = 0:(11)

Let us consider the wave equation (3) whose dispersion relation is given in Equa-
tion (4). In this case,

C(k) =
d!(k; l)

dk
=

k

!
:

Therefore, boundary condition (11) is equivalent to the symbol k+b! = 0; or remem-
bering the corresponding di�erential operators,�

@

@x
� b

@

@t

�
ujx=0 = 0:(12)
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Therefore, taking Higdon's lead [14], the canonical form of this absorbing boundary
condition is

2
4 pY
j=0

�
@

@x
� bj

@

@t

�3
5ujx=0 = 0:(13)

This is equivalent to Higdon's canonical form if bj = 1= cos�j. As before, (13) is
perfectly absorbing for incident waves with group velocities bj. The advantage of this
approach is all we need to know is the dispersion relation, and we can derive the
absorbing boundary conditions to any order by using the group velocity.

In [20], Higdon developed canonical radiation boundary conditions for the disper-
sive wave equation. Higdon showed that the performance of the boundary condition
was not sensitive to the choice of parameters for the boundary conditon. Further,
Higdon showed that another absorbing boundary condition developed for the disper-
sive wave would either be equivalent to his canonical form, unstable, or not optimal in
the sense the absorbing boundary condition could be modi�ed, without increasing its
order, to make it more e�ective. Thus, if a canonical absorbing boundary condition
is found, either through using phase velocity, group velocity, or another technique, it
will reduce to one ideal canonical form.

2.1.6. OtherWave Equations. In the �eld of Optics, Hadley considers a trans-
parent boundary condition for beam propagation [10] [11]. The problem of interest
considers the propagation of a single scalar component of the radiation �eld, E; which
Hadley assumes to have the form

E = E0e
ikxx;(14)

at the boundary where E0 and kx are complex. From the interior equation with
di�raction being ignored, it is straightforward to show that the ux of E leaving the

interior is F (E) = Re (kx)jE(b)j2

k
; where b is the value of x at the boundary. Hadley

discretizes Equation (14) as En
j+1 = En

j e
ikx�x where kx is calculated from the previous

n� 1 z spatial step (z and x being orthonormal directions). This approach is similar
in nature to the oating phase velocity approach used by Orlanski [34] for gravity
wave propagation.

For the Helmholtz and Laplacian equations, Keller and Givoli devise non-local
absorbing boundary conditions where the �nite element method is used to solve the
di�erential equations [23]. They show that the non-locality of the boundary conditions
does not a�ect the banded structure of the �nite element matrix which must be
solved (analogous to a �nite di�erence implicit scheme) and the absorbing boundary
condition is exact. Unfortunately, the non-local nature of the absorbing boundary
condition proposed by Keller and Givoli restricts its practical application to �nite
element schemes.

Higdon, building on his canonical form of Engquist and Majda's absorbing bound-
ary conditions, has considered applications with acoustic and elastic waves in two and
three dimensions [17] [18], and elastic waves in strati�ed media [19]. These waves are
common in geophysical problems. Other than the particular details in the implemen-
tation and due to the nature of the particular problem, the underlying theory with
respect to absorbing boundary conditions is the same as in Higdon's previous papers
[14] [16].
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2.1.7. Other Absorbing Boundary Conditions Techniques. An e�ective
method to improve the e�ciency of standard absorbing boundary conditions was de-
veloped by Mei and Fang for the solution of Maxwell's equations [31]. They call their
method, \superabsorption". They consider the evolution of the coupled electrical and
magnetic components of a transverse magnetic (TM) wave in two dimensions, where
the components of the wave are calculated on alternative half-time steps and half a
spatial step apart. By comparing the errors for the di�erent components produced
by absorbing boundary conditions for the individual components, and since the com-
ponents are coupled, Mei and Fang may eliminate the common error, leading to a
more accurate recalculation of the individual components. In numerical experiments,
Mei and Fang show that this technique can improve absorbing boundary conditions
by about an order of magnitude less reection.

An interesting alternate approach has been considered by Van Daalen et al. [44].
They derive absorbing boundary conditions without assuming that solutions are avail-
able beforehand and thus without knowledge of any dispersion relation. Instead, they
consider the energy transmission at the boundaries, considering continuous systems
where the system is governed by a Lagrangian density, L: The evolution of the system
is given by applying the variation principle to the action integral (the integral of the
Lagrangian density over the spatial and temporal domains). The vanishing of this
variation produces a \natural boundary condition," @L

@ut
"n � @L

@uxi
ni = 0; where "n is

the local ux density in the normal direction to the boundary and the second term is
the partial derivative of the Lagrangian density in the normal direction. In a second
paper, Broeze and Van Daalen [2] consider the two dimensional wave equation (3)
as an example. Since the group velocity (i.e., the local ux density on the bound-
ary) is `oating' in the implementations, the approach of Van Daalen and Broeze is
closely related to the 'oating phase velocity' approach with the Sommerfeld radiation
boundary condition.

2.2. Stability and Well-Posedness of Absorbing Boundary Conditions.

Of course, if a boundary condition is unstable or generates spurious solutions, it is use-
less. Issues related to stability and well-posedness of absorbing boundary conditions
have been considered by a number of researchers.

The main theoretical work describing the well-posedness of initial boundary value
problems has been done by Kreiss [26], Sakamoto [38], and others. The well-posedness
of absorbing boundary conditions for the wave equation in particular has been con-
sidered by Trefethen and Halpern [43]. The well-posedness properties of particular
absorbing boundary conditions are considered in [1] [5] [15] [17] [22] [37] by their
authors.

The well-posedness theory is closely related to the stability of �nite di�erence ap-
proximations of initial boundary value problems for hyperbolic equations. The stabil-
ity criterion for hyperbolic initial boundary value problems is outlined by Gustafsson
et al. [9], with a group velocity interpretation of their rather abstract criterion given
by Trefethen [42]. Higdon considers the theory related to well-posedness of initial
boundary value problems for linear �rst-order hyperbolic systems [15].

3. New Absorbing Boundary Conditions . In this Section, we will develop
exible absorbing boundary conditions for Schr�odinger equation.
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3.1. The Schr�odinger Equation. The following is the one-dimensional Sch-
r�odinger equation,

i�h
@	

@t
(x; t) = � �h2

2m

@2	

@x2
(x; t) + V (x)	(x; t);(15)

with related dispersion relation

�h2k2 = 2m [!�h � V ] ;(16)

where m is the mass of the particle, V (x) is the potential, 	 is the wave-function,
�h = h=2� where h is Planck's constant, and i =

p
�1: The Schr�odinger equation is

a fundamental equation in the �eld of quantum physics. It is used to describe the
propagation of a quantum particle, such as an electron, in a potential background
described by V (x): If V (x) = 0; then the particle is moving in a vacuum. The square
of the wave function, j	j2; describes the probability distribution for the position of
the particle.

3.2. Previous Absorbing Boundary Conditions. A number of techniques
have been considered for boundary conditions which would remove spurious reec-
tions from arti�cial boundaries during the numerical solution of the one-dimensional
Schr�odinger equation. Koslo� and Koslo� [25] used an enlarged computational do-
main and then applied a damping (or penalty) function in the arti�cial part of the
domain to decrease the amplitude of outgoing waves. Although this method can pro-
duce good results, the enlarged domain is costly, especially for extensions to higher
dimensions. A related approach was considered by Neuhasuer and Baer [33], where
they added a negative complex short-range potential to the potential in the asymp-
totic region outside the computational domain to construct nearly perfect absorbing
boundary conditions.

Work by Shibata [39] and Kuska [27], which is based primarily on the work of
Engquist and Majda [5] [6], has lead to one-way absorbing boundary conditions for
the Schr�odinger equation. Their approach is to invert Equation (16) to obtain an
expression for the sign and magnitude of the wave number,

�hk =
p
2m[�h! � V ];(17)

where the positive value for the square root corresponds to waves traveling in an
increasingly positive x direction, and eventually impingingon the right-hand boundary
(x = L): To obtain the expression for waves traveling the opposite direction, simply
substitute k with �k: A boundary condition of the form (17) is an exact absorbing
boundary condition similar to Engquist and Majda's boundary condition in Equation
(5). To see this, consider all waves incident on the x = L boundary satisfying (17).
Then there are no waves where �hk = �

p
2m[�h! � V ] at the boundary, and thus there

are no left-traveling (hence reected) waves. But due to the square root function, (17)
can not be implemented directly in physical space, but rather (17) must be put in
rational di�erential form, and thus into a �nite di�erence form, to be implemented on
the boundary.

In order to develop a di�erential equation to create a boundary condition trans-
parent to waves leaving the domain, the right hand side of Equation (17) must be
approximated by a rational expression. In terms of the one-dimensional Schr�odinger
equation, two rational expressions for the square root function have been considered
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in the literature. The �rst was developed by Shibata [39] and has the following form:

�hk =

p
2m�2 �

p
2m�1

�2 � �1
[�h! � V ] +

�2

p
2m�1 � �1

p
2m�2

�2 � �1
;(18)

where �1 and �2 are adjustable parameters. Equation (18) is a straight line interpo-
lation of Equation (17), which intersects the dispersion relation at two points.

A second approximation to Equation (17) was developed by Kuska [27] and has
the form:

�hk = �hk0
1 + 3z

3 + z
;(19)

with z = 2m(�h! � V )=�h2k0
2: His absorbing boundary condition is based on an ex-

pansion of 17) about the value �hk0: Equation (19) is essentially an approximation to
Equation (17) which intersects the square root function at only one point. Compared
to Shibata's approximation (18), (19) is a higher order approximation over the length
of the dispersion relation, but is limited by the single interpolation point, and is thus
less exible.

These absorbing boundary conditions developed by Shibata and Kuska are either
limited in either order of e�ectiveness or in exibility to absorb di�erent energies of
incident waves.

3.3. New Absorbing Boundary Condition. Here, we will consider an alter-
nate approach to that used by Shibata and Kuska. First, we will assume that the po-
tential is constant in time, such that V = f�nite set of constant valuesg or @V=@t = 0;
and is a constant value (V = K) in the vicinity of the boundaries. Therefore, from
the dispersion relation, Equation (17), we can calculate the group velocity,

C =
@!

@k
=

�hk

m
:(20)

This gives the group velocity of a wave packet as it is evolved by the Schr�odinger
equation.

The following approach of using the group velocity to develop absorbing boundary
conditions was �rst used by Jiang and Wong for hyperbolic di�erential equations [22].
For a wave traveling to the right within the domain and impinging on the x = L

boundary, the group velocity from (20) must be positive, since the energy of the wave
propagates at group velocity. This implies that the energy associated with k is leaving
the interior domain. A negative group velocity would mean that energy is entering
the interior domain and hence is a reected wave.

Put in mathematical form, the symbol for the boundary condition has the follow-
ing form at the x = L boundary,

�hk

m
=

�����hkm
���� :(21)

For the x = 0 boundary, simply replace k with �k: The pseudo-di�erential boundary
condition that could be developed from this symbol is an exact absorbing boundary
condition if satis�ed on the boundary since all the group velocities on the boundary
are positive (no spurious reections o� the boundary). But, like Equation (17), this
boundary condition cannot be realized in physical space by di�erential operators due
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to the absolute value function, and thus we must use an approximation to obtain an
explicit rational di�erential form which can be applied on the boundary.

Since a single di�erential equation can only absorb waves of a certain group ve-
locity, let us consider an approximation to (21) of the form of

�hk

m
� a;(22)

on the boundary, where a is positive and real. Using the correspondence between the
dual k and the partial derivative in x; we obtain the following di�erential operator
relation from (22),

�
i
@

@x
+

ma

�h

�
	 = 0:(23)

If this di�erential equation is satis�ed on the boundary, then waves traveling to the
right with group velocity a would be absorbed completely leading to no reections o�
the boundary from that component of the numerical solution for the wave.

But in general waves are composed of more than one component with di�erent
group velocities. So, a generalization of the operator in Equation (23) is

pY
l=1

�
i
@

@x
+

mal

�h

�
	 = 0:(24)

Here, the group velocity values, al; are real, from Equations (17) and (20), assuming
�h! � V: For waves traveling to the left and impinging on the x = 0 boundary, al would
be substituted with�al in equation (24). The motivation for this generalization comes
from a similar generalization that was considered by Higdon [14] which was shown to
correspond to the known absorbing boundary conditions developed by Engquist and
Majda [5] and others, for wave equations, as discussed in Chapter 2.

If ak 6= al; k 6= l; then the e�ect of the di�erential equation (24), when applied
to the boundary, would be to completely absorb p di�erent components of the com-
puted wave solution with p di�erent group velocities, each being absorbed to the �rst
order. If ak = al; k 6= l; then the e�ect of this di�erential equation, when applied to
the boundary, would be to completely absorb the component of the computed wave
solution with group velocity aj to the pth order. Each mai=�h can be considered as an

interpolation point of the dispersion relation at the value k in Equation (16). There-
fore, in (24) the mai=�h interpolates (16) at di�erent values of k with p being the order
of the interpolation. If all the group velocities ai are the same, then (24) is essentially
a series expansion of (16) to the pth order about the point mai=�h:

3.4. Comparison with Previous Work. Equation (24) is a general absorbing
boundary condition fromwhich it is possible to derive the speci�c absorbing boundary
conditions presented by Shibata and Kuska. To see this, �rst consider p = 2: Then
Equation (24) has the symbol (where we have replaced i@=@x with �k);

�
�k + ma1

�h

��
�k + ma2

�h

�
= 0:(25)

If we multiply out (25) and solve for �hk; then we obtain

�hk =
2

a1 + a2
(�h! � V ) +

ma1a2

a1 + a2
:(26)



Absorbing BCs for the Schr�odinger Equation 13

Here we have used Equation (16) to substitute for k2: Note that Equation (26) is
symmetric in aj's: To obtain the equation for left-going waves, replace the left-hand
side of Equation (26) with ��hk: Shibata's relationship in Equation (18) reduces to
Equation (26) via the following substitutions,

�1 =
ma1

2

2
and �2 =

ma2
2

2
:

Although Kuska states that �1 and �2 as used by Shibata are two \unphysical parame-
ters" [27], we may attach meaning to them in that they are kinetic energy parameters,
where the kinetic energy is propagating at group velocities a1 and a2:

Now, consider p = 3: Then Equation (24) has the symbol

�
�k + ma1

�h

��
�k + ma2

�h

��
�k + ma3

�h

�
= 0;(27)

where the same substitution for i@=@x was used. Again, using (16) to substitute for
k2; this simpli�es to the relation

�hk =
2mh1(�h! � V ) + h3

2m(�h! � V ) + h2
;(28)

where

h1= m (a1 + a2 + a3) ;

h2= m2a1a2a3

�
1

a1
+

1

a2
+

1

a3

�
;

h3= m3a1a2a3:

Again, to obtain the equation for left-going waves, multiply the right-hand side of
Equation (28) by �1: We may obtain Kuska's symbol for his absorbing boundary
condition (19) by letting a1 = a2 = a3 =

�hk0
m

:

Therefore, Shibata's relationship for �hk is equivalent to our second-order (p =
2) absorbing boundary condition and Kuska's relationship for �hk is equivalent to a
special case of our third-order (p = 3) boundary condition. Kuska's special case
absorbing boundary condition (19) would be expected to work well if the incident
wave on the boundary was composed homogeneously of only one k0 component. This

absorbing boundary condition would be expected to remove the k0 component of
the reected wave to the third order. But, if the incident wave was composed of a
number of di�erent group velocity components, a more general absorbing boundary
condition would be needed, which could be `tuned' to remove the dominant reected
wave components. Otherwise, the components of the wave composed of wave packets
traveling with di�erent group velocities other than that associated with k0 would
reected to a large degree (this will be quanti�ed in the next Section on reection).

Considering that Kuska's absorbing boundary condition is simply the third-order
form of (24) with identical ai's; we can derive the fourth-order absorbing boundary
condition for comparison. Note that part of the motivation in the development of
previous two absorbing boundary conditions was to develop a boundary condition
which is �rst order in the boundary variable of interest, which is x is this case, and
possibly of higher order in the other spatial and temporal variables. Hence, we obtain
a boundary condition which is a �rst order di�erential on the incident boundary,
in order to obtain an \interior-pointing" �nite di�erence scheme. Continuing this
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approach, let p = 4 in Equation (24), replacing the partial derivative in x with its
corresponding wave vector,

4m2(�h! � V )2 + 2m(�g1�hk + g2)(�h! � V ) � g3�hk + g4 = 0;(29)

where

g1= m (a1 + a2 + a3 + a4) ;

g2= m2 (a1a2 + a1a3 + a1a4 + a2a3 + a2a4 + a3a4) ;

g3= m3a1a2a3a4

�
1

a1
+

1

a2
+

1

a3
+

1

a4

�
;

g4= m4a1a2a3a4:

Again, we have replaced k2 with its lower order equivalent from Equation (16). If we
let all the interpolation points be identical, a1 = a2 = a3 = a4 =

�hk0
m

, then we obtain

�hk =
�hk0

4

�
z2 + 6z + 1

z + 1

�
;(30)

where z = 2m(�h!�V )=�h2k20. This would be the p = 4 absorbing boundary condition
equivalent to Kuska's absorbing boundary condition.

3.5. Expression for Reection. We can also calculate an expression for the
amount of reection we can expect o� the absorbing boundary condition (24). Con-
sider a wave impinging on the x = L boundary, with a reected component,

	 = e�i(!t�kx) + re�i(!t+kx):(31)

In this expression for the wave, the �rst term is the incident wave, and the second
term is the reected wave with r as the reection coe�cient. If we apply our absorbing
boundary condition (23) to this wave, we obtain

B	 =
h
�k + ma

�h

i
e�i(!t�kx) + r

h
k +

ma

�h

i
e�i(!t+kx) = 0:(32)

Therefore, the reection coe�cient is

R = jrj =
�����k +

ma
�h

k + ma
�h

���� :(33)

Note that jrj is always less than one. The general form of the reection for the full
absorbing boundary condition (24) is

R =

pY
l=1

�����k +
mal
�h

k + mal
�h

���� :(34)

This expression for the reection shows that where mal=�h = k; the absorbing bound-
ary condition (24) is perfectly absorbing since R = 0: Otherwise, jrj < 1 and all
the incident components of the wave are reduced in amplitude in the reected wave,
implying absorption of the incident wave. To minimize the reection produced by
the absorbing boundary condition, we can do two things. Since jrj is less than one,
the larger the value of p in (34), the smaller the value of the reection. Hence, we
seek a higher order absorbing boundary condition, where feasible, to minimize the
reection. Also, where the incident wave is composed of several wave packets with
di�erent group velocities, choosing al to coincide with the incident group velocities
will decrease the value of the reection given by (34).
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3.6. Well-Posedness of the New Absorbing Boundary Condition. Of
course, it is also very important to show that these boundary conditions given by
Equation (24) generate well-posed initial boundary value problems, when coupled
with the Schr�odinger equation. A well-posed problem is one that does not admit
either solutions with exponentially growing amplitudes anywhere in the domain, or
spurious solutions generated from the boundary. We are limited in how much we
can determine regarding the well-posedness of absorbing boundary conditions for the
Schr�odinger equation, since there is no theoretical proof, to our knowledge, of the
well-posedness for the Schr�odinger equation. In the absence of any formal theory, we
will adapt the well-posedness theory that has been developed for the wave equation.
We must keep in mind that this may, or may not, be a valid assumption, and hence
our proof will proceed with the assumption that it is a valid approach.

The Kreiss condition [26] for wave equations states that for well-posedness, that
the problem must i) not admit any eigenvalues, and ii) that there are no generalized
eigenvalues. Eigenvalues are those complex values s that simultaneously satisfy both
the dispersion relation of the interior di�erential equation and the symbol of the
boundary condition, such that Re(s) > 0. If such eigenvalues exist, then the initial
boundary value problem admits a normal mode est: If eigenvalues are admitted by the
boundary condition, then the solution on the boundary will grow unboundedly, and
hence be unstable. Generalized eigenvalues are complex values s that also satisfy the
dispersion relation and the symbol of the boundary condition, but where Re(s) = 0
and the group velocity of the normal mode is � 0 (� 0) on the left-hand (right-hand)
boundary. If there are any generalized eigenvalues, then the boundary condition will
admit a spurious traveling wave solution which will propagate energy into the interior
domain.

Following the example worked out by Engquist and Majda [5] for both constant
coe�cient and variable coe�cient wave equations, we use the general algebraic normal
mode analysis for checking well-posedness, specialized for the Schr�odinger equation:

Proposition 3.1. The initial boundary value problem for the Schr�odinger equa-

tion is well-posed if there are no solutions to the frozen coe�cient half-space problems

of the form

~	(s) = e
�st�

p
2m

�h2
[i�hs+V ]x

;(35)

with Re s � 0 (where s is complex). Here the half-space we are considering is x � 0
with the boundary at x = 0: A solution where Re s > 0 would be an eigenvalue, or

a solution where Re s = 0 would be generalized eigenvalue. Note that the dispersion

relation for the interior solutions has been substituted for the wave number in (35).

The solutions would have to satisfy

i�h
@ ~	

@t
(s) = � �h2

2m

@2 ~	(s)

@x2
+ V ~	(s);(36)

and

pY
l=1

�
i
@

@x
� mal

�h

�
~	(s) = 0:(37)

Speci�cally, the criterion corresponds to waves impinging on the left-hand boundary,
but the result holds equally for the right-hand boundary. Applying the boundary
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condition (37), with p = 1; to ~	 yields the following result,

� i

r
2m

�h2
[i�hs + V ]� ma1

�h
= 0:(38)

Taking the second term to the right hand side, and squaring both sides, leads to the
following relation,

s =
i

�h

�
ma1

2

2
+ V

�
:(39)

From (39), it is obvious that

Re s = 0;(40)

since s is wholely imaginary. This implies that there are no eigenvalues. Also, since
the boundary condition is constructed such that the group velocity is � 0 (� 0) on
the left-hand (right-hand) boundary, there are also no generalized eigenvalues which
will propagate waves into the interior. But there is a generalized eigenvalue with zero
group velocity which remains on the boundary. Therefore, if there are any instabilities
which might be admitted by the generalized eigenvalue of the absorbing boundary
condition, they would not propagate into the interior of the solution, and thus they
will not a�ect the interior solution. Therefore, the boundary condition is well-posed
with the except of the zero group velocity generalized eigenvalue for p = 1: To see
that the boundary condition is also well-posed for p > 1; consider the product form
of the boundary condition (37). Since we did not specify any particular value for a1;
it is obvious that if there were eigenvalues or generalized eigenvalues with non-zero
group velocities that violated the above criterion, they would have appeared in the
analysis for p = 1: Since they did not, the results hold for all p and ai; and the
boundary condition is well posed for all orders of (24). Recall that this conclusion is
tempered by the assumption that the initial boundary value problem well-posedness
theory developed for the wave equation can applied to the Schr�odinger equation.

3.7. Higher Dimensions. It is straight-forward to extend the general absorb-
ing boundary condition (24) to two or three dimensions. Consider the Schr�odinger
equation in two dimensions,

i�h
@	(x; y; t)

@t
= � �h2

2m

�
@2	(x; y; t)

@x2
+

@2	(x; y; t)

@y2

�
+ V (x; y)	(x; y; t);(41)

where m;V (x; y); and 	(x; y; t) are de�ned as before. The interior numerical solution
for the two dimensional Schr�odinger equation is given by Galbraith et al. [7]. Kuska
developed a two dimensional version of his boundary condition as a straightforward
extension of his one dimensional version (19) [27].

Following essentially the same procedure as that used to derive (24), consider a
two dimensional plane wave of the form

	(x; t) = e�i(!t�kxx�kyy);(42)

where ! is the frequency of the wave and kx and ky are the wave vectors in the
x and y directions, respectively. Equivalently, kx = k cos� and ky = k sin� where
� is the angle of the direction of k measured from the normal (pointing away from



Absorbing BCs for the Schr�odinger Equation 17

the interior) of the x = a boundary (a can be 0 or L): Then we have the following
dispersion relation

�h2k2x + �h2k2y = 2m [!�h � V ] ;(43)

assuming that the potential V is a constant in the neighbourhood of the boundaries.
This gives us the following group velocities,

(Cx; Cy) =

�
@!

@kx
;
@!

@ky

�
=

�
�hkx

m
;
�hky

m

�
:(44)

Therefore, on the x = L boundary, the two dimensional version of Equation (22)
is, using the same argument as in Section 3.3,

�hkx

m
� ax;(45)

where ax is the x component of a two dimensional group velocity such that ax =
a cos �: The angle is the direction of group velocity measured from the normal of the
x = L boundary, as � above. Since the corresponding di�erential operator to kx is
�i@=@x; our general absorbing boundary condition in two dimensions becomes

pY
l=1

�
i
@

@x
+

malcos�l

�h

�
	 = 0:(46)

Actually, cos �l can be absorbed by al leaving al as the only necessary parameter.
Again, for waves traveling to the left and impinging on the x = 0 boundary, al would
simply be substituted by �al in equation (46).

As before, we can derive the expected reection produced by the two-dimensional
absorbing boundary condition. If we consider an incident wave of the form

	 = e�i(!t�kcos�x�ksin�y) + re�i(!t+kcos�x�ksin�y);(47)

where r is the amplitude of the reected component, then absorbing boundary con-
dition (46) would generate the following reection coe�cient.

R =

pY
l=1

�����
�kcos�+ malcos �l

�h

kcos�+ malcos �l
�h

����� :(48)

We would choose cos �l and al to minimize the reection coe�cient.

Let us consider a practical implementation of this two dimensional absorbing
boundary condition with p = 3: Then, in wave vector format, Equation (46) takes the
following form

�
�kx +

max1

�h

��
�kx +

max2

�h

��
�kx +

max3

�h

�
= 0:(49)

This simpli�es to the relation, with the substitution of terms of k2x with (43),

�hkx =
2m~h1(�h! � V )� �h2~h1k

2
y +

~h3

2m(�h! � V )� �h2k2y +
~h2

;(50)
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where

~h1= m (ax1 + ax2 + ax3) ;

~h2= m2ax1ax2ax3

�
1

ax1
+

1

ax2
+

1

ax3

�
;

~h3= m3ax1ax2ax3:

In explicit di�erential form, where we have substituted for the duals in the symbol
(50) with their respective di�erential operators, this absorbing boundary condition
evaluated at the x = L boundary would have the form

�
��h3i @3	

@x@y2
+ 2m�h2

@2	

@t@x
� �h2~h1

@2	

@y2
� 2m�h~h1i

@	

@t

+�hi(2mV � ~h2)
@	

@x
+ (2m~h1V � ~h3)	

�����
x=L

= 0:(51)

If axj = �hk0x=m; then we recover the absorbing boundary condition given by Kuska
in his equation (11), with k0x being de�ned as the x component of the initial wave
vector k0 [27].

4. Numerical Tests of Absorbing Boundary Conditions . In this Section,
we will a �nite-di�erence scheme to test the e�ectiveness of various orders of the
general absorbing boundary condition (24). This scheme will used with several initial
distributions of i) a single Gaussian distribution modulating a traveling plane wave,
ii) the sum of two Gaussian distributions modulating two waves traveling at di�erent
initial group velocities, and iii) a pseudo-delta function approximated by a Gaussian
distribution with small initial spread modulating a single plane wave. The amount
of reection generated by the absorbing boundary conditions will be compared at the
di�erent orders to determine their relative e�ectiveness.

4.1. Schr�odinger Equation Implicit Interior Scheme. For the numerical
results, an implicit �nite-di�erence interior scheme will be used to numerically solve
the Schr�odinger equation. The spatial domain of the numerical solution of Equation
(15) is x = xj = j�; with j 2 [0;J ]; where � is the spatial mesh width. Therefore, the
left-most boundary is x = 0 and the right-most boundary is x = J � = L: Similarly, the
time variable has the following range, t = tn = n�; with n = 0; 1; 2; :::; N: 	(xj; T =
N�) are the last calculated wave-function values. We will discuss later how to choose
N: Along the same lines, the discretization of the wave function is 	n

j = 	(xj ; tn):

We will use following implicit scheme [8],

	n+1
j+1 +

�
�2 + 4im

�h�
� 2m�2Vj

�h2

�
	n+1
j + 	n+1

j�1 =

�	n
j+1 +

�
2 +

4im

�h�
+

2m�2Vj

�h2

�
	n
j � 	n

j�1;(52)

where � = �=�2: The discretization Vj implies the value V (xj): The implicit scheme
is based on the calculation of the next time step of the integration using only the
previous time step. This scheme preserves the unitarity of the wave-function, as well
as meet the von Neumann test requirement [12,p.102].
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4.2. Numerical Schemes for the Absorbing Boundary Condition. To
numerically implement the absorbing boundary conditions, we need to discretize the
di�erential operators to produce �nite di�erence schemes. We will consider a number
of orders (p) of the general absorbing boundary condition (24).

4.2.1. The p = 2 Absorbing Boundary Condition. This boundary condition
is based on Equation (26). This boundary condition is equivalent to the absorbing
boundary condition presented by Shibata [39] in Equation (18). Translated into ex-
plicit di�erential form, the absorbing boundary condition becomes

� i�h	x � i�hc1	t + (c1V (x)� c2)	 = 0; )(53)

where

c1 =
2

a1 + a2
; c2 =

ma1a2

a1 + a2
:(54)

The positive sign on the �rst term refers the boundary condition applied to the x = 0
boundary and the negative sign refers to the x = L boundary.

The following �nite-di�erence discretizations [27] will be used for the di�erential
operators in (53).

	 � (Z + I)

2

(J� + I)

2
	n
j ;(55)

	x� �
(Z + I)

2

(J� � I)

�
	n
j ;(56)

	t�
(J� + I)

2

(Z � I)

�
	n
j ;(57)

where the top sign of a double-signed term refers to the x = 0 boundary condition
and the bottom sign refers to the x = L boundary condition (from the negative and
positive values for wave vector k; denoting left and right-traveling waves, respectively).
This abbreviation convention will be used throughout. In the above, the following
shift operators were used, J	n

j = 	n
j+1; I	n

j = 	n
j ; J�	n

j = 	n
j�1: Similar shift

operators will also be used for time operations, Z	n
j = 	n+1

j ; Z�	n
j = 	n�1

j :

Using these discretizations in (53) yields the following p = 2 absorbing boundary
condition,

�
i�h

2�
� i�hc1

2�
+

(c1V(0;J ) � c2)

4

�
	n+1
(1;J�1)

+

�
� i�h

2�
� i�hc1

2�
+

(c1V(0;J ) � c2)

4

�
	n+1
(0;J )

=

�
� i�h

2�
� i�hc1

2�
�

(c1V(0;J ) � c2)

4

�
	n
(1;J�1)

+

�
i�h

2�
� i�hc1

2�
�

(c1V(0;J ) � c2)

4

�
	n
(0;J ):(58)

The abbreviation for the wave function, 	n+1
(1;J�1)

; denotes that the discrete scheme

uses the value 	n+1
1 on the x = 0 boundary, and 	n+1

J�1 on the x = L boundary.
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4.2.2. The p = 3 Absorbing Boundary Condition. This boundary condition
is based on Equation (28). A special case of this boundary condition would yield the
absorbing boundary condition considered by Kuska [27] in Equation (19). Rewritten
in explicit di�erential form, Equation (28) has the form

� i�h

�
h2

2m
� V (x)

�
	x � �h2	tx � i�hh1	t �

�
h3

2m
� h1V (x)

�
	 = 0;(59)

where hi are de�ned in the previous Section.

The �nite di�erence discretizations given in Equations (55) to (57), along with
the following discretization [27], will be used for the di�erential operators in (59).

	tx � �
(Z � I)

�

(J� � I)

�
	n
j :(60)

These discretizations applied to Equation (59) yield the following p = 3 absorbing
boundary condition,

�
a

2�
� b

��
� c

2�
� d

4

�
	n+1
(1;J�1) +

�
� a

2�
+

b

��
� c

2�
� d

4

�
	n+1
(0;J )

=

�
� a

2�
� b

��
� c

2�
+

d

4

�
	n
(1;J�1) +

�
a

2�
+

b

��
� c

2�
+

d

4

�
	n
(0;J );(61)

where a = i�h
�
h2
2m � V(0;J )

�
; b = �h2; c = i�hh1; d =

�
h3
2m � h1V(0;J )

�
:

4.2.3. The p = 4 Absorbing Boundary Condition. Equation (29) for p = 4
leads to the following di�erential absorbing boundary condition,

p1	tt � p2	tx + p3	t � p4	x + p5	 = 0;(62)

where p1 = �4m2�h2; p2 = 2mg1�h
2; p3 = 2mi�hg2�8m2i�hV(0;J ); p4 = 2mi�hg1V(0;J )�

i�hg3; p5 = 4m2(V(0;J ))
2 � 2mg2V(0;J ) + g4; where gi are de�ned as before, in Section

3. To discretize this di�erential boundary condition, we will use

	tt � �
(Z� � I)

�

(Z � I)

�
	n
j :(63)

along with the discretizations given in Equations (55) to (57) and Equation (60). The
result of these discretizations is in Equation (62) yields the following p = 4 absorbing
boundary condition.

�p2
��

+
p3

2�
+

p4

2�
+

p5

4

�
	n+1
(1;J�1)

+
�p1
�2
� p2

��
+

p3

2�
� p4

2�
+

p5

4

�
	n+1
(0;J )

=
�p2
��

+
p3

2�
� p4

2�
� p5

4

�
	n
(1;J�1) +

�
2
p1

�2
� p2

��
+

p3

2�
+

p4

2�
� p5

4

�
	n
(0;J )

+
�
�p1

�2

�
	n�1
(0;J ))(64)

Note that two previous time levels are needed to calculate the subsequent time level
in (64)
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4.3. Numerical Results. The initial conditions used for all numerical calcula-
tions is a Gaussian distribution (either singularly or in combinations),

	0
j = e�(xj��)

2=2�0
2

eiK0xj :(65)

In all the following calculation results, unless otherwise stated, m = 0:5 and �h = 1:
Also, the potential V (x) will be set to zero for all calculations.

What does this choice for initial conditions tell us about the applicability of
the boundary conditions with respect to completely general initial conditions? We
note that any general intial conditions can be expressed in terms of a Fourier series,
and a single Fourier mode is essentially a plane wave. Therefore, since the Gaussian
distribution's carrier wave is a plane wave, if the boundary conditions are well behaved
for various frequencies of plane waves in our examples, then the boundary condition
would be expected to be well-behaved for any arbitrary choice of initial conditions
whose Fourier modes are dominant at the same frequencies.

4.3.1. Tests of the Reection Properties of the General Absorbing

Boundary Condition. We will compare the relative properties, in terms of reec-
tion, of di�erent orders of the general absorbing boundary condition (24, with respect
to each other and with respect to the exact solution. Also, the e�ectiveness of the more
general form of (24) will be considered in comparison with the published absorbing
boundary conditions of Shibata [39] and Kuska [27].

The reection ratio r at tn was calculated as [27]

r =

PJ

j=0 j	n
j j2PJ

j=0 j	0
j j2

(66)

This r is similar to the reection coe�cient jrj in (33). Here, r is the ratio of the
integration of the squared amplitude of the reected wave-function over the initial
wave-function (essentially, the ratio of the reected wave with respect to the initial
wave). Since our wave-functions are discrete, the integration is a summation over
the domain. When the wave is completely reected then r = 1; whereas if the wave
is completely absorbed, then r = 0; after the initial wave has passed through the
absorbing boundary condition. To compare the di�erent schemes, we will plot the
reection ratio as a function of time. This method of comparison is most useful when
only one wave is passing through a boundary at a time. When no waves are passing
through either boundary and any traveling waves are presently only in the interior
of the domain, then the reection ratio as a function of time is a plateau whose
value measures the total wave amplitude remaining in the interior of the domain.
Waves smoothly passing through a boundary are represented by a smoothly decreasing
reection ratio as a function of time. As the waves present in the interior domain
are diminished by passing through the absorbing boundary conditions, r eventually
goes to zero. The reection ratio values that we are primarily interested in are the
midpoints of the �rst plateau, when the Gaussian distribution has passed through
the x = L boundary and any waves reected are still in the interior of the domain
and have not yet reached the x = 0 boundary. Obviously, for more arbitrary wave
solutions, this method of comparison would not be adequate on small domains, since
we would not be able to tell when the particular waves we are interested in are passing
through the boundaries.
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No. Implicit Scheme K0 time r

1 p = 2;J = 512 5.0 1.5 2:024� 10�2

2 p = 2;J = 1024 5.0 1.5 2:007� 10�2

3 p = 3;J = 512 5.0 1.5 4:193� 10�6

4 p = 3;J = 1024 5.0 1.5 3:750� 10�6

5 p = 4;J = 512 5.0 1.5 1:325� 10�5

6 p = 4;J = 1024 5.0 1.5 3:618� 10�6

7 p = 2;J = 512 15.0 0.3 2:250� 10�2

8 p = 2;J = 1024 15.0 0.3 2:090� 10�2

9 p = 3;J = 512 15.0 0.3 2:935� 10�5

10 p = 3;J = 1024 15.0 0.3 1:829� 10�6

11 p = 4;J = 512 15.0 0.3 1:297� 10�4

12 p = 4;J = 1024 15.0 0.3 3:073� 10�5

13 p = 2;J = 512 30.0 0.15 2:945� 10�2

14 p = 2;J = 1024 30.0 0.15 2:254� 10�2

15 p = 3;J = 512 30.0 0.15 4:754� 10�4

16 p = 3;J = 1024 30.0 0.15 2:907� 10�5

17 p = 4;J = 512 30.0 0.15 9:370� 10�4

18 p = 4;J = 1024 30.0 0.15 1:765� 10�4

Table 1

Comparison of Reection Ratios vs. Di�erent Schemes for Single Gaussian.

4.3.2. Single Gaussian Distribution. The �rst set of comparisons will use an
initial distribution of a single Gaussian distribution as given by Equation (65). Figures
1 to 6 show plots of reection ratio as a function of time for K0 = 5; 15; and 30; with
L = 10; �0 = L=10; and � = 3L=4 (with an exception for K0 = 5 where the range of
x used was [�20; 10]; so that any reection from the x = 0 boundary do not a�ect
the results). For all computations, � = 0:0001 and ai = �hK0=m for the absorbing
boundary conditions. The various orders of the general absorbing boundary condition
and di�erent spatial sizes of the grid are compared. Listed on the plots are the value of
p of the boundary condition and the value of J from which � = L=J is determinable.
The `im' implies that the scheme used is an implicit scheme. The relative values of
reection ratios for the di�erent schemes are shown in Table 1 at various time slices,
chosen to coincide with the midpoints of the reection ratio plateaus in Figures 1 to
6.

It is obvious from the values in Table 1 and from the plots in Figures 1 to 6 that
the reection ratio is lower for the higher order absorbing boundary conditions. It is
a bit unexpected that the p = 3 absorbing boundary condition performed better than
the p = 4 which we would expect to have a lower reection ratio value as predicted
by Equation (34). This will be discussed later. Also, the smaller the grid spacing �;

the less reection produced by the absorbing boundary condition.

Now, assume that we use the same Gaussian distribution calculation, again, using
the implicit interior schemes, but vary the interpolated group velocities of the absorb-
ing boundary condition for p = 3 and p = 4 as follows: ai = (1 + �)�hK0

m
; where � is

the variation of group velocity. The rational for this type of calculation is two-fold.
First, as the Gaussian distribution evolves via the Schr�odinger equation, the distri-
bution in momentum space spreads [8]. Also, a calculation of the group velocity at
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Fig. 1. Reection Ratio as a Function of Time for K0 = 5:0:
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Fig. 2. Reection Ratio as a Function of Time for K0 = 5:0 - close-up.
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Fig. 5. Reection Ratio as a Function of Time for K0 = 30:0:

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

r
e
f
l
e
c
t
i
o
n

time

exact
p=2, im, 512
p=2, im, 1024
p=3, im, 512
p=3, im, 1024
p=4, im, 512
p=4, im, 1024

Fig. 6. Reection Ratio as a Function of Time for K0 = 30:0 - close-up.



26 T. Fevens and H. Jiang

27.5

28

28.5

29

29.5

30

30.5

0 0.05 0.1 0.15 0.2

g
r
o
u
p
 
v
e
l
o
c
i
t
y
 
(
r
e
a
l
)

time

exact
p = 3
p = 4

Fig. 7. Measured Group Velocity as a function of time at the x = L boundary for K0 = 15:0

(real component).

the x = L boundary as the single Gaussian distribution passes through boundary will
reveal that the real component of the group velocity of the distribution increases and
then decreases after the peak of the distribution has passed through the boundary,
as we can see in Figure 7, whereas the imaginary component simply decreases as in
Figure 8. Hence, we would not expect the initial value of the group velocity to give
the best results for the absorbing boundary condition. Also, each order of the general
absorbing boundary condition will interpolate the exact dispersion relation for the
Schr�odinger equation di�erently. Hence the properties of each order of the absorbing
boundary condition will be di�erent according to how the initial distribution evolves
with respect to the form of the interpolation.

But since the higher order absorbing boundary conditions have multiple degrees
of freedom, we will use a simple one degree of freedom test of the properties of the
p = 3 and p = 4 absorbing boundary conditions. Using � as the variable and the
values of ai shown above, then we obtain the results in Figure 9. Obviously, the
higher values of ai allow the p = 3 absorbing boundary condition to reduce reection
ratio, reaching its optimal performance at ai � 1:39�hK0=m: For even higher values
of ai; the p = 4 absorbing boundary condition improves its absorption properties to
the point were its reection ratio is only a few times higher than the optimal value
for the p = 3 absorbing boundary condition.

4.3.3. Double Gaussian Distribution. The next series of comparisons will
use an initial distribution composed of two Gaussian distributions with di�erent initial
group velocities. Initially, the distribution has the form

	0
j =

e�(xj��)
2=2�0

2

eiK0xj + e�(xj��)
2=2�0

2

eiK1xj

p
2

:(67)
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Fig. 8. Measured Group Velocity as a function of time at the x = L boundary for K0 = 15:0

(imaginary component).

For our calculations, K0 = 25;K1 = 5; � = 10=512; � = 0:0001; �0 = 1; and � = 7:5:
The calculation was carried out using the implicit solution for the interior of the
domain, and the p = 3 and p = 4 absorbing boundary conditions. The key of the
plots contains the value of p; and a series of ones and zeros for the values of a1; a2; a3
(and a4 if the scheme is p = 4); respectively. A `one' indicates that the corresponding
value of aj equals

�hK1

m
and a `zero' indicates that aj =

�hK0

m
: Therefore 0; 1; 1 implies

that a1 =
�hK0

m
; and a2 = a3 = �hK1

m
; for that scheme. The uctuating amplitudes in

the plots are due to the interference patterns formed by the two waves traveling at
two di�erent group velocities. When the waves no longer overlap, such as at t = 0:2;
the uctuations are absent (except for any interaction between the slower wave and
the absorbing boundary condition).

For the double Gaussian calculations, the range of x over which the reection
ratio, r; was calculated was [�90::10]; with the boundaries placed at x = �90 and
x = 10: This placement was necessary to prevent any possible multiple reections
produced by the faster moving distribution from a�ecting the slower distribution.
Also, the two respective reection waves may be distinguished. The values of the
reection ratio as a function of time is given in Figure 10. Also, for comparison, the
values of the reection ratio at n = 8400 (t = 0:84) is given in Table 1. At t = 0:84;
both the initial Gaussian distribution components have passed through the x = 10
boundary and only the reected components are present in the interior domain, and
have not yet reached the other boundary. Obviously, when the ai's are tuned to both
the initial group velocities, �hK0=m and �hK1=m; rather than to just one of these values,
the amount of reection generated by the absorbing boundary conditions drops by up
to two orders of magnitude, with the least amount of reection being produced by
scheme 4 in Table 1.

We know from the distribution in momentum space that the initial Gaussians
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Fig. 9. Reection Ratio as a Function of � for K0 = 15:0 at t = 0:3

No. Scheme a1 a2 a3 a4 time r

1 Exact implicit � �� � �� � �� �� � 0.84 5:111� 10�6

2 p = 3 implicit �hK0

m
�hK0

m
�hK0

m
�� � 0.84 4:661� 10�2

3 p = 3 implicit �hK0

m
�hK0

m
�hK1

m
�� � 0.84 7:364� 10�4

4 p = 3 implicit �hK0

m
�hK1

m
�hK1

m
�� � 0.84 1:368� 10�4

5 p = 3 implicit �hK1

m
�hK1

m
�hK1

m
�� � 0.84 4:696� 10�2

6 p = 4 implicit �hK0

m
�hK0

m
�hK0

m
�hK0

m
0.84 2:191� 10�2

7 p = 4 implicit �hK0

m
�hK0

m
�hK0

m
�hK1

m
0.84 3:295� 10�3

8 p = 4 implicit �hK0

m
�hK0

m
�hK1

m
�hK1

m
0.84 1:270� 10�3

9 p = 4 implicit �hK0

m
�hK1

m
�hK1

m
�hK1

m
0.84 8:468� 10�4

10 p = 4 implicit �hK1

m
�hK1

m
�hK1

m
�hK1

m
0.84 2:394� 10�2

Table 2

Comparison of Reection Ratios vs. Di�erent Schemes for Double Gaussian Distribution.
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Fig. 10. Reection Ratio as a Function of Time for Double Gaussian with K0 = 25:0 and

K1 = 5:0:

have a distribution in momentum space peaked about �hK0 and about �hK1: There-
fore, for optimal absorbing boundary conditions, the aj's that we use should also be
distributed around the �hK0=m; as well as about �hK1=m; to absorb the components
that are distributed about �hK0=m: So, if we use the same double Gaussian distri-
bution calculation as before but vary the group velocities of the absorbing boundary
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Fig. 11. Reection Ratio as a Function of � at n = 8400 (t = 0:84) for Double Gaussian

Distribution with p = 4 absorbing boundary condition.

condition for p = 4 as follows:

a1 =
�hK0

m
; a2 = (1 + �)

�hK0

m
; a3 =

�hK1

m
; a4 = (1 + �)

�hK1

m
;(68)

where � is the variation of group velocity, then we obtain the results in Figure 11.
We again can see that when a2 and a4 are increased, the reection properties of the
p = 4 absorbing boundary condition was improved to a peak absorption near � = 1:8:
Hence, the more spread out the interpolation points of the dispersion relation, the
better the performance of the absorbing boundary condition for this initial double
Gaussian distribution.

4.3.4. Pseudo-Delta Function Distribution. We would like to also consider
the e�ect of narrowing the spatial spread of the initial Gaussian distribution, and
thus having a wider distribution of momentum in momentum space [8]. In particular,
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we would like to consider the e�ect of this modi�cation on the relative reective
properties of the p = 3 and p = 4 absorbing boundary conditions. Ideally, we would
like to consider an initial distribution in the form of a delta function. The de�nition
of a delta function, �(x � x0); is that it have the value 1 at a point x0; and be zero
everywhere else. As an approximation to a delta function we will use a pseudo-delta
function in the form of a Gaussian distribution (65) with L = 10; �0 = L=100; and
� = 3L=4: Note that this distribution is one-tenth as wide as the previous Gaussian
distributions. As the �0 approaches zero, the form of a delta function is recovered.
Again, � = 0:0001 and � = L=512; as before.

We performed calculations i) with no absorbing boundary condition present (i.e.,
the ideal boundary condition), ii) with a p = 3 absorbing boundary condition with
ai = �hK0=m; and iii) with a p = 4 absorbing boundary condition with ai = �hK0=m:

At t = 1 (n = 10000); these simulations have r values of 2:5959�10�2; 3:1246�10�2;

and 2:866� 10�2; respectively. Therefore, with the narrower initial spread but wider
distribution in momentum space, the p = 4 absorbing boundary condition is more
e�ective.

If we use the same pseudo-delta function distribution calculation but vary the
group velocities of the absorbing boundary condition for p = 4 as follows: a1 = a2 =
a3 = a4 = (1 + �)�hK0

m
; where � is the variation of group velocity, then we obtain the

results in Figure 12. The properties displaced in this Figure are di�erent than that
for the Gaussian with wider initial spread, �0: Since the Gaussian spreads so quickly
as a function of time when evolved by the Schr�odinger equation, it turns out that
decreased values of ai lead to a minimized reection ratio, whereas for distribution
with wider initial distributions, the larger values of ai were more e�ective.

5. Discussion. For the three types of initial distribution simulations, we �nd
that the higher the order of the absorbing boundary condition, the better the reection
ratio properties (ignoring the essentially equivalent behaviour of the p = 3 and p = 4
absorbing boundary conditions for a moment). The Dirichlet boundary condition on
the other hand produced total reection of the incident wave. This was not surprising,
since the 	 = 0 would have appeared to the wave as a wall of in�nite potential value
which was impossible to overcome, and thus the wave was completely reected.

For the single Gaussian distribution, with the momentum being strongly peaked
around a single K0 value, the e�ectiveness of the p = 3 and p = 4 absorbing boundary
conditions were roughly equivalent. The fact that the p = 4 absorbing boundary
condition was not more e�ective for strongly peaked momentum distributions than
the p = 3 absorbing boundary condition was contrary to our expectations from the
reection ratio value as predicted by Equation (34).

The greater accuracy for the p = 3 absorbing boundary condition can be un-
derstood in the following sense. In general, the accuracy of an absorbing boundary
condition depends on how accurately the interpolation of the dispersion relation mod-
els the exact dispersion relation. Hence, for distributions with wide distributions in
momentumspace, such as for the pseudo-delta function, the p = 4 absorbing boundary
condition is more e�ective. And similarly, when there are two or more distinct peaks
in the momentumdistribution. But when there is only a small distribution in momen-
tum space around the single interpolation point in the dispersion relation, there are
other factors that are important. First, of all, the accuracy of the absorbing boundary
condition is limited by the consistency error associated with the discretization of the
di�erential operators. Since this error is roughly equivalent for the p = 3 and p = 4
absorbing boundary conditions, there must also be another factor. This factor stems
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Fig. 12. Reection Ratio as a Function of � at n = 8400 (t = 0:84) for pseudo-delta function

with a p = 4 absorbing boundary condition.

from the fact that the absorbing boundary condition admits a generalized eigenvalue
with zero group velocity on the boundary, as shown in the previous Chapter. We
conjecture that with the higher order absorbing boundary condition may cause this
generalized eigenvalue to admit more instability, hence causing the p = 4 absorbing
boundary condition to be less e�ective. A similar e�ect was observed by Higdon for
his general absorbing boundary condition for the wave equation, where he states that
\the generalized eigenvalue can cause mild instabilities consisting of waves radiating
spontaneously into the interior of the boundary" [14]. This behaviour does not seem
to e�ect the overall stability properties of the p = 4 absorbing boundary condition.
Therefore, for waves which have small momentum spreads about a peak momentum
value, the p = 3 absorbing boundary condition might be expected to be more e�ective,
whereas for waves with large momentum spreads, the p = 4 absorbing boundary con-
dition might be expected to be more e�ective and the mild instability caused by the
generalized eigenvalue is less prevalent. Of course, varying the adjustable parameters
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usually improves the behaviour of either.

All the absorbing boundary conditions were more e�ective at lower values of K0

(for the range of K0 presented here), as can be seen from Table 1, which was contrary
to the results presented in Kuska's paper [27], whose minimumreection value appears
for K0 � 15: Of course, as the values K0 tend to zero, the dispersion relation has a
steeper gradient, and thus the approximations for a �xed order become less accurate.
Accordingly, the behaviour of the absorbing boundary conditions will become poorer.

Kuska's results for identical calculations are di�erent than those presented in
this paper due to the nature of the cut-o� criterion that Kuska used to compare
various values of K0; where the simulations were terminated when the relation [27]

(
PJ

j=0 xj	n
j j2)=(

PJ
j=0 j	0

j j2) < �̂ is satis�ed. Kuska does not discuss how the value
�̂ is determined. Regardless, this cut-o� criterion will be insensitive to peculiarities
in the behaviour of di�erent waves and it does not account for multiple reections
o� di�erent boundaries, whereas as our plateau comparison method does. This is
particularly a problem for lower energy waves in a small domain as the reected
wave will be impinging on the opposite boundary before the incident wave has passed
completely through the �rst boundary. Further, due to the nature of Kuska's cut-
o� criterion, the values of r which Kuska presents are orders of magnitude higher
than those presented here, for equivalent schemes (for example, the lowest value for
a reection ratio which Kuska presents is 1:0� 10�3): This is due to the choice of a
relatively large value of �̂ to accommodate a large range of energies.

Figure 9 shows that the p = 3 absorbing boundary condition was more e�ective
for di�erent ranges in momentum space than the p = 4 absorbing boundary condition.
The p = 4 absorbing boundary condition was more e�ective with larger group velocity
values for the parameters of the absorbing boundary condition. These results are
related to the forms of the interpolation forms for the absorbing boundary conditions
relative to the exact dispersion relation and the evolving group velocity characteristics
of the Gaussian distributions.

For the pseudo-delta function, the Gaussian distribution is more sharply peaked,
but in momentum space, the momentum distribution is broader. Therefore, when
evolved by the Schr�odinger equation, the di�erent momentum components cause the
distribution to atten quickly, since the components will be traveling at di�erent
velocities. In this case, the p = 4 absorbing boundary condition fared better than
the p = 3 absorbing boundary condition. Thus it can be concluded that the p = 4
absorbing boundary condition was e�ective in reducing the amplitude of components
of a wider range of momentum values about a peak value than the p = 3 absorbing
boundary condition, as discussed above.

But the real power of the general absorbing boundary condition is expressed when
used in conjunction with multiple Gaussian distribution with di�erent momentum
peaks. This is a more realistic test, since in a practical application, more than one
value of K0 would expected to be present. Our results are primarily presented by Fig-
ure 10. Here the claim that the p = 4 absorbing boundary condition is more e�ective
for a wider distribution of momentum values is further illustrated, for the simulations
using ai = aj ; i 6= j for the absorbing boundary conditions. This can be understood
from the fourth-order interpolation being a better approximation to the dispersion re-
lation over a wider range of momentum around �hK0 in the dispersion relation. Also,
when the exibility of the absorbing boundary conditions is exploited such as the in-
terpolations points are tuned to the two distinct peaks of momentum, �hK0 and �hK1;

the amount of reection produced by the absorbing boundary boundary conditions is
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considerably reduced. Whereas the minimum reection that an absorbing boundary
condition based on Kuska's homogeneous absorbing boundary condition (19) could
produce is 4:66� 10�2; when the parameters for the p = 3 absorbing boundary con-
dition are tuned to both peaks, the reection ratio falls to 1:37 � 10�4; a reduction
of over two orders of magnitudes. Interestingly, when tuned to the momentum peaks,
the p = 3 absorbing boundary condition again proved more e�ective than the p = 4
absorbing boundary condition (again probably due to the mild instability associated
with the generalized eigenvalue), although the latter allows for one more adjustable
parameter which could be useful for even more general incident waves.

To summarize, the absorbing boundary conditions are e�ective choices for bound-
ary conditions where the boundary must not interfere with with the interior solution,
unlike the standard Dirichlet boundary condition. The general absorbing boundary
condition developed in this thesis is exible enough to be adapted for a wide range of
incident waves, either with multiple group velocities and/or with wide distributions
in momentum space, while producing a minimal amount of reection.
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