
A Parallel Tree Di�erence Algorithm

D.B. Skillicorn

skill@qucis.queensu.ca

March 1995

External Technical Report
ISSN-0836-0227-

95-381

Department of Computing and Information Science

Queen's University

Kingston, Ontario K7L 3N6

Document prepared March 6, 1995
Copyright c1995 D.B. Skillicorn

Abstract

We present a tree di�erence algorithm with expected sequential execution timeO(n log log n) and

expected parallel execution time of O(log n), for trees of size n. The algorithm assumes unique
labels and permits operations only on leaves and frontier subtrees. Despite these limitations, it
can be useful in the analysis of structured text.

1 Applications of Tree Di�erence

In this paper we describe an algorithm for determining the di�erence between two trees under

the assumption that each node has a unique label chosen from an ordered set. The algorithm

uses a novel form of hashing to quickly extract neighbourhood information for each node. In

a second phase, this neighbourhood information is processed to determine what di�erences

exist between the trees. We assume that trees may be arbitrarily branching, and that the

following operations may have been applied to them:

1. a node was inserted to become a new leaf;

2. a leaf node was deleted;

3. a leaf node was moved to become a leaf node in another part of the tree;

4. a subtree was inserted below any node;

5. a subtree was deleted;

6. a subtree was moved to another part of the tree

In reporting di�erences, preference is given to subtree operations since they provide more
compact and meaningful descriptions of changes, for example, \a section has moved" rather
than \each paragraph of a section has moved". The algorithm could be enhanced at the
processing stage to detect other possible tree operations, at the expense of execution time.

The tree di�erence algorithm for trees with n nodes has expected sequential time com-
plexity O(n log log n) and parallel time complexity O(log n) on the EREW PRAM model.

Other tree operations have been considered in the literature. For example, there is a
sequence of algorithms based on insertions and deletions where an insertion below a node x
allows the new node to acquire some of x 's children as its children, and hence x 's grandchil-

dren. A symmetric deletion moves the children of a deleted node up to become the children

of the parent of the deleted node [8].

The assumption that each tree node has a unique label is probably not supportable for

today's techniques for storing such trees. However, attributed �le systems such as DFR [6]
require such identi�ers for each node in the �le system, so we expect this assumption to

quickly become realistic. In any case, non-unique labels force di�erence algorithms to carry
out some variation of dynamic programming, for which time bounds are necessarily much

worse.

1

The application domain envisaged is structured text. Structured text contains tags, that

indicate and delimit regions of the text of semantic interest. SGML is the standard for this

kind of markup. SGML tagged text is naturally modelled by trees, in which internal nodes

model entities with opening and closing tag pairs (and often attributes, such as text). Leaf

nodes correspond to unstructured text, that is the basic entities from which a text is built

up such as sentences. A given entity will usually have many entities contained within it,

such as a section containing many paragraphs, so trees are arbitrarily branching.

There are many applications in which the ability to detect di�erences between two struc-

tured texts is important. Many documents get produced by collaborations in which one

person acts as author for some period, and then passes the document to a second person,

and so on. When the document returns to an earlier author, it may be di�cult to detect

what changes have been made. It is unworkably tedious to require each author to log all

changes, and maintain this list with the document. The ability to directly compare the

original with the returning version permits each author to recreate the e�ect of the changes.
This is actually better than keeping a log, since it computes only the net e�ect of the changes
and not the actual mechanism by which the changes were e�ected. Maintaining versions of
software is a very similar problem.

Many hypertext systems now store links separately from the documents to which they
point, because of the exibility it gives to control access to documents. Doing so means,
however, that alterations to documents must trigger checks of the link data to make sure
that they remain consistent. This is expensive since it requires a pass through the entire

data, and may need to be done after every edit of a document. The ability to detect changes
after the fact makes it possible to update links periodically rather than after every change.

A practical di�erence algorithm such as the one described here is an e�ective tool in

such environments. The size of texts, and especially software systems, is such that a parallel
di�erence algorithm may be required for acceptable performance.

2 Background

The algorithm for tree di�erence described here uses two technical constructions from the
literature. The �rst is universal hashing which enables hash tables for arbitrary key sets to

be built in almost-constant parallel time on the EREW PRAM model. The second is results

on fast implementation of certain tree homomorphisms, particularly upwards and downwards

accumulations, developed for the categorical data type of trees. Both types of accumulations

can be computed in O(log n) parallel time on the EREW PRAM.

A hash function maps an arbitrary set of n keys K , whose maximum length is bounded,

2

to a set of bins 0; 1; : : : ; b � 1 described by a positive integer. A uniform hash function [10]

produces random outputs uniformly distributed over [0; b � 1] for arbitrary key sets. It does

this by ensuring that every bit of output depends on all of the bits of the input, and that

the probability of a 0 or 1 in every position of the output is the same (that is, 1/2). Of

course, all hash functions are limited in the sense that the set of inputs that hash to the

same bin can themselves be considered a set of inputs on which the hash function performs

badly. In practical terms, however, the expected value of the longest chain in a bin, when

direct chaining is used, grows as ��1(b) which is O(log b= log log b) [5]. Using a binary tree

instead of a chain reduces this to O(log log b) since the uniform distribution guarantees that

the tree will be balanced. Furthermore, the expected length of the longest chain or tree is

independent of the occupation factor of the hash table, that is the ratio of n to b. Since

each key is hashed independently a hash table for n keys can be created in parallel in time

O(log log b) with high probability.

We model structured text by trees with arbitrary branching factor whose nodes are chosen
from an enumerated type of entities with attributes. Objects of this type are known as rose
trees [3] de�ned as follows:

De�nition 1 A rose tree is that type, RT (A), whose constructors are:

RTLeaf : A! RT (A)

RTJoin : A� RT (A)� ! RT (A)

where RT (A)� denotes non-empty join lists of rose trees.

Such trees are either single nodes of type A, or a list of subtrees, joined together by an
internal node of type A, where A is a suitable enumerated type of entities.

A function h : RT (A)! X is a homomorphism if and only if there are a pair of functions
p1 and p2 of types

p1 : A! X

p2 : A� X � ! X

such that

h(RTLeaf (a)) = p1(a)

h(RTJoin(a; [t1; t2; : : : ; tn])) = p2(a; h�[t1; t2; : : : ; tn])

where h� is the mapping of h over a list of trees [9]. This one-to-one correspondence between

rose tree homomorphisms and such function pairs justi�es the notation Hom(p1; p2) for h.

3

eval homomorphism(p1, p2, t)

case t of

RTLeaf (a) : return p1 (a)

RTJoin (a, [ti]) : return p2 (a,

eval homomorphism(p1, p2,)� [ti])

end

Figure 1: Recursive Schema for Rose Tree Homomorphisms

It is straightforward to see from the de�nition of rose tree homomorphisms that all such

homomorphisms can be evaluated recursively as shown in Figure 1. This schema can be used

directly to evaluate rose tree homomorphisms in sequential time linear in the size of tree,

and parallel time linear in the height of the tree, provided that p1 and p2 are constant time.

Certain homomorphisms have specialised implementations that enable them to be com-
puted more e�ciently. A rose tree map is a tree homomorphism that applies a function
p : A! X to every node of a rose tree. Thus

RTMap(p) : RT (A)! RT (X)

A rose tree map can implemented sequentially in linear time and in parallel in constant time.

Another special class of homomorphisms are the upwards accumulations. These are
homomorphisms in which the data dependencies can be satis�ed by data owing up the tree
from leaves to root, and in which the result at each node can be computed incrementally

from the results of its children.

De�nition 2 (Upwards Accumulation) Given an arbitrary rose tree homomorphismHom(p1; p2) :
RT (A)! X , the upwards accumulation * (p1; p2) is the function

* (p1; p2) : RT (A)! RT (X)

given by
* (p1; p2) = RTMap(Hom(p1; p2)) � subtrees

where subtrees is the function that replaces each node of a tree by the subtree rooted at that

node. Both RTMap(Hom(p1; p2)) and subtrees are homomorphisms, so upwards accumulations
are also.

An upwards accumulation is show in Figure 2. Upwards accumulations on rose trees can be

e�ciently computed by:

4

a1

a2 a3

a6

a4

a5 a7

p1a6

p1a3 p1a4

p1a7p1a5

p2(a2; [p1a5; p1a6; p1a7])

p2(a1; [p2(a2; p1a5; p1a6; p1a7); p1a3; p1a4])

Figure 2: An Upwards Accumulation

1. transforming the rose tree into an equivalent binary tree, and

2. using an extension of tree contraction to compute the desired result on the binary tree.

A rose tree can be straightforwardly be converted to a binary tree as shown in Figure 3.
In a parallel setting, this conversion requires the processor responsible for each node to be

able to �nd the address of the the processor responsible for its right sibling in constant time.
This information is stored in the processor responsible for the parent, and each child accesses
a di�erent part of it. It is also possible to number the leaves of the resulting binary tree
from zero using an extension of the Euler tour technique in parallel logarithmic time under
these same assumptions about storage arrangement.

Tree contraction [1, 2, 7] computes a reduction on a binary tree in parallel logarithmic
time, regardless of how skewed the tree might be. The idea is that the sequential dependency
along the longest path from root to leaves can be avoided by doing useful work, on every step,

at nodes where some descendants are leaves. Since, at any stage, about half of the nodes

are leaves, this creates the opportunity to reduce the total time of the reduction algorithm
to logarithmic in the tree size, regardless of the tree's structure.

A function is associated with each node of the tree, and a pair of operations contractl
and contractr are applied at nodes where one or more children are leaves. The contraction
operations, one of which is shown in Figure 4, replace two internal nodes of the tree and one

leaf node by a single internal node, forming partial compositions of the functions associated

5

eb c d

a

a

:

:b

c

d e

Figure 3: Local Rearrangement of a Rose Tree into a Binary Tree

6

a1 �z :g(p1a2; a1; z)

a2p1 a3 �z�z2:g(z1; a3; z2)

x y

�z1�z2:g(p1a2; a1; g(z1; a3; z2))

x y

Figure 4: The contractl Operation

with the nodes. As long as these partial compositions can be partially evaluated, real progress
is made. For the overall algorithm to complete in logarithmic parallel time, it must be
possible to carry out the partial compositions and evaluations in constant time, and the
results must be constant space. These restrictions are fairly mild for ordinary algebraic and

boolean operations. Tree contraction can be extended to upwards accumulations under the
same restrictions on the component functions [4].

So that the operations at internal nodes of the rose tree can be distributed over the nodes
of the binary tree constructed from it, the component function p2 must be expressible as

p2 = g 0 � id �(=

where (= is a list reduction with an associative operation (. The functions associated with

each node of the binary tree initially are then:

� (for the internal dummy nodes,

� p1 for the leaf nodes, and

� g 0 � id �(for the other internal nodes (e.g. a).

7

Thus (and g 0 � id � (must satisfy the requirements for tree contraction, that is their

compositions must be constant time and space.

Under these conditions, upwards accumulations with well-behaved component functions

can be computed in parallel logarithmic time, and linear sequential time.

A third special class of homomorphisms are the downwards accumulations. These are

operations in which data ows down the tree and each node computes a result that depends

on the path between it and the root and the values along that path. We represent the

paths between the root and other nodes by join lists with two kinds of join operations,

one representing a left child and the other a right child. As before it su�ces to consider

the case of binary trees, since we will convert rose trees to binary trees before applying

these homomorphisms. Call the type of these join lists Paths. Path homomorphisms have

component functions

p1 : A! P

p2 : P � P ! P

p3 : P � P ! P

with p2 and p3 mutually associative. We write them PathHom(p1; p2; p3).

De�nition 3 (Downwards Accumulation) For an arbitrary path homomorphism with compo-
nent functions p1, p2, and p3 with codomains of type X , a downwards accumulation + (p1; p2; p3)
is the function

+ (p1; p2; p3) : T (A;B)! T (X ;X)

given by

+ (p1; p2; p3) = TreeMap(PathHom(p1; p2; p3)) � paths

where paths is the function that replaces each node of a tree by the path between the root and
that node. Downwards accumulations are tree homomorphisms because their pieces are.

A downwards accumulation is shown in Figure 5.

Downwards accumulations can be computed sequentially in linear time and in parallel
in time proportional to the height of the tree. For suitably restricted component functions,

they can also be implemented in parallel by an extension of tree contraction [4] in time
logarithmic in the size of the tree.

8

a1

a2 a3

a4 a5

p1a1

p3(p2(p1a1; p1a2); p1a5)p2(p2(p1a1; p1a2); p1a4)

p3(p1a1; p1a3)p2(p1a1; p1a2)

Figure 5: A Downwards Accumulation

3 The Di�erence Algorithm

The algorithm assumes the EREW PRAM model, although the upwards accumulation step
can be carried out with the same complexity on more realistic models such as the hypercube

and cube-connected-cycles. Let T1 be the initial tree and T2 the �nal tree. The algorithm
consists of three steps:

1. Creating hash tables of parents. For each tree, a hash table is created recording,
for each node, its parent in that tree. Each node in both of the trees examines its
parents in the two tables and determines its status:

� it has a parent in table 1 but not in table 2 { it has been deleted;

� it has a parent in table 2 but not in table 1 { it has been inserted;

� it has the same parent in both tables { it remains in the same local environment

(but might have been moved as part of a subtree);

� it has di�erent parents in both tables, and so is the root of a subtree that has

been moved.

Each node of each tree is labelled to indicate whether it has been inserted, deleted,

moved, or unchanged. At this point, almost all of the detail of how the trees di�er is

9

known. The remaining analysis minimises the expression of this di�erence and, if an

edit sequence is required, arranges the di�erences in the most e�cient order.

2. Finding the largest subtrees involved in insertions, deletions, and moves.

This part of the algorithm merges local information about changes in the tree into

larger units, for example, merging a subtree of inserted nodes into a single subtree

insertion. This is done using an upwards accumulation to �nd those nodes that are the

roots of subtrees all of which have the same change property. A subsequent downwards

accumulation �nds the �rst nodes along each path with the given change property {

these are the roots of the largest changed subtree.

The general strategy is an upwards accumulation using the following component func-

tions:

p1 = if property then T else F

p2 = (if property then T else F) ^ (^= ai)

In other words, each leaf with the property is labelled with T , and each internal node
with the property is labelled with T if it has the property and so have all of its
descendants. An example of this operation applied to a tree to �nd deletions is shown

in Figure 6.

Second, a downwards accumulation is applied to the resulting tree to �nd those paths
whose labels are regular expressions of the form F �T . These are the roots of the largest
subtrees with the property. This is also shown in Figure 6.

These two operations are applied �rst to Tree 1 to �nd the largest deleted subtrees.
They are then applied to Tree 2 to �nd the largest inserted subtrees, and again to �nd
the largest moved subtrees.

3. Finding nodes that have moved but retained the same parent node.

The hash table data do not detect nodes that have moved but still retain the same
parent, that is nodes that have moved at the same level. If we assume that the cost of
moving some contiguous set of subtrees of a node to another place below that node is

independent of the number of subtrees (for example, a block move in an editor), and

that the unique labels for nodes can be ordered in sibling order, then the number of
moves among the descendants of a node can be determined by examining the descen-

dant nodes in T2 and counting the number of locations where an identi�er is smaller
than the preceding one. This can be computed as a list reduction, and therefore takes

(at each node) sequential time x for x the maximum tree branching factor, and parallel

time log x . Note that if there is one processor per node, these processors are available
to carry out the reduction.

10

M { moved

D { deleted

D

D D D

D

MD M

MD

T T T

T

T

T

F

F F

F

T T

F

F F

F

F F F F

After Step 1

After upwards accumulation

After downwards accumulation

Figure 6: An Example of an Upwards Accumulation for Deletions

11

4 Complexity

The sequential complexity of the algorithm is

1. O(n log log n) for the hash table creation and lookup;

2. O(n) for the upwards and downwards accumulations;

3. O(n) for same parent resolution, since each node of the tree is examined once;

The expected value, over all inputs, of the sequential execution time is O(n log log n).

The parallel time complexity of the algorithm is

1. O(log log n) for the hash table creation and lookup;

2. O(log n) for the upwards and downwards accumulations;

3. O(log x) for the same parent resolution, where x is the maximal branching factor;

The expected value, over all inputs, of the parallel execution time is O(log n).

5 Conclusions

We have described a tree di�erence algorithm that can be e�ectively parallelised. It uses two
new results from the literature: universal hashing to quickly determine neighbourhoods of

tree nodes, and upwards accumulations to e�ectively compute maximal subtrees that have
been altered. Although this algorithm makes some strong assumptions, namely that nodes
have unique labels, and allows only a limited set of edit operations, its performance is much
better than previous tree di�erence algorithms. In practical settings such as analysis of

structured text, its weaknesses are outweighed by its performance.

References

[1] K. Abrahamson, N. Dadoun, D.G. Kirkpatrick, and T. Przytycka. A simple parallel

tree contraction algorithm. In Proceedings of the Twenty-Fifth Allerton Conference on

Communication, Control and Computing, pages 624{633, September 1987.

12

[2] Alan Gibbons and WojciechRytter. E�cient Parallel Algorithms. Cambridge University

Press, 1988.

[3] J. Gibbons. Algebras for Tree Algorithms. D.Phil. thesis, Programming Research Group,

University of Oxford, 1991.

[4] J. Gibbons, W. Cai, and D.B. Skillicorn. E�cient parallel algorithms for tree accumu-

lations. Science of Computer Programming, 23:1{14, 1994.

[5] G. Gonnet. Expected length of the longest probe sequence in hash code searching.

Journal of the ACM, 28(2):289{, 1981.

[6] International Organisation for Standardisation. Information Processing Systems - Doc-

ument Filing and Retrieval, 1987. ISO/TC 97/SC 18/WG 4.

[7] G.L. Miller and J. Reif. Parallel tree contraction and its application. In 26th IEEE

Symposium on Foundations of Computer Science, pages 478{489, 1985.

[8] D. Shasha and K. Zhang. Fast algorithms for the unit cost editing. Journal of Algo-

rithms, 11:581{621, 1990.

[9] D.B. Skillicorn. Foundations of Parallel Computing. Cambridge Series in Parallel Com-
putation. Cambridge University Press, 1994.

[10] R.C. Uzgalis. General hash functions. Technical Report TR-92-01, The University of
Hong Kong, 1993.

13

