
Producing a Top-Down Parse Order

with Bottom-Up Parsing�

Technical Report 95-378

James P. Schmeisery David T. Barnardz

Department of Computing and Information Science

Queen's University, Kingston, Canada

March 6, 1995

Abstract

An adaptation of the standard LR(1) and LALR(1) parsing algorithm is described such that a

top-down parse order is produced rather than the standard bottom-up order.

�This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Information

Technology Research Centre of Ontario and Queen's University at Kingston.
yJames Schmeiser is a developer in the IBM Canada Laboratory C/C++ compiler group.
zThe paper was completed while the second author was on sabbatical at INRIA (Institut National de Recherche

en Informatique et en Automatique), Rocquencourt, France.

1

1 Introduction

There are two standard approaches to parsing: top-down and bottom-up. In a typical top-down

approach, such as LL(1) parsing [3], the input is predicted and veri�ed against the actual input.

Bottom-up parsers scan input until an entire rule is seen and is then recognised. This latter approach

is employed by parsers for the LR(1) [2] and LALR(1) languages [1] (see [4] for more information

on LL(1), LR(1) and LALR(1) parsing).

The parse orders, that is, the order of the rules describing the parse, are di�erent depending on

whether a top-down or bottom-up parse is employed. To a compiler writer, the top-down order (a

left-most canonical parse) is often preferable to a bottom-up parse order (a right-most canonical

parse); unfortunately, the LL(1) languages are a proper subset of the LALR(1) languages. Rather

than limiting the expressiveness of the language by using a top-down parser, a method of generating

a top-down parse order using a bottom-up parser is described.

The paper is organised as follows. Following de�nitions, a discussion relating parse orders and

tree traversals is presented that illustrates how a top-down parse order is derived during a bottom-

up parse. This is followed by the algorithm. Finally, a trace of the algorithm shows the computation

of the top-down parse order using an example LALR(1) grammar.

2 De�nitions

A grammar G is described by a 4-tuple G = (VT ; VN ; S;�) where VT and VN are the sets of terminal

symbols and nonterminal symbols, respectively. S 2 VN is the starting symbol of the grammar

and � is the set of productions (grammar rules). A grammar is said to be reduced if all symbols

in the grammar generate some (possibly null) part of a terminal string in the language, there are

no rules of the form A ! A in � and there exists some derivation S
+
=) A for all A in VN (see

[4] for more information on reduced grammars). A grammar is unambiguous if only one derivation

exists for each string in the language. It is assumed hereafter that all grammars are reduced and

unambiguous.

Standard parsing terminology is assumed. As well, the symbol immediately to the right of the

dot in an item is called the desired symbol.

3 Parse Orders

A top-down parse order corresponds to a pre-order traversal of the nodes in the parse tree.

Label each non-leaf node with a singleton list containing the number of the production expanded

and leaf nodes with []. Concatenating the lists as they are visited in a pre-order traversal results

in the top-down parse order for the input string. Consider the grammar and parse tree shown in

Figure 1. The nodes are labeled with the symbols of the grammar along with the appropriate list.

The pre-order traversal of the tree is [1; 2; 3; 4; 5; 6; 7] which is the top-down parse of the input string

abcdfghikno.

The bottom-up parse order corresponds to a post-order left-to-right traversal of the parse tree.

For the above example, concatenating the strings during the a post-order traversal results in the

bottom-up parse [3; 5; 4; 2; 7; 6; 1].

2

1. R ! M Q

2. M ! E f g L

3. E ! a b c d

4. L ! J k

5. J ! h i

6. Q ! n P

7. P ! o

a([]) b([]) c([]) d([])

E([3]) f([]) g([])

h([]) i([])

J([5]) k([])

L([4])

M([2])

n([])

o([])

P([7])

Q([6])

R([1])

Figure 1: Example Grammar and Parse Tree

Generating a top-down parse order in a bottom-up parse reduces to concatenating the lists at

each node in the order produced by a pre-order traversal during a post-order traversal of the parse

tree. This is accomplished by computing at each node N (with children N1 : : : Nn) the result of the

following computation.

list(N) = production(N) ++list(N1) ++ : : :++list(Nn)

The list at the root of the tree corresponds to the list of nodes as they would be visited during a

pre-order traversal of the parse tree and is the top-down parse order for the input string. Note that

concatenation can be performed in constant time since the list at each node is only needed for the

computation of the list at its parent.

4 Parsing Algorithm

The parsing algorithm uses the same tables as the standard algorithm, that is, an action and a

goto table that are generated in the usual manner. The parsing algorithm, however, requires some

modi�cation. Rather than stacking the states of the machine as the parse proceeds, each stack

element contains a state and rule list pair representing the rules that expand the desired symbol.

When a transition is made on a symbol and a new pair placed on the stack, no information is known

about the expansions of the new desired symbol so the rule list is empty.

When a rule is reduced, rather than outputting the rule number, the rule lists associated with

the popped rule are concatenated. The rule list associated with the top-most stack pair is [] since

reduce states have no desired symbol. As each pair is popped from the stack, its rule list is appended

to the front of the rule list being constructed. When all of the appropriate pairs have been removed

from the stack, the rule list of the new top of the stack is appended to the front of the list since

3

parse()

S �

push(S; (0; []))

i 0

while TRUE do

(T;�) top(S)

case action[T; input[i]] of

ERROR:

return -1

SHIFT:

push(S; (goto[T; input[i]]; []))

i i+ 1

ACCEPT:

(�; P) top(pop(S))

return P

REDUCE:

P []

for j 1 to jrulej do

(�; Q) pop(S)

P Q++P

(T;Q) pop(S)

push(S; (T; [rule] ++Q++P))

push(S; (goto[T; lhs[rule]]; []))

Figure 2: Parsing Algorithm

it represents the expansion of the left-most symbol in the recognised rule. The recognised rule is

then placed at the head of the resulting list and a transition is made on the nonterminal symbol on

the left-hand-side of the recognised rule. Finally, when the algorithm accepts, the entire rule list is

available as the expansion of the padding symbol.

The algorithm is shown in Figure 2. It assumes the presence of the action and goto tables

that are indexed by the states in the machine and the symbols in the grammar (see [4] for more

information on the generation of these tables). The signi�cant aspect of the algorithm is the way

that reductions are handled.

Consider the LALR(1) example grammar and its parsing tables shown in Figure 3 which are

taken from [4]. A trace of the parsing algorithm is shown in Figure 4.

Assuming that list concatenation is performed in constant time, the modi�ed algorithm requires

the same time as a typical LR(1) parsing algorithm. However, it requires more space since the

original parsing algorithm can output the rules as they are recognised while the modi�ed algorithm

must store the rules until the end of the parse to do the re-ordering. As each rule is recognised,

it is placed in a list and never replicated, so the algorithm requires O(n) space, in addition to the

normal requirements for the tables.

4

0. S 0
! S -

1. S ! E = E

2. j f

3. E ! T

4. j E + T

5. T ! f

6. j T * f

ACTION GOTO

STATE f = + � - S E T f = + �

0 S 11 1 2 3

1 S S 4 5

2 R3 R3 S R3 9

3 R5 R5 R5 R2

4 S 6 2 7

5 S 8 7

6 S R1 5

7 R5 R5 R5 R5

8 R4 R4 S R4 9

9 S 10

10 R6 R6 R6 R6

11 A

Figure 3: Example LALR(1) Grammar and Tables

STACK INPUT

(0; []) f = f + f � f -

(0; [])(3; []) = f + f � f -

(0; [5])(2; []) = f + f � f -

(0; [3; 5])(1; []) = f + f � f -

(0; [3; 5])(1; [])(4; []) f + f � f -

(0; [3; 5])(1; [])(4; [])(3; []) + f � f -

(0; [3; 5])(1; [])(4; [5])(2; []) + f � f -

(0; [3; 5])(1; [])(4; [3; 5])(6; []) + f � f -

(0; [3; 5])(1; [])(4; [3; 5]) (6; [])(5; []) f � f -

(0; [3; 5])(1; [])(4; [3; 5]) (6; [])(5; [])(7; []) � f -

(0; [3; 5])(1; [])(4; [3; 5]) (6; [])(5; [5])(8; []) � f -

(0; [3; 5])(1; [])(4; [3; 5]) (6; [])(5; [5])(8; [])(9; []) f -

(0; [3; 5])(1; [])(4; [3; 5]) (6; [])(5; [5])(8; [])(9; [])(10; []) -

(0; [3; 5])(1; [])(4; [3; 5]) (6; [])(5; [6; 5])(8; []) -

(0; [3; 5])(1; [])(4; [4; 3; 5; 6; 5])(6; []) -

(0; [1; 3; 5; 4; 3; 5; 6; 5])(11; []) -

Figure 4: Example Trace

5

5 Conclusions

A modi�cation to the standard parsing algorithms for LR(1) and LALR(1) grammars that produces

a top-down parse order rather than the standard bottom-up order was presented. The changes are

minimal, do not increase the time required for the algorithm to run, and do not a�ect the table

generation algorithms. The algorithm combines bene�ts of both top-down and bottom-up parsing by

providing the more intuitive parse order of LL(1) with the increased descriptive power of LALR(1)

and LR(1).

References

[1] F. L. DeRemer. Practical Translators for LR(k) Languages. PhD thesis, Cambridge, Mas-

sachusetts, 1969.

[2] D. E. Knuth. Semantics of context-free languages. Mathematical Systems Theory, 2(2):127{145,

November 1967.

[3] P. Lewis and R. Stearns. Syntax-directed transdution. J. ACM, 15(3):465{488, 1968.

[4] J.P. Tremblay and P.G. Sorenson. The Theory and Practice of Compiler Writing. McGraw-Hill,

1985.

6

