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A Generalisation of Indexing for

Parallel Document Search

Abstract

Parallelism is useful in the storage and access of structured documents. Fast parallel algorithms for

search in structured text are already known, but they will not supplant the use of indexes to speed

up searching until massively parallel architectures become routinely available. However, parallel

algorithms suggest new kinds of indexes that provide powerful search capability and performance
even on modestly-parallel computers.

We present a generalisation of indexes based on regular languages, called indexing languages,
that are chosen to be homomorphic images of languages generated by typical search patterns.
Precomputing properties of text strings relative to indexing languages makes it fast to exclude
large parts of the text from consideration before executing a direct search.

1



1 Background

Search times in document archives are improved by building indexes giving the location of

(usually) words as o�sets in the structure. This kind of index has three major drawbacks: it

is expensive to compute, often taking days for moderately-sized archives; it does not permit

searches that cannot be expressed as simple conjunctions and disjunctions on words; and it

requires large ancillary storage, typically twice as large as the documents themselves.

A related technique is the use of signature �les [1] which \condense" the set of words,

or perhaps only index terms, in a document down to a single key. A similar operation is

then applied to the search terms, and a simple test determines those documents that cannot

contain the search terms (although it only indicates documents that may contain them).

This reduces the storage load, but still limits searches to boolean expressions on words.

Document archives are large enough to bene�t from parallel computation techniques.
Techniques for parallelizing both index and signature �le management have been suggested,
but they have shown limited promise. However, starting from the premise that parallelism is

integral to document archives, and that documents are typically stored in a distributed way
and accessed by multiple processors provides a new perspective on how to index them. These
insights also provide alternative approach to indexing sequentially-accessed documents.

Parallel document processing systems are capable of evaluating searches described by

arbitrary regular expressions (and hence more powerful than the query capability of many
existing search systems) in time logarithmic in the total size of the documents, provided that
enough processing power is available [6]. This suggests that, in the long run, indexing will
decrease in importance since even complex queries can be directly evaluated in reasonable
amounts of time. However, it is, for the present, unreasonable to expect that parallel systems

will have more than a small number of processors (say up to a hundred), while document
archives hold thousands of documents and have a total size of many terabytes. Thus although
indexing will continue to play a role in the medium term, new and more powerful kinds of
indexes may be useful.

In this paper we show how search problems can be cast as regular language recognition

problems. This suggests the use of a set of indexing languages and associated homomor-
phisms that capture commonality between search patterns. Precomputing information about

membership in these indexing languages for segments of the text string, already partitioned
and distributed across a set of processors, makes it possible to eliminate segments from

further consideration quickly and cheaply. The resources of the parallel computer are then

better deployed to search segments in which instances of the search pattern might appear.
The techniques are described for text treated as linear strings, but the approach generalises
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trivially to text structured in a tree-like way as in SGML.

2 A Di�erent Perspective on Search

The basic search problem is this: given a string w (the search string) and a string s (the

document), determine if w is present in s. Most indexes are set up to solve this problem.

However, we begin with a slight, but powerful, extension: given a regular expression r

(the search pattern), and a string s (the document), determine if an instance of the pattern

is present in the string. This kind of search is commonly available in text editors, but cannot

be easily assisted by indexes unless the pattern is very simple. It is, however, a useful and

powerful search capability. For example, it allows patterns such as occurrences of the word

X inside a chapter heading to be searched for, using a pattern

< chapter > ��

X��

< =chapter >

where �� means any terminal string of length 0 or greater.

We express such searches as language recognition problems in the following way: the
problem above is equivalent to asking if the string s is a member of the language L described
by ��

r��, that is the language that contains all strings described by r , possibly surrounded

by arbitrary strings. We call such a language the language generated by the regular expres-
sion. Thus the search problem becomes a regular language recognition problem.

There is a highly-parallel algorithm for regular language recognition due to Fischer [2]
(and described for the Connection Machine in [4]). We review it briey. Given a regular

language L, there is a (deterministic) �nite state automaton that accepts exactly the strings
of the language. For example, if the regular expression is the string \rat" then the �nite
state automaton that accepts strings containing the word \rat" is shown in Figure 1.

Each terminal in the language is associated with some set of transitions in the automaton.

The �rst step of the algorithm is to construct a set of such transitions for each terminal,

that is to construct the sets

Transitions(x ) = f(qi ; qj ) j 9 a transition labelled x from qi to qjg

These sets are of bounded size independent of the size of the target string (in fact, they are
bounded by the square of the number of states in the automaton, which is a function of the

length of the regular expression).
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Figure 1: Finite State Automaton accepting Strings containing \rat" { ? denotes any other

symbol in the alphabet

Now we de�ne a binary operation, ~, that composes two transition sets to give a single

one like this:

Transitions(x )~ Transitions(y) =

f(qi ; qk ) j (qi ; qj ) 2 Transitions(x ) and (qj ; qk ) 2 Transitions(y)g

It is easy to see that ~ is associative and has an identity, the transition table mapping
each state to itself. A composition of transition sets, say those associated with terminals x

and y, describes all possible transitions in the automaton on input symbols xy. Thus long
compositions capture possible paths in the automaton driven by the terminal string they
represent.

The recognition problem now becomes reduction of transition sets using the operator ~.

Suppose that there is a processor associated with each terminal of the target string. In a
�rst step, each such processor computes or looks up the transition set for the terminal it
holds. In the second step, adjacent transition sets are repeatedly composed. The transition

sets of each odd-numbered processor are �rst composed with those of their right hand (even-
numbered) processor to give new transition sets. Only half of the original processors now

hold a transition set; the remainder play no further part in the algorithm. The same process
of set composition is repeated between processors still holding transition sets. After the

second step, only one quarter of the processors hold transition sets. This continues until
only one processor holds a transition set that reects the state-to-state transition e�ects of

the whole terminal string. If this set contains a pair whose �rst element is the initial state and

whose second element is the �nal state, then the target string is in the language. Note that

the number of active processors is reduced by half on each step, so the reduction terminates

after dlog ne steps, where n is the length of the target string. (For the remainder of the
paper we assume that all sizes are powers of two to avoid the need for ceiling functions.)
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b r d a b r a t

0; 0 0; 1 0; 0 0; 0 0; 0 0; 1 0; 0 0; 0

1; 0 1; 1 1; 0 1; 2 1; 0 1; 1 1; 2 1; 0

2; 0 2; 1 2; 0 2; 0 2; 0 2; 1 2; 0 2; 3

3; 3 3; 3 3; 3 3; 3 3; 3 3; 3 3; 3 3; 3

0; 1 0; 0 0; 1 0; 0

1; 1 1; 0 1; 1 1; 3

2; 1 2; 0 2; 1 2; 0

3; 3 3; 3 3; 3 3; 3

0; 0 0; 3
1; 0 1; 3

2; 0 2; 3
3; 3 3; 3

0; 3
1; 3
2; 3

3; 3

Figure 2: Progress of the Recognition Algorithm

The transition sets generated by the algorithm on a particular input string are shown in
Figure 2, based on the �nite state automaton in Figure 1.

The parallel time complexity of this algorithm is log n for a target string of length n,
using n processors. Since n will typically be of the order of thousands or millions, parallel
computers with n processors are not realistic at the moment. However, the algorithm is easy

to adapt to fewer, say p processors. The target string is divided into p segments and each

segment is allocated to a processor. Each processor then generates the transition sets for the

terminals it contains and composes them sequentially. When each processor has produced

a single transition set, describing the total e�ect of the substring it contains, the parallel
algorithm proceeds as before on these sets, using p processors. The sequential composition

of transitions sets takes time proportional to the number of sets, which is n=p, while the
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parallel part of the algorithm takes time log p. The total time complexity is

tp =
n

p
+ log p (1)

For small values of p this gives approximately linear speed-up, while for large p it approaches

time logarithmic in the target string size. (Note that we are assuming that transition set

composition takes constant time as a function of the length of the target string. The time

actually depends on the number of states in the automaton, which in turn depends on the

length of the search pattern. It seems reasonable to assume that this is small, but the

assumption is certainly assailable.)

An important property of this algorithm is that it has no left-to-right bias built into

it. After some number of time steps, a processor holding a transition set knows the e�ect

of the substring it represents on any state in which a substring to its left might leave the
automaton. This ability to derive information about a part of the target string without
previous analysis of its left context is an important part of our optimisations.

Suppose that the target string s has been divided in some way across a set of processors.

Call the substring of s in processor i si , and suppose that there are p processors. Then,
after computing the transition set in each processor, we can determine locally which of the
following four cases holds for si :

1. si 2 L: This happens when an occurrence of the pattern occurs completely within
substring si . This is detected by the presence of an entry of the form (q0; qf ) (where
qf is the �nal state of the automaton) in the transition table corresponding to si .

2. si 62 L: This happens when no part of the pattern occurs within string si . This is
detected because the transition set for si is identical to that of \other symbols" those
that do not appear in the pattern, consisting of all entries of the form (qi ; q0) except
for one entry (qf ; qf ).

3. six 2 L: This happens when the transition set for si contains an entry of the form

(q0; qi )(i 6= 0) so that there exists some string x such that the concatenation is in the

language.

4. xsi 2 L: This happens when the transition set for si contains an entry of the form

(qi ; qf )(i 6= f ) so that there exists a string x (whose transition set must contain an
entry of the form (qo ; qi)) such that the concatenation is in the language.

This analysis is useful in the following way: most search patterns are small (since they
are human-generated) and their span in the document is also small { that is instances of the
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pattern are likely to be no more than a few lines, rather than large sections of the document.

Thus if the number of segments is large, almost all will be of type 2 above and need no

further processing in the parallel phase of the algorithm.

The e�ect on the parallel time complexity given in Equation 1 above is to make it

tp =
n

p
+ y

where y depends on the particular regular expression, but is expected to be much smaller

than log p. This optimisation is of limited interest since today's architectures have small

values of p and hence log p is already negligible. However, it sets the stage for a technique in

which transition sets for the segments held in each processor are precomputed (independently

of the search expression) thus reducing the �rst term in the time complexity of Equation 1.

3 Using Homomorphisms

Recall that a string homomorphism is a map that respects string concatenation. Thus a
string homomorphism is de�ned by giving a function h

0 : �! �� and taking its closure, h,
on strings.

For any string s and language L, if s 2 L then h(s) 2 h(L). The essential idea of
indexing languages is to choose a set of Lj 's that \collapse" some of the structure of languages
generated by typical or common regular expressions, and then precompute the transition sets
for segments of the text string relative to each of the Lj 's. Associated with each of the Lj 's
is a homomorphism, hj , whose codomain is Lj . If one of the homomorphisms maps the

language generated by the search pattern to one of the indexing languages Lj , we can reason
contrapositively as follows: if hj (si) is not a member of Lj (= hj (L)) then si cannot be a
member of L and the search pattern is not present in the segment si . For practical searches,

this enables a large proportion of the text string to be ruled out as a possible location of
the pattern early in the search, and before expending the n=p time that is required without

the optimisation. Thus we choose languages L1;L2; : : : that represent useful simpli�cations
of structures in the text string that are expected to play a role in searches. The transition

sets for each si with respect to each language Lj are precomputed (call them Tij ) and stored
with each si .

We are given a regular expression pattern and derive a language L from it. We then try
to �nd a homomorphism hj such that hj (L) = Lj for some j . If we �nd one, we check each

of the Tij (simultaneously). As in the previous section, four cases occur. However, those
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cases of Type 2 indicate that the search pattern is not present in those string segments, and

they play no part in further searches. The best homomorphism to choose is one that does

not conate any of the terminals mentioned in the regular expression.

Suppose that the fraction of segments that are eliminated by this test is a. Then after

a constant parallel time check of the precomputed transition sets, there remain (1 � a)p

segments in which the search pattern might occur. Subdividing these and allocating them

across all available processors gives p segments, each of length (1� a)n to be searched using

the algorithm described in the previous section. The overall time complexity of the optimised

algorithm is

tp = 1 + (1 � a)
n

p
+ log p

For small values of p, making a large reduces the time complexity signi�cantly, almost

linearly in the fraction of segments eliminated.

The reason for calling the languages whose transition sets are precomputed indexing
languages can now be seen. A traditional, word-based index corresponds to choosing an
indexing language for each word { for example, the language Lrat generated by the regular
expression x

�

ratx
� { and a homomorphism that maps all other alphabet symbols to x . Using

\rat" in an index corresponds to precomputing the transition sets for each segment relative
to this language; which in turn amounts to labelling each segment according to whether it

contains an instance of \rat", does not contain an instance, or contains a part of the string
\rat". (Note that if we insist that text strings are broken at word boundaries, the last case
does not arise.)

However, we are free to choose more complex indexing languages. Of particular inter-
est in structured text search are languages that conate parts of the document structure
while emphasising other parts. Such languages help to speed up searches based on patterns
involving structure as well as content.

In a parallel implementation, which we have been assuming, each Tij is stored in processor
i . However, in a sequential implementation, for which this extension to indexing is still useful,
the Tij for each j could be stored as a bit vector or as a list of segments in which the pattern

might appear { much like a standard index.

There is an obvious connection between the these tables of bits and signature �les. The
major di�erences are:

� Data capturing some property of the text is based on segments rather than documents;

� Many di�erent single-bit values are stored, one per indexing language, rather than a
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single multiple-bit (perhaps 1024 bit) signature.

� Indexing languages can capture arbitrary patterns, while signatures capture informa-

tion about words.

4 Examples

Documents de�ned in structured ways contain tags that delimit semantically interesting

segments of the text. Searches that are aware of such tags are more powerful than searches

based on content alone. For example, an occurrence of a phrase in a section heading, a name

in an author �eld of a reference, a name in a mathematical formula all need tag information

if they are to be separated from occurrences of the same string in other contexts.

Most documents have a well-de�ned structure. For example, it is natural to represent a

tagged document as a tree structure, in which chapter tags and their associated text are close
to the root of the tree, section heading tags and their text are below them, paragraphs still
lower, with sentences or perhaps even words at the leaves. It seems plausible that searches
on structure are more likely to involve patterns referring to tags at about the same level in
the tree (sections within chapters) than to tags at widely di�ering levels (sentences within

chapters). Thus interesting languages are those in which, for example, tags for high-level
structure have been mapped to one generic tag, while those for low-level structure have been
deleted entirely (recall that homomorphisms can erase, that is map terminals to the empty
string). Similarly, it might be of interest to preserve low-level tags but delete high-level
ones; or delete all tags enclosing special environments such as examples or mathematics.

This directs interest to regions of the document in which appropriate kinds of tags appear.

Example 1 Consider the following text string, divided across �ve processors

z }| {

a b c d

z }| {

< e f g

z }| {

> h i j

z }| {

f k l m

z }| {

n o g p

Let us suppose an indexing language that preserves the bracket structure of the angle brackets,
while removing the brackets structure of the curly braces (one might represent a chapter tag and
the other a math tag). So L1 is

L1 = x
�(< x

�

>)�x �

with homomorphism

h1(?) = x

h1(<) = <
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h1(>) = >

The precomputed transition sets for the text string relative to this language are:

z }| {

a b c d

z }| {

< e f g

z }| {

> h i j

z }| {

f k l m

z }| {

n o g p

no front back no no

where the labels are shorthand for transition sets that do not contain an instance of the pattern

(Type 2), or contain the front (Type 3) or back (Type 4) of a pattern. No segment contains the

whole pattern in this example.

Now consider a search during normal operation for the pattern

< [ ]�e[ ]� >

The image of the language generated by this pattern under homomorphism h1 is the language L1

and so we check the precomputed transition sets. We immediately conclude that the only place
in which this pattern may appear in the text string is in segments 2 and 3, which are searched

using the ordinary algorithm. The value of a in this case is 0:6.

Notice that this example resembles the use of zones [5].

Similarly, languages in which letters infrequent in English text have been coalesced to a
single letter could be chosen, since search patterns will tend not to include them.

Example 2 Consider the following text string, divided across six processors

z }| {

a b c d

z }| {

e f g h

z }| {

i j k l

z }| {

e t e a

z }| {

t e e t
z }| {

m n o p

An indexing language that preserves only common letters might be L2

L2 = (x �(e + t)x �)�

with homomorphism

h2(?) = x

h2(e) = e

h2(t) = t
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The precomputed transition sets for the text string relative to this language are:

z }| {

a b c d

z }| {

e f g h

z }| {

i j k l

z }| {

e t e a

z }| {

t e e t
z }| {

m n o p

no no no yes yes no

Now consider a search for the pattern

��

tet��

The image of the language generated by this pattern under homomorphism h2 is the language L2

and so we check the precomputed transition sets. The only segment in which this pattern may

appear in the text string is in segments 4 and 5, which are searched using the ordinary algorithm.

5 Conclusions

We have described an extension to indexing based on classes of languages, chosen to be ho-
momorphic images of the languages generated by common search patterns. Such languages
play the role of indexes with the added capability to search for patterns other than simple
strings in the text. In parallel implementations of search, text strings are likely to be seg-
mented across processors. The transition sets for each segment can be computed for each

of the indexing languages in advance and stored with the segment. When a search pattern
is presented, a homomorphism from it to one of the indexing languages is constructed if
possible. A constant parallel time test then selects those segments in which an instance
of the pattern cannot lie, with the expectation that in practice this will eliminate a large
proportion of the text string. The speed-up achieved is almost linear in the fraction of text
string segments eliminated. This technique makes it practical to use moderate parallelism in

string search. It is more expressive than signature �les because it allows patterns involving
both contents (words) and structure (tags) to form part of the search query.

The technique has been presented for linear strings, but it generalises immediately to

text stored as trees, in which regular expression search can also be carried out in logarithmic

parallel time [3].
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