
Parallel Implementation of Tree Skeletons

D.B. Skillicorn

skill@qucis.queensu.ca

March 1995

External Technical Report

ISSN-0836-0227-

95-380

Department of Computing and Information Science

Queen's University
Kingston, Ontario K7L 3N6

Document prepared March 6, 1995
Copyright c1995 D.B. Skillicorn

Abstract

Trees are a useful data type, but they are not routinely included in parallel pro-
gramming systems because their irregular structure makes them seem hard to
compute with e�ciently. We present a method for constructing implementations
of skeletons, high-level homomorphic operations on trees, that execute in parallel.

In particular, we consider the case where the size of the tree is much larger than
the the number of processors available, so that tree data must be partitioned. The

approach uses the theory of categorical data types to derive implementation tem-

plates based on tree contraction. Many useful tree operations can be computed in
time logarithmic in the size of their argument, on a wide range of parallel systems.

1 Contribution

One common approach to general-purpose parallel computation is based on

packaging complex operations as templates, or skeletons [3, 12]. Skeletons en-

capsulate the control and data ow necessary to compute useful operations.

This permits software to be written in a way that is independent of particular

architectures, and indeed of underlying parallelism at all, while freeing imple-

mentations to be target-speci�c. Thus software is simpler to write, while at

the same time portable.

Building parallel implementations for complex skeletons is di�cult. In this

paper we present a technique for implementing skeleton operations on binary

trees. It is based on the categorical data type construction for the type of

binary trees, which itself de�nes a useful set of tree-based skeleton operations.

The construction also helps with building implementations. Implementations

are SPMD, and so can be mapped to a large range of target architectures in
a straightforward way. This amounts to automatic code generation.

A powerful side-e�ect of these implementations is that it is possible to
derive costs for programs or program pieces. Furthermore, these costs are
realistic in the sense that they account for communication costs. Information
about program costs can be used to derive and optimise programs.

The technique is interesting as an example of a generalised kind of data

parallelism applied to an irregular data structure. While the advantages of
data parallelism are widely appreciated for regular data structures such as
lists and arrays, there has been some doubt about whether it is as useful for
less regular structures. This paper shows that irregular data structures do not
necessarily rule out the bene�ts of high-level regularities of the sort captured

by skeletons.
Trees are an important data structure. In particular many of the skeletons

described here are directly applicable for parallel computation on structured
text, which is often so large that parallelism is necessary to use it e�ectively
[13]. Practical parallel implementations of such operations are described.

2 Construction of Trees

We will construct two types of trees. The �rst is the type of full binary trees.

Although we will usually be interested in trees where the values at each node

are taken from the same underlying type, it is technically useful to de�ne trees
in which leaves and internal nodes may have di�erent types. Let A and B be
arbitrary types.

1

De�nition 1 A full binary tree is that type, T (A;B), whose constructors are:

Leaf : A! T (A;B)

Join : T (A;B)� B �T (A;B)! T (A;B)

Thus a tree is either a single leaf node of type A, or is formed by joining two

trees together, and placing a value of type B at the join. Such trees are called

full because each node has either two descendants or none.

We introduce a more general type of tree, the rose tree, which we will need

for technical reasons in what follows. Binary trees are not powerful enough

to model some common types of tree-structured data, for example structured

text in the style of SGML, and so rose trees also have considerable intrinsic

interest.

De�nition 2 A rose tree is that type, RT (A;B), whose constructors are:

RTLeaf : A! RT (A;B)

RTJoin : B �RT (A;B)� ! RT (A;B)

where RT (A;B)� denotes non-empty join lists of rose trees.

Such trees are either single nodes of type A, or a list of rose trees, connected
together by an internal node of type B . The name rose tree was coined by

Lambert Meertens, and translates rhododendron, whose branches suggest this
structure.

The justi�cation for de�ning a type based only on its constructors comes
from the theory of categorical data types [12], a particular style of initiality.
This shows that giving suitably well-behaved constructors su�ces to de�ne a

data type, a common structure for homomorphisms on the type, and a large
set of equations relating functions on the type.

For full binary trees, homomorphisms are arrows between the free tree

algebra, with carrierT (A;B) and operations Leaf and Join, and other algebras
with carrier, say P , and operations

p1 : A! P

p2 : P � B � P ! P

In fact, there is a one-to-one correspondence between homomorphisms and
such codomain algebras, so we can write Hom(p1; p2) for such a homomor-

phism.

2

eval catamorphism(p1, p2, t)

case t of

Leaf a : return p1(a)

Join (t1, b, t2) : return p2 (eval catamorphism(p1, p2, t1),

b,

eval catamorphism(p1, p2, t2))

end

Figure 1: Schema for All Tree Homomorphisms

Rose tree homomorphisms are similarly de�ned by carrier P and pairs of

functions

p1 : A! P

p2 : B � P� ! P

Because of the one-to-one correspondence between homomorphisms and
their codomains, all homomorphisms on binary trees are fundamentally the
same, and can be evaluated by a recursive schema parameterised by the struc-
ture of the codomain algebra. This is shown in Figure 1. This schema gives
a direct way to evaluate homomorphisms on trees in sequential time linear in

the size of tree, and parallel time proportional to the height of the tree, pro-
vided that p1 and p2 are constant time. In particular, the schema shows that
a single, simple evaluator can be used to compute all homomorphisms, either
sequentially or in parallel. However, there are pragmatic reasons for explor-
ing more sophisticated implementation techniques: some homomorphisms do
not require the complete structure implied by the recursive schema, so better-

performing implementations can be substituted; and it is rare for the number
of processors to match the number of nodes of the argument tree, so the e�ect
of allocating multiple tree nodes to a single processor must also be considered.

The �rst special case of homomorphisms are maps, in which a pair of

functions are applied to all of the nodes of a tree.

De�nition 3 (Map) Given a pair of functions f1 : A! C and f2 : B ! D , the

function

Map(f1; f2) : T (A;B)! T (C ;D)

that applies f1 to each node of type A and f2 to each node of type B is called a
tree map.

3

Note that it is a homomorphism in which the component functions are

p1 = Leaf � f1

p2 = Join � id � f2 � id

The second special case are reductions, which condense or reduce the struc-

ture of a tree.

De�nition 4 (Reduction) Given a function g : A �B � A! A, the function

Reduce(g) : T (A;B)! A

is the homomorphism with component functions

p1 = id

p2 = g

The third special case are those operations in which, intuitively speaking,
data must ow up the tree towards the root in order for each node to compute
its local result. We further restrict these operations so that the result at a

node can be computed incrementally from the results of its children.

De�nition 5 (Upwards Accumulation) Given an arbitrary tree homomorphism
with component functions p1 and p2 whose codomains are of type X , the upwards
accumulation * (p1; p2) is the function

* (p1; p2) : T (A;B)! T (X ;X)

given by
* (p1; p2) =Map(Hom(p1; p2)) � subtrees

where subtrees is the function that replaces each node of a tree by the subtree
rooted at that node. Both Map(Hom(p1; p2)) and subtrees are homomorphisms,

so upwards accumulations are too.

An upwards accumulation is show in Figure 2.
The fourth special case are those operations in which data must ow down

the tree in order for each node to compute its result (that is, the result at a

node depends on the data and path between it and the root). To de�ne these

operations we must �rst make a small technical construction. Let Paths be a

type of non-empty concatenation lists with two mutually-associative concate-
nation operations which we will call left turn and right turn. The constructors

4

p1a4 p1a5

p2(p1a4; a2; p1a5) p1a3

p2(p2(p1a4; a2; p1a5); a1; p1(a3))

a1

a2 a3

a4 a5

Figure 2: An Upwards Accumulation

are

Singleton : A! Paths(A)

Leftturn : Paths(A)� Paths(A)! Paths(A)

Rightturn : Paths(A)� Paths(A)! Paths(A)

This de�nes a type that we will use to represent the paths between nodes and
the root in trees, with Leftturn denoting the path to a left descendant and
Rightturn denoting the path to a right descendant.

Path homomorphisms are arrows from the free path algebra to algebras

with carrier P and component functions

p1 : A! P

p2 : P � P ! P

p3 : P � P ! P

with p2 and p3 mutually associative. They are written PathHom(p1; p2; p3).

De�nition 6 (Downwards Accumulation) Given an arbitrary path homomor-
phism with component functions p1, p2, and p3 whose codomains are of type X ,

5

a1

a2 a3

a4 a5

p1a1

p3(p2(p1a1; p1a2); p1a5)p2(p2(p1a1; p1a2); p1a4)

p3(p1a1; p1a3)p2(p1a1; p1a2)

Figure 3: A Downwards Accumulation

a downwards accumulation + (p1; p2; p3) is the function

+ (p1; p2; p3) : T (A;B)! T (X ;X)

given by

+ (p1; p2; p3) = Map(PathHom(p1; p2; p3)) � paths

where paths is the function that replaces each node of a tree by the path between
the root and that node. Again downwards accumulations are tree homomorphisms
because their pieces are.

A downwards accumulation is shown in Figure 3.

Rose trees also have special-case homomorphisms for maps, reductions, and
upwards and downwards accumulations. The generalisations are obvious. For

example, a rose tree map RTMap(p1; p2) is the rose tree homomorphism with

component functions

p1 = RTLeaf � f1

p2 = RTJoin � f2 � id�

6

A rose tree reduction, RTReduce(g), is a rose tree homomorphism with com-

ponent functions

p1 = id

p2 = g : B � A� ! A

In the next section we examine how each of these restricted forms of ho-

momorphisms can be implemented, beginning with the easiest case where the

number of processors available for computation is the same as the number of

nodes in the tree argument.

3 The Case p = n for Binary Trees

For each of the special-case tree homomorphisms described in the previous

section we will construct an implementation or implementations and compute
their complexities. We assume that each homomorphism is applied to a tree
of n nodes that has been mapped to an n-processor parallel computer with
a single tree node placed on each processor. The time complexity of some
implementations is sensitive to the communication topology of the parallel

computer, so we discuss both together.
A map operation is implemented by applying the base functions to each

node of the tree in place. In other words, given the operation Map(f1; f2)
each processor decides whether it holds an internal or leaf node, and applies
either f1 or f2 to that node. No communication is required. The parallel time

complexity of this implementation is

tn(Map(f1; f2)) = max (t1(f1); t1(f2))

where ti (f) is the time complexity required to compute f on i processors.
A reduction operation, Reduce(g), where g : A� B �A ! A, can be

implemented in a number of ways depending on the properties of g. The most
direct implementation is to use the recursive schema. If we assume that g

is constant space, that is the size of the result is the same size as the size

of the arguments, and that the implementing architecture has a rich enough

communication topology for the tree to be embedded without dilation, then

the parallel time complexity of Reduce(g) is given by

tn(Reduce(g)) = ht � t1(g)

where ht is the height of the tree argument. Note that the height of the tree
is linear in the worst case.

7

When the operation g is not constant space, the parallel time complexity

must increase because of the necessity of moving greater amounts of data

around the tree. Even for an embedding of the tree without dilation, moving

m data items between neighbours must take time proportional to m. Consider

an operation g that takes arguments of size m and produces a result of size

2m. The worst case scenario is a skewed tree, in which the two lowest leaves

must transmit data of size m, their parent must transmit data of size 2m, and

so on. It therefore takes time at least

m + 2m + 3m + : : :+ ((n � 1)=2)m

for the data to reach the root, giving an overall time complexity quadratic in

the size of the tree.

A similar computation can be carried out for a g that takes arguments of

size m to a result of size m + 1. It would be attractive to generalise this to
take into account any e�ect of g on result size, but this has so far proven too
complicated for practical use.

Under certain fairly mild conditions on g, it is possible to replace the recur-
sive implementation schema by an implementation based on tree contraction

[1, 5, 10]. The basic idea of tree contraction is that the sequential dependency
along the longest path from root to leaves can be avoided by doing useful
work, on every step, at nodes where only one descendant is a leaf. Since, at

any stage, about half of the nodes are leaves, this creates the opportunity to
reduce the total time of the reduction algorithm to logarithmic in the tree size,
regardless of the tree's structure.

The tree contraction algorithm is standard, so we only sketch its operation
here. It depends on two symmetric operations, contractl and contractr, that

replace a node, its leaf descendant, and its other descendant, by a single new
node. Associate a value and a function with each node initially { in our setting
the value is the content of that tree node, and the function is id for leaves and
g for internal nodes.

Consider the situation shown in Figure 4. If the function associated with

the new node can be partially evaluated, so that actual computation occurs in

constructing this new function, then useful progress is made towards the �nal

result during each local contraction, and many of them can be carried out in
parallel.

The overall structure of the algorithm is as follows:

1. Number the leaves from left to right, beginning from 0, so that disjoint

locations can be chosen to apply the local contraction operations. Such
a numbering can be done using the Euler Tour technique in O(log n)
time using O(n= log n) processors [4].

8

a1 �z :g(a2; a1; z)

a2id a3 �z�z2::g(z1; a3; z2)

x y

�z1�z2:g(a2; a1; g(z1; a3; z2))

x y

Figure 4: A contractl Operation

9

2. For every node whose left descendant has an even number, carry out

contractl. If the right descendant is also a leaf, the result of contractl is

a leaf which keeps the number of the original left descendant.

3. For every node that was not newly produced on the previous step, and

whose right descendant has an even number, carry out contractr.

4. Divide the number attached to each leaf by two, and take the integer

part.

Steps 2-4 are repeated until only a single node remains. Since about half the

nodes are leaves at any step, and each local contraction replaces three tree

nodes by one, it is straightforward to see that the algorithm runs in a number

of steps logarithmic in the size of the tree.

To justify the overall logarithmic time complexity of the algorithm, each

local contraction must be constant time and space. Conditions on g and the
functions derived as its compositions and partial evaluations that ensure this
are given by Abrahamson et al. [1] as:

1. For all nodes, the sectioned function f = �x1�x3:g(x1; b; x3) of type A �
A ! A is drawn from an indexed set of functions, F , that contains the
identity function.

2. All functions in F can be applied in constant time.

3. If fi and fj are in F , the functions fi(a2; a1; fj (x1; a3; x3)) and fi(fj (x1; a2; x3); a1; a3)
are in F , and their indices can be computed from the indices of fi and
fj in constant time.

The original version of tree contraction was described for the EREWPRAM,
but the same performance can be achieved on the hypercube [9], and the

technique can presumably be extended to the cube-connected-cycles topology.
Note that we no longer need the assumption of an undilated embedding of the
tree into the communication topology of the target architecture. Thus this im-
plementation is both faster and more general, when the component functions

have the necessary properties.

If the time complexity of internal functions, their partial evaluations, and
compositions has some other complexity, the tree contraction algorithm still

works correctly. For example, if all of the required functions have logarithmic
time complexity, then the overall parallel time complexity of tree contraction

will be log2n, and so on.

There are a number of ways of implementing upwards accumulations. The
�rst is to use the implementation implied by the de�nition, that is to apply the

subtrees function, and then map a tree homomorphism over it. However, this

10

approach is clearly computationally expensive, since the subtrees function,

applied to a tree of size n, produces a result of size n2, to which further

homomorphisms must still be applied.

The second method of implementation is to use the recursive schema di-

rectly, since the upwards accumulation is a tree homomorphism. This is again

computationally unattractive, not least because it requires an unnecessary de-

composition step. In fact, upwards accumulations were carefully de�ned to

capture computations in which data owed upwards in the tree and, given

one processor per node, this is the sensible way to implement them. So the

third method of implementation is to pass results upwards, computing partial

results on the way.

The parallel time complexity of an upwards accumulation implemented in

this way is given by

tn = t1(p1) + ht � t1(p2)

under the assumptions that there is an embedding of the tree in the parallel
computer's topology without dilation, and that p2 is constant space.

Once again, the linear time complexity is caused by the data dependencies
along the path between the root and the furthest leaf. And once again, under

certain conditions on p2, a fourth implementation, based on tree contraction,
can be built. The algorithm is complex, and is fully described in [6]. The
essential idea is to carry out a tree contraction, but leaving the contracted
nodes connected to the new node that replaced them. A subsequent phase
takes some partial results of the contraction and sends them to previously
contracted nodes, which may then compute their �nal values.

Under the same conditions on component functions as above, upwards
accumulations can be computed in parallel time logarithmic in the size of the
tree, regardless of how skewed it is. The result holds for the EREW PRAM
and the hypercube.

Downwards accumulations can be implemented in the same four ways, in-

cluding a fast parallel algorithm based on tree contraction. This algorithm

becomes even more complex and requires further modi�cation of the tree con-
traction algorithm [6], but has the same parallel time complexity.

This completes the discussion of implementations for special homomor-

phisms on binary trees for the simple case when a single processor is available

for each tree node. This is clearly an unrealistic assumption, but before we
move on to considering implementations using fewer than one processor per

node, we turn to considering implementations of homomorphisms on rose trees,
as these are required later on.

11

4 The Case p = n for Rose Trees

Rose trees are much more common in applications than binary trees, so ho-

momorphism implementations for them are interesting in their own right. We

will, however, use these implementations to implement binary tree homomor-

phisms in the next section. As before, we assume one processor per tree node.

Rose tree maps can be implemented in exactly the same way as binary tree

maps, applying the operation locally in each processor. As expected,

tn(Mapn(f1; f2)) = max (t1(f1); t2(f2))

Rose tree reductions can be implemented recursively, giving a parallel time

complexity of

tn(Reducen(g)) = ht � t1(g)

Notice that here the type of g is

g : B � A� ! A

so that the sequential time complexity of g might be expected to be linear in

the number of descendants of each node. The overall parallel time complexity
is no worse than linear in the size of the tree regardless of its shape, since a
single edge of the tree can potentially be handled by each processor on each
step.

For certain special cases of g, namely those that can be expressed as

g = g 0:id �(=

where

g 0 : B � A! A

(: A �A! A (associative)

the (= part of each application of g can be parallelized, and no additional
processors are required. This reduces the time complexity of a single applica-
tion of g to logarithmic in the number of descendants of the node at which it

is being applied.

The tree contraction implementation of reductions can also be generalised
to rose trees. The idea is to have each processor convert the node it holds into

a small section of binary tree and then apply the binary tree algorithms to this
enhanced tree. The rearrangement is shown in Figure 5. This rearrangement

requires the processor holding each node to be able to determine the processor

that holds its right sibling in constant time. If we assume that each node holds

12

eb c d

a

:

:

a

b

c

d e

Figure 5: Local Rearrangement of a Rose Tree into a Binary Tree

13

the processors in which its children are located as part of the tree structure

itself, then each child processor can determine the sibling address by reading

it from the parent (and each read is from a disjoint location). This assumption

does not seem particularly strong given likely ways in which the tree storage

might actually be implemented.

Tree contraction in the rose tree is now replaced by tree contraction in the

binary tree. The rose tree reduction operation g must be expressible as

g = g 0 � id �(=

as before, and both g 0 and (must satisfy the requirements on component

functions. The functions associated with each node initially are:

� (for the internal dummy nodes,

� id for the leaf nodes, and

� g 0 �(for the other internal nodes (e.g. a).

The tree contraction algorithm relies on numbering the leaves of the binary
tree in time logarithmic in its size. The Euler Tour technique can be extended

to this case, provided each child node can �nd out the location of its right
sibling in constant time.

Under these conditions, a rose tree contraction takes parallel time

tn = log 2n � t1(()

if g 0 is constant time.
Upwards and downwards accumulations have similar implementations. Both

can be implemented using data ow with parallel time complexities propor-

tional to the height of the tree. Once a rose tree has been recon�gured into a
binary tree, as was done for the rose tree contraction above, the binary tree
versions of upwards and downwards accumulations can be used to implement
rose tree accumulations with parallel time complexity logarithmic in the size

of the tree.

5 Using p < n Processors

When there are fewer processors than nodes of the argument tree, which is

much more realistic than the one-processor-per-node assumption we have used

so far, implementations must partition the tree and map pieces of it to each
processor. This introduces new complexities.

14

The �rst issue is the level at which the tree structure is to be partitioned. In

general the nodes of a tree may themselves be elements of types with internal

structure, for example a tree of lists of integers. Should a tree be divided so

that there are an equal number of tree nodes allocated to each processor, or

should it be divided so that there are an equal number of basic data objects

allocated to each processor? Taking the �rst approach may lead to serious

load imbalances { for instance a tree of lists may contain lists of very di�erent

lengths. Taking the second approach may generate extra communication if

a single tree node gets split across more than one processor. We adopt the

�rst approach because it is simpler, it reects the importance of maps in

homomorphisms, and it allows the implementations to be polymorphic, since

the type of the nodes is not used in decisions about partitioning. Others have

chosen to work at the �nest grain, for example NESL [2].

The second issue is that the types of the functions applied to pieces of the

argument are not the same as the type of the original program. A method for
systematically generating the actual code for each processor from the original
program is required. Here, the structure of homomorphisms is very helpful,
enabling us to develop a formal code generation system.

6 Partitioning into Subtrees

For some types, the issue of how to partition objects is easily resolved. When
a type is separable, that is constructors either insert elements of some base

type into the constructed type, or recursively build elements of the constructed
type into larger ones, but not both at once, there is always a atten operation,
a reduction using those constructors that manipulate structure. For example,
the type of join or concatenation lists is separable, because the make singleton

constructor inserts elements of the base type while concatenate (++) joins

lists but adds no new elements. The atten operation is ++= (reduce with
concatenation) which attens a list of list into a single list.

Neither homogeneous binary nor homogeneous rose trees are separable,

so there is no automatic atten function. Instead we choose one with useful
properties, justifying it on pragmatic grounds.

We de�ne a pair of functions, distp to break a tree into p subtrees, and
atten to atten p subtrees back into a single tree. They are related by this

equation
atten � distp = id (1)

whose importance was �rst pointed out by Roe [11]. There are several choices

for these functions. The obvious technique of breaking a tree into a tree of

trees is very limited because of the requirement that the top-level structure

15

b

b b

b

b b

a a

a a

a

a a

Figure 6: The E�ect of Partitioning

remain a binary tree. This can be made to work, but it is very hard to divide
trees into equal-sized subtrees.

It is more useful to take suitable type signatures to be

distp : T (A;B)! RT (T (A;B);T (A+?;B))

and
atten : RT (T (A;B);T (A+?;B))! T (A;B)

where ? acts as a placeholder for detached subtrees, and so is any one-element
set. This de�nition seems to best permit the kind of tree partitioning that
is needed to get partitions of approximately equal size from arbitrary binary

trees. The e�ect of distp can be seen in Figure 6. The function distp can

be any function with this type signature, although there are clearly some
pragmatic requirements on it. It is quite di�cult to build such a function and
have it perform reasonably. Fortunately its exact construction does not a�ect

anything else discussed here.

The function atten is the rose tree homomorphismwhose component func-

tions are

p1 : T (A;B)! T (A;B) = id

p2 : T (A+?;B)� T (A;B)� ! T (A;B) = at � zipup

16

where zipup is a polymorphic (in Z) function

zipup : T (A+?;B)� Z� ! T (A+ Z ;B)

which replaces each leaf of its left argument tree of type ? by the next element

of the list of Z s, reusing list elements if necessary. The function at is of type

at : T (A+ T (A;B);B)! T (A;B)

and observing that A + T (A;B) �= T (A;B) we see that at is Reduce(Join).
Now consider a composition of functions

S3 � S2 � S1

for which we want to build an implementation. This program is equivalent to

the following by Equation 1:

(atten � distp) � S3 � (atten � distp) � S2 � (atten � distp) � S1 � (atten � distp)

or, rebracketing,

atten � (distp � S3 � atten) � (distp � S2 � atten) � (distp � S1 � atten) � distp

We see that the implementation of each of the Si is the function distp�Si �atten.
The implementation expects its argument to be a rose tree of trees, gathers
them together into a single tree, applies the original function, and then breaks
them up into a rose tree of trees again. Fortunately, it will often be possible
to replace this expensive process by a version of the function that works \in

place", that is which can be mapped over the rose tree, de�ning the functions
to be applied sequentially to each component tree. The whole program begins
with an initial breaking up of the argument tree into subtrees, and ends with a
result-gathering step, which assembles the partial trees on each processor into
a single tree. With present architectures we can ignore the cost of these initial

and �nal steps since they are part of the overhead of all programs.

Observe that, if the function distp is determinate, we also have the identity

distp � atten = id

when applied to a rose tree of trees whose shape was produced by an appli-

cation of distp. For, in that case, the attened tree will be broken up into its

original pieces by the subsequent application of distp . We make use of this in
what follows.

There is a general result for initial data types, known as the promotion

17

theorem [8], which allows operations such as atten to be permuted with other

operations in the following sense

Theorem 7 (Promotion through atten) For an arbitrary tree homomorphism,

Hom(h1; h2)

Hom(h1; h2) � atten = RTReduce(Reduce(h2) � zipup) �

RTMap(Hom(h1; h2);Map(h1 + id ; id))

This result shows that the application of any tree homomorphismafter a atten

is equivalent to applying a rose tree map over the partitioned tree (that is

applying Hom(h1; h2) orMap(h1+id ; id) to the subtree within each processor),
and then executing a globally-parallel rose tree reduction to glue the partial

answers together. We use this theorem to rearrange terms of the form

distp � Hom(h1; h2) � atten

to
distp � RTReduce �RTMap

For a Map operation with component functions f1 : A! C and f2 : B ! D

so that
Map(f1; f2) : T (A;B)! T (C ;D)

we get

distp �Map(f1; f2) � atten

= distp � RTReduce(Hom(id ; Join � id � f2 � id) � zipup) �

RTMap(Map(f1; f2);Map(f1 + id ; id))

However, we observe that

atten = RTReduce(Hom(id ; Join) � zipup)

which suggests a small rearrangement to give

distp �Map(f1; f2) � atten

= distp � atten � RTMap(Map(f1; f2);Map(f1 + id ; f2))

= RTMap(Map(f1; f2);Map(f1 + id ; f2))

Thus the implementation of a tree map becomes a rose tree map, executed

in parallel, with the mapped operation being a sequential tree map over the

18

subtree held by each processor. This result is an example of an implementation

that acts in place, and hence no redistribution step is necessary.

Given a reduction Reduce(g), we get

distp � Reduce(g) � atten

= distp � RTReduce(Hom(id ; g) � zipup) �

RTMap(Hom(id ; g);Map(id + id ; id))

= distp � RTReduce(Reduce(g) � zipup) � RTMap(Reduce(g); id)

The implementation is slightly complex. Recall that the argument is a rose

tree of trees. The Map step applies the Reduce(g) to the trees that are leaves

of the rose tree, doing nothing to the internal node subtrees. The second step

applies a rose tree reduction to the outer rose tree, at each step zipping the

results of previous reductions into the structure and then reducing the trees
at each node using Reduce(g). The process is shown in Figure 7.

Here the e�ect of the operation is to collect the result at a single processor.
If there are further parallel operations to be applied to the result of this op-
eration, a redistribution across processors is necessary, and the cost of doing
this must be included in the cost of the whole program.

The general strategy then for building implementations is to insert the

expression atten � distp between every pair of functions in the program and
then use the promotion strategy to move atten operations leftwards (later)
in the program, cancelling them wherever possible with distps. The result is a
architecture-independent template for implementing the program, which can
then be used to generate machine-speci�c code.

7 The Case p < n for Binary Trees

We are now in a position to compute the costs of executing common operations
where the argument tree has been partitioned across processors.

The implementation of tree map involves a parallel rose tree map, each

component of which is a tree map, eitherMap(f1; f2) orMap(f1+id ; f2), applied
to the subtree held by each processor. An ideal implementation of distp would
ensure that the subtree held by each processor is of size n=p. However, most

implementations will not be able to achieve this for all trees. Let us assume

that the maximum number of nodes in a subtree is x and clearly x � n=p.
The complexity of tree map is given by

tp(Mapn(f1; f2)) = x �max (t1(f1); t1(f2))

In other words, the time taken for a parallel implementation of tree map is

19

b

b b

b

b b

a a

a a

a

a a

b

b

b b

a a

a

a

a

b

b

b

b b

a a

a

b

Initially

After RTMap

After zipup

Figure 7: The Implementation of a Reduction

20

the time it takes for a sequential implementation of tree map on the largest

subtree.

The case of tree reduction is more complex. The time complexity of

RTMap(Reduce(g); id) is

tp(RTMap(Reduce(g); id)) = x

because each part of the RTMap is a sequential reduction on a subtree of size

at most x . The time complexity of RTReduce(Reduce(g) � zipup) is

tp(RTReduce(Reduce(g) � zipup) = ht � t1(Reduce(g) � zipup)

= ht � x

since the cost of zipup is negligible if we assume that pointers are maintained

between subtrees (and it is hard to imagine an implementation where this
wasn't true). In the worst case this gives a parallel time complexity for tree
reductions of at least n2=p. If distp partitions the tree so that there are few
partitions along any branch, that is the partitioned tree is not very deep,
this can be reduced by a further factor of p. However, this complexity is

disappointing, so we turn to an implementation based on tree contraction.
There are two problems with the existing implementation. The �rst is that

the RTMap only applies Reduce(g) at subtrees that are leaves of the top-level
tree. This leaves a lot of work to be done during the subsequent RTReduce.
The second problem is that the RTReduce uses the ow of data through the

tree, and its performance is therefore limited by the height of the top-level tree.
Both of the these problems can be avoided for suitable gs by using contraction
at both levels of the tree.

First we replace RTMap(Reduce(g); id) by

RTMap(Reduce(g);PReduce(g)) (2)

where PReduce(g) is a partial tree reduction mapping a tree of type T (A+?;B)
to a function ĝ :?� ! A. The operation contractl is replaced by an operation

that composes the associated functions of the two internal nodes, but does
not evaluate the arguments from leaves, even if they are known. The nodes

corresponding to unevaluated leaf arguments are not removed but become
`shadow' nodes, and take no further part in the tree contraction.

Provided that all of the partial compositions of these functions can be com-

puted in constant time and space, this partial tree reduction can be completed
in linear sequential time. If we again assume that distp arranges for pointers
to be kept from parent subtrees to their descendant subtrees, the result of the

operation in Equation 2 is a rose tree in which each internal node has an as-

21

sociated function of type A� ! A, and each leaf node has an associated value

of type A. Under suitable conditions on the associated functions, a rose tree

implementation of tree contraction can be used to compute the �nal result.

The operation given by Equation 2 has time complexity

t1(RTMap(Reduce(g);PReduce(g))) = x

while the rose tree reduction has time complexity

tp(RTReduce) = log p

giving an overall time complexity bounded below by

tp(Implementation of Reduce(g)) = log p + n=p

The conditions on g are that compositions and partial evaluations of partial
functions ĝ , based on g, are constant time and space. Functions g that are
based on reductions (= can certainly be composed in constant time. It might
appear that constant space is a problem because of the necessity to remember
which positions in the list argument are `missing'. However, this is taken care

of by our assumption of pointers to subtrees. Therefore, as we might expect,
reductions over binary trees can be implemented by partitioned reductions
with the expected time complexity log p + n=p.

This implementation can be adapted for upwards and downwards accumu-
lation, as before, to give the same time complexity for those operations.

8 Conclusions

We have presented a technique for implementing skeleton operations on trees.
The strengths of the technique are that:

� implementations can be derived from programs automatically using equa-
tions that arise from the theory used to build the tree data type and its

homomorphic skeletons;

� all scales of parallelism can be used, from the modest amounts available

today up to massively parallel systems;

� the cost of a program can be computed from its implementation (and
this cost is a real cost since it takes into account communication latency);

� the implementations remain architecture-independent, so that compilers

can be based on common code until target-speci�c code generation. In

particular, optimisation can be largely architecture-independent.

22

Such implementations are immediately useful because of a range of appli-

cations in which trees are important data structures. One such is structured

text, where text archives are so large that parallelism is the only way to make

sophisticated search (for example, path expressions [7]) possible.

References

[1] K. Abrahamson, N. Dadoun, D.G. Kirkpatrick, and T. Przytycka. A

simple parallel tree contraction algorithm. In Proceedings of the Twenty-

Fifth Allerton Conference on Communication, Control and Computing,

pages 624{633, September 1987.

[2] G.E. Blelloch. NESL: a nested data parallel language. Technical Report

CMU-CS-92-103, School of Computer Science, Carnegie-Mellon Univer-
sity, January 1992.

[3] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Com-

putation. Research Monographs in Parallel and Distributed Computing.
Pitman, 1989.

[4] R. Cole and U. Vishkin. Faster optimal parallel pre�x sums and list
ranking. Information and Control, 81:334{352, 1989.

[5] Alan Gibbons and Wojciech Rytter. E�cient Parallel Algorithms. Cam-
bridge University Press, 1988.

[6] J. Gibbons, W. Cai, and D.B. Skillicorn. E�cient parallel algorithms for
tree accumulations. Science of Computer Programming, 23:1{14, 1994.

[7] I.A. Macleod. Path expressions as selectors for non-linear text. Preprint,
1993.

[8] G. Malcolm. Algebraic Data Types and Program Transformation. PhD
thesis, Rijksuniversiteit Groningen, September 1990.

[9] E.W. Mayr and R. Werchner. Optimal routing of parentheses on the

hypercube. In Proceedings of the Symposium on Parallel Architectures

and Algorithms, June 1993.

[10] G.L. Miller and J. Reif. Parallel tree contraction and its application.
In 26th IEEE Symposium on Foundations of Computer Science, pages

478{489, 1985.

23

[11] P. Roe. Derivation of e�cient data parallel programs. Technical report,

Queensland University of Technology, December 1993.

[12] D.B. Skillicorn. Foundations of Parallel Computing. Cambridge Series in

Parallel Computation. Cambridge University Press, 1994.

[13] D.B. Skillicorn. Structured parallel computation in structured documents.

Technical Report 95-379, Queen's University, Department of Computing

and Information Science, March 1995.

24

