
Polylogarithmic Parallel Parsing of P(k) Languages �

Technical Report 95-384

James P. Schmeiser y David T. Barnard z

Department of Computing and Information Science

Queen's University, Kingston, Canada

June 19, 1995

Abstract

The Bird-Meertens theory of lists and two theorems by Bird are used to develop associative operators for

parsing. The theorems guarantee the existence of an associative operator for computing a function if right and left
directed reductions meeting certain criteria are known that compute the same function. A new class of languages,

the P(k) languages, and their associated grammars are de�ned. An algorithm for parsing P(k) languages that

runs in O(log2 N) time using O(N) processors (where N is the size of the input) is described.
Keywords: parsing, parallel, Bird-Meertens formalism, associative operators, log N parsing

1 Introduction

A grammar is a series of rewrite rules that generate a language. Recognition is the problem of determining whether
a string is in the language generated by some grammar. Parsing is the problem of determining the series of grammar
rules that generates the given string. It is a necessary part of the compilation of programming languages and is
well understood in the sequential domain. However, success in adapting the usual sequential algorithms for parallel
computers has been limited. Parallel algorithms for parsing languages with restrictive characteristics that can be
exploited have succeeded in achieving polylogarithmic running time, but such languages tend to be too restrictive for
general use. Attempts have been made at developing parallel parsing algorithms for more general classes of languages
but these e�orts have resulted in classes of languages with restrictions that make it di�cult to develop appropriate
grammars. Often, there is no relation to known grammar classes and no clear indication of valid grammar constructs.
The algorithms are typically developed in an ad hoc manner.

Bird's theory of lists is used as a basis for developing associative operators that specify the parsing problem for a
new class of grammars. These associative operators are used as the basis for several parsing algorithms that require
feasible numbers of processors. For the P(k) class of languages de�ned in this paper, a polylogarithmic running time
is achieved. The P(k) class of languages is de�ned and a parallel algorithm for this class is presented that requires
a feasible number of processors (linear in the size of the input) and runs in polylogarithmic time. In addition, the
algorithm has a strong theoretical basis.

The next section introduces concepts that are used throughout the paper, including a description of relevant
portions of Bird's theory of lists. The third section describes the generation of a parsing machine that can parse in
both left-to-right and right-to-left manners and a parallel parsing algorithm using this machine is outlined. Section

4 discusses the computation of the associative operator used in the parallel parsing algorithm. Finally, a class of
grammars is described for which the parallel parsing algorithm computes the parse in polylogarithmic time using a
number of processors that is linear in the size of the input.

�This work was supported by the Natural Sciences and EngineeringResearch Council of Canada, the InformationTechnology Research
Centre of Ontario and Queen's University at Kingston

yJames Schmeiser is a developer in the IBM Canada Laboratory C/C++ compiler group.
zThe preparation of this paper was completed while the second author was on sabbatical at INRIA (Institute National de Recherche

en Informatique et en Automatique), Rocquencourt, France.

1

PARSING ALGORITHMS

Language Class Processors Required Time Required

Regular Languages[17, 9] O(N) O(log N)

Subset of Dyck Languages[15] O(N=log N) O(log N)

Arithmetic Expressions[6, 20] O(N) O(log2 N)

Arithmetic Expressions [1] O(N=log N) O(log N)

NQLL [3] O(N) O(log N)

Regular Right Part Languages[13] O(N=log N) O(log N)

LE(p,q) Languages [14] O(N=log N) O(log N)

General CFLs [16, 7] O(N8) O(log N)

RECOGNITION ALGORITHMS

Language Class Processors Required Time Required

Input Driven Languages [8] O(N=log N) O(log N)

Bracket Languages [8] O(N=log N) O(log N)

Hierarchical Language Speci�cations [21] O(N) O(log2 N)

Deterministic CFLs[10] O(N3) O(log N)

Deterministic CFLs[10] O(N2log N) O(log2 N)

Deterministic CFLs[5] O(N2) O(log N)

General CFLs [16, 7] O(N6) O(log N)

Table 1: Summary of Algorithm Requirements

2 Background

Table 2 summarises known results for parallel parsing and recognition algorithms. Polylogarithmic time recognition
and parsing algorithms using a feasible number of processors (i.e., O(N)) exist for only small subsets of deterministic
context free languages (CFLs). Characterising the class of languages accepted by these parallel parsing algorithms
can be di�cult. Membership in several classes is not described in terms of some theoretical property but instead on
whether the parsing technique will work on the language. Reading input in parallel is not considered; the input is
assumed to be present in memory in the form of tokens (i.e., lexical analysis has been performed). This is reasonable
since an algorithm for parsing regular languages in polylogarithmic time using a feasible number of processors is a
known result [9].

2.1 Terminology

Standard parsing terminology is used throughout and a background in sequential parsing techniques is assumed.
A grammar G is a 4-tuple G = (VT ; VN ; S;�) where VT and VN are the sets of terminal symbols and nonterminal
symbols, respectively. S 2 VN is the starting symbol of the grammar and � is the set of productions (grammar rules).
A grammar is said to be reduced if all symbols in the grammar generate some (possibly null) part of a terminal string

in the language, there are no rules of the form A ! A in � and there exists some derivation S
+
=) A for all A in

VN (see [22] for more information on reduced grammars). It is assumed that all grammars are reduced.
In general, terminal symbols in the grammar are speci�ed using lower-case letters. A symbol which can be either

a terminal or a nonterminal symbol is speci�ed using an upper-case letter. In situations where a symbol must be a
nonterminal and the context in which the symbol is used does not indicate this, it will be speci�ed. Greek letters
(except " and !) represent (possibly empty) strings of symbols which may consist of terminal, nonterminal or a
mixture of both types of symbols. " always represents the empty string and ! is reserved to represent the input
string. Subscripts on ! indicate the individual tokens of the input string. In general, a subscripted letter indicates
a di�erent symbol than the same letter with a di�erent subscript. Roman letters may be used to indicate speci�c
symbols within a string of symbols. For example A� indicates a string that must be at least one symbol in length,
the �rst of which may be a terminal or a nonterminal. Productions are shown in the form A ! � where A and
� are known as the left-hand side (lhs) and right-hand side (rhs) of the rule, respectively. A padding production,

2

It is assumed that all logarithms are base 2.

2.2 Deques

Since parsing in both left-to-right or right-to-left manners will be considered, deques are used by the algorithms
rather than stacks. A deque (double ended queue) is a list in which only the head and the tail are directly accessible;
essentially, it acts as a stack at both ends (see [12] for more general information on deques). Throughout the paper,
deques are described horizontally, in terms of the left and right end. A deque containing � is shown as [�]. There are
six operations that can be performed on a deque. We de�ne PUSHR, PUSHL, TOPR, TOPL, POPR, POPL (read
push right, push left, top right, top left, pop right, and pop left, respectively) and concatenation in the following
manner.

TOPR([�X1 : : :Xn]) = X1 : : :Xn

TOPL([X1 : : :Xn�]) = X1 : : :Xn

PUSHR(X1 : : :Xn; [�]) = [�X1 : : :Xn]

PUSHL(X1 : : :Xn; [�]) = [X1 : : :Xn�]

POPR(X1 : : :Xn; [�X1 : : :Xn]) = [�]

POPL(X1 : : :Xn; [X1 : : :Xn�]) = [�]

[�] ++ [�] = [��]

The functions are generally used in a pattern matching form and, in general, TOPR and TOPL may refer to more
than one element.

2.3 Bottom-up Parsing

LR(1) parsing is a left to right bottom-up parsing method using a push-down automaton [11]. A machine called
the characteristic �nite state machine (CFSM) is generated from the grammar and is encoded in tables used by a
standard parsing algorithm to simulate the operation of the machine. Symbols are scanned from the left to the right
and placed on a stack. When all of the symbols in the right hand side of a rule are on the stack, they are removed and
replaced with the nonterminal on the left hand side. This process continues until all of the input has been scanned
and only the starting nonterminal remains on the stack, or an error occurs.

An item is of the form [N ! �1 : : :�i � �i+1 : : : �j;x] and represents the partial recognition of N ! �1 : : :�j.
The symbols to the left of the dot (i.e., �1 : : :�i) have been recognised or scanned while those to the right have not.
�i+1 is called the desired symbol. The symbols to the right of the semi-colon are called lookahead and represent those
terminal symbols that can legally occur immediately after the rule. Each state has a basis consisting of basis items

which represent partially matched items and a closure consisting of closure items which represnet rules that can be
matched starting from this state. Basis items are indicated with a star (�) to the left of the item. An item which
has no desired symbols is a reduce item and represents the complete recognition of the rule. All other items are shift
items. There are transitions between the states representing the matching of a symbol. A transition is said to be a
basis transition if the symbol on which the transition is made is only the desired symbol of basis items; otherwise, it
is said to be a closure transition.

RL(1) parsing (Right-to-left with Left-most reductions using one symbol of lookahead) is the right to left analog
of LR(1) parsing. A CFSM is generated from the grammar and the algorithm operates in the same way except that
the symbols are scanned from the right to the left. Note that the rules are the same as in the LR(1) parse; however,
in general the order is di�erent.

2.4 Top-down Parsing

The LR(1) and RL(1) parsing algorithms can be modi�ed to produce the rules in the same order as the LL(1) and
RR(1) parsing algorithms [19]. The modi�cations to the standard algorithms are minimal. A rule list describing the
parse subtree below each symbol is built up whenever a reduction is performed. Note that the parse order produced
by an LR(1) parse is the same as that produced by an RR(1) parse. Throughout the rest of the paper, it is assumed

3

algorithms presented are directional and analagous algorithms in the opposite direction are assumed. It is further
assumed that the appropriate changes for producing the altered parse order are incorporated into such algorithms.

2.5 Parallel Architectures

The algorithms presented are designed for an SIMD (Single Instruction, Multiple Data stream) architecture. Each
processor in an SIMD computer has its own data stream but the processors all execute the same instruction on each
cycle. Processors can be prevented from performing any instruction through the use of masks. The instructions
can be quite complex, and may even include examining a table to determine the next instruction. This allows
the individual processors to e�ectively make di�erent decisions at the same time. SIMD computers are typically
massively parallel. It is assumed that the architecture is a CREW-PRAM architecture (Concurrent Read-Exclusive
Write, Parallel Random Access Machine) with shared memory. Several processors are allowed to read the same
memory location simultaneously, but only one processor may write to a speci�c memory location at a time.

2.6 Bird's Theory of Lists1

This section presents portions of Bird's theory of lists which are subsequently used to direct the search for a parallel
parsing algorithm. A pair of theorems guarantees that an associative operator must exist for any function on lists for
which left and right reductions are known. These theorems have applications in the area of parsing since recognition
and parsing can be seen as operations on lists. The theorems ensure the existence of an associative operator given
certain conditions and suggest characteristics of the operator due to type restrictions; however, they do not indicate
how to compute the operator.

Applicable portions of Bird's theory of lists are presented. This includes descriptions of left and right reducing
operators and the theorems that guarantee the existence of an associative operator given certain conditions. The
proofs were originally developed by Richard Bird and published in [2]. The application of these theorems to parsing
is then discussed.

2.6.1 Theory of Lists

A list is a �nite sequence of values of some speci�ed type, written as a comma-separated sequence enclosed in square
brackets. List concatenation is associative and is represented by the ++ operator.

The Bird-Meertens formalism de�nes a rich set of second-order functionals. One of the most useful is reduce,
written =. Informally, the e�ect of applying reduce by an operator to a list is

�= [a1; a2; :::; an] = a1 � a2 � :::� an

For operators which are not associative, it is essential to specify the direction of reduction { that is the order in which
the operators are applied. Given a (non-associative) binary operator �, the operator left reduce and the operator
right reduce can be de�ned informally as follows:

� !=e [a1; a2; :::; an] = ((e � a1)� a2) � :::� an

� =e [a1; a2; :::; an] = a1 � (a2 � :::� (an � e))

where e is the appropriate identity element. Another useful second-order functional is map which applies a function
element-wise to a list; in symbols

f � [x0; x1; : : : ; xn] = [fx0; fx1; : : : ; fxn]

For each function f : �! �, a homomorphism h from a list monoid (��;++; []) to a monoid (�;�; e) can be de�ned
by

h([]) = e

h([a]) = fa

h(x++y) = h(x)� h(y)

1Portions of this section were previously published (in a more complete form) in [2]. David Skillicorn was a co-author of [2] with the
authors of this paper.

4

One way to �nd associative operators that compute interesting functions is given by a theorem of Bird, which
guarantees that any function that can be computed both as a left reduction and as a right reduction can also
be computed as an associative reduction. This suggests that interesting parallel algorithms can be found when
left-to-right and right-to-left sequential algorithms are known.

Theorem 1 If � and
 are operators such that h = � !=e and h =
 =e then h is a homomorphism.

The following theorem (First Homomorphism Theorem [4]) shows that all homomorphisms can be expressed in a
canonical, and useful, way.

Theorem 2 Any homomorphism h from a list monoid to any other monoid can be expressed in the form

h = �= � (h [�])�

This theorem means that any homomorphism can be expressed as the composition of a reduction with a function
applied to all the singletons of the source list. Note that the right hand function really only does type coercion; the
map applies the parenthesised function to the individual element of the operand list. This theorem shows that any
homomorphism can be structured as a parallel algorithm with a logarithmic number of phases, although the total
time complexity depends on the complexity of the operation �.

2.6.3 Applications to Parsing

The theorems guarantee that given appropriate left and right reductions for some function, there exists a way to
compute the function using an associative operator. The �rst theorem states that if some function h is computed using
equivalent left and right reductions, then h is a homomorphism. The second theorem states that any homomorphism
can be expressed as a reduction using an associative operator. Some initialization function is applied to the singleton
values of the list and then a composition involving a reduction is carried out over these values. Initially, the function
is applied in parallel to each value in the list. Since the operator is associative, the reduction is accomplished in
O(log N) phases using O(N) processors. Every second processor combines with its neighbour in parallel, e�ectively
eliminating half of the remaining processors. This is then repeated on the resultant list, and so on. The actual time
required for the reduction depends on the time required for computing the associative operator.

Recognition and parsing can be considered reduction problems over a list of tokens. Assume that an algorithm for
parsing some language L in a left to right manner is known. This algorithm de�nes a left reduction. If an algorithm
for parsing L in a right to left manner that produces the same result is known (i.e., a right reduction that satis�es
the type constraints) then an associative operator for parsing L is guaranteed to exist. An algorithm for parsing L
using this associative operator runs in O(log N) phases. If the associative operator is computable in polylogarithmic
time, the parallel parsing algorithm runs in polylogarithmic time using O(N) processors.

The type restrictions of the �rst theorem require that the intermediate and �nal results in both directed reductions
be of the same type. Therefore, to �nd an associative operator for parsing some class of languages, one may start
with a known left to right parsing algorithm and then develop a right to left parsing algorithm which satis�es the
type restrictions. In some cases, the type of the intermediate and �nal results in the left reduction may not be
suitable for use in a right reduction. In such situations, it may be necessary to alter one or both of the algorithms
to meet the type restrictions of the �rst theorem. When these type constraints are satis�ed by the algorithms, the
second theorem guarantees the existence of an associative operator for parsing the language. Unfortunately, Bird's
theorem does not determine the associative operator. However, its type is speci�ed and this knowledge can often
provide signi�cant information about how to compute the operator.

The type of the intermediate result must take into account the order of the rules in the list of rules produced.
Although in both reductions a list of rules or rule numbers is output, the functions are not the same if the order of
the rule applications is di�erent. For the directed reductions to match, the order of the rule applications in both
must be the same.

This methodology of developing parallel parsing algorithms has proven useful. It has previously been successfully
applied to several known parsing algorithms, namely those for parsing regular languages, Dyck languages and for
recognising simple precedence languages[2].

5

LR(1) parsing methods are used for a left to right reduction and a modi�ed RL(1) parsing algorithm is used to get a
directed reduction from right to left so the class of languages considered is limited to LR(1)\RL(1). Both reductions
are described using a �nite state machine generated from the grammar. The two reductions satisfy the conditions
of Bird's theorems and an associative operator is guaranteed to exist. The associative operator for LR(1)\RL(1) is
described.

3.1 PCFSM

Bottom-up parsing algorithms typically simulate the operation of a characteristic �nite state machine that is gener-
ated from the grammar. A PCFSM (Parallel Characteristic Finite State Machine) is generated from the grammar
and Bird's theorems are shown to be applicable to the computations carried out by the PCFSM. The PCFSM is
de�ned such that it can parse the input string in a left-to-right or right-to-left manner and can represent all the
partial parses of any input substring.

The PCFSM consists of a set of states, each state containing a basis and left and right closures that indicate the
rules that can be recognised to the left and to the right from the current parsing position, respectively. Left and
right transitions indicate transitions to the left and to the right, respectively.

3.1.1 Double Dotted Items

Since recognition may proceed in either direction in the PCFSM, double dotted items are used to specify the parse state
information. A double dotted item contains two dots and has contextual information in both directions associated
with it. The double dotted item [A! X;� � � � ;Y] represents a partial recognition of the rule A! �� in which
� has been recognised. �, the left frontier or left desired symbols, and , the right frontier or right desired symbols, are
those symbols to the left and right, respectively, that have not been recognised. X;Y 2 VT are the sets of terminal
symbols that can immediately precede or follow the rule, respectively. The last symbol of � and the �rst symbol
of are called the left desired symbol and the right desired symbol, respectively. The left and right designators are
omitted when it will not cause confusion.

An item in which � = " and = " is called a reduce item, otherwise it is a shift item. An item is said to be in
a state if it is in either closure or in the basis. A non-basis item in the left or right closure is called a left or right
closure item, respectively. De�ne CLOSUREL(S), CLOSURER(S) and BASIS(S) to be the left closure of some
state S, the right closure of S and the basis of S, respectively.

3.1.2 Construction of a State

Two closures are generated from the basis items. Consider a state which contains [D ! Y ;�A � � �R�;X]. Assuming

that the grammar contains the rules R ! � and A ! ,
h
R! fmjY �A�

�

=) : : :mg; � � �; fnj�X
�

=) n : : :g
i
andh

fmjY �
�

=) : : :mg; � �; fnj�R�X
�

=) n : : :g A
i
are added to the right and left closures, respectively. These

items may, in turn, cause items to be added to the closure sets, the process continuing until no more can be added.

3.1.3 Starting States

The construction of the PCFSM begins with a starting state 0 containing two items, [S0 !; �� ,! S -;] and
[; ,! S - ��; S0], allowing the machine to parse in either directions. The closure operation is performed and
directed transitions are made, creating new states if they do not already exist.

The PCFSM cannot yet describe a parse that starts in the middle of the input string since all basis items have
at least one empty frontier. There may be unmatched symbols on both frontiers when a processor starts parsing in
the middle of the input. The machine is expanded so that a processor can start parsing in either direction from an
arbitrary point in the input by adding parallel starting states that represent states that could occur at either end of
the deque. They are represented as having a negative state number.

The basis set of a parallel starting state is constructed from each shift state by advancing the �rst dot in each
basis item forward until it is adjacent to the second dot. The closure operation is performed in both directions, and
transitions are made, possibly creating more states. These new states may in turn also spawn more starting states

6

�nite number of rule and context combinations.
It is possible for inadequate states to exist in the PCFSM even though the grammar used to generate a PCFSM

is in LR(1)\RL(1). The bi-directional nature of the starting states results in inadequate states in which there are
reduce/reduce conicts or shift/reduce conicts with the items having non-empty frontiers in the other directions.
Reduction on such a state fails. Upon attempting a reduction it is known that the parsing situation is arti�cial and

could not occur in a sequential parse so the con�guration is ignored. The state transition functions
a
�! and

b
 � for

the PCFSM are de�ned as a transition to the right on a and a transition to the left on b, respectively. Transitions
in shift-reduce situations are unde�ned.

3.1.4 Redundant States

The PCFSM is actually a superset of the set of states necessary for parallel parsing. It will compute representations
for the partial parse in both directions; however, only one of these is necessary since the two compute the same
result. The left-to-right direction is chosen to remain as the base of the parse as it is more familiar. Therefore, the
basis set of state 0 consists of only � [S0 !; �� ,! S -;]. In addition, the direction in which a state is reached is
taken into account when computing the closure functions and transitions from the state. If a state is only reached
in one direction, only the corresponding closure set is computed and transitions are only made in this direction.

3.2 Associative Operator �

Parsing in either direction using the complete PCFSM can be performed using adaptations of standard bottom-up
parsing algorithms. However, the obvious adaptations do not, in general, produce matching partial results since
di�erent parse orders are produced. The LR(1) parse order corresponds to a top-down parse order in a right-to-
left parse so the right-to-left reduction is de�ned such that a top-down parse order is produced (see [18, 19] for
more information on producing a top-down parse order from bottom-up parsing algorithms). Bird's theorems are
applicable and an associative operator for parsing these languages is guaranteed to exist2.

Corollary 3 An associative operator � exists for parsing languages in LR(1) \RL(1).

3.3 Parsing Algorithm

The associative operator operates on a pair of sets of deques. Each deque, called a con�guration, represents a
possible partial parse tree and spans the portion of the input that it describes and comprises those symbols on which
transitions have been made. A set of con�gurations represents all of the possible partial parse trees for the spanned
input. An attempt is made to combine each con�guration from one set with each con�guration from the other. Only
those describing similar parsing situations will combine to form a new set of con�gurations representing all possible
partial parse trees for the increased input substring.

3.4 GF(k) Grammars

The number of con�gurations within a set can grow to a size that is proportional to the size of the input. Consider
the grammar given in Figure 1. The problem centres on the local ambiguities inherent in the symbol x. It is used as
both an opening and a closing bracketting symbol and without enough context to determine the function of each x,
all possibilities must be represented. Consider the input string \a a x x x x b b" in which the �rst two x's are closing
bracketting symbols while the last two are opening bracket symbols. However, if the con�guration only spans the
four x's, there are �ve di�erent possible con�gurations. Each x added to the symbols spanned by the set will result
in another con�guration being added to the set. Thus, the number of con�gurations in a set is O(N).

The inherent restrictions in the LR(1)\RL(1) class of languages limit the situations in which such growth in the

number of con�gurations can occur. A symbolM is said to be middle recursive when M
�

=) A�M�B. � and � are
called opening and closing bracket symbols, respectively. Note that the middle recursive symbol can be in the form
of several symbols which produce the same e�ect. It can be shown that growth only occurs when the opening and
closing bracket symbols of middle recursive symbols are similar.

2Directed reductions that satisfy the conditions of Bird's theorems are given in[18].

7

0. S0 ! A -

1. A ! Y Z

2. Y ! a Y x
3. j "

4. Z ! x Z b
5. j "

Figure 1: Example Problem Grammar

De�ne the following relation on the symbols of the grammar.

FRONTk(�) =
n
� j � 2 V �

T ; �
�

=) �; j�j = k
o

[
n
� j � 2 V �

T ; �
�

=) �; j�j < k
o

FRONTk(�) is a typical de�nition of �rst sets on strings and is the set of strings of tokens of length k that are
left-most produced by �. BACKk(�) is de�ned to be the analogous right to left function and is the set of strings of
tokens of length k that are right-most produced by �.

To detect possible growth, each pair (A;B) of middle recursive symbols is examined. There is a potential growth
situation when X) �1) � � �) �n) �A�B , A =2 �i; 1 � i � n. This avoids misinterpreting closing bracket
symbols as the non-closing bracket symbols �. There is no potential for growth with A and B when the left-most
k closing symbols are di�erent from the left-most k symbols of �, therefore the CLOSEk function captures the
left-most k symbols of the closing symbols of A is de�ned.

CLOSEk(A) =

8>>>>>>>><
>>>>>>>>:
 j

 = FRONTk(�n : : :�1);

jj = k;

A) �1X1�1

)� �(n�1)X(n�1)�(n�1)

) �nA�n;

9>>>>>>>>=
>>>>>>>>;

These strings are compared with FRONTk(�B). If there is no symbolX in the grammar that results in a non-empty
intersection between CLOSEk(A) and FRONTk(�B), there can be no growth because of A and B. De�ne OPEN
to be the analogous test in the other direction.

A grammar in LR(1)\RL(1) is GF(k) (Growth Free within k symbols) and cannot experience growth in the number
of con�gurations when the following holds for each pair of middle recursive symbols (A;B) in the grammar.

8X j X) �1) � � �) �n) �A�B ;

A =2 �i; B =2 �i; 1 � i � n;
((CLOSEk(A) \ FRONTk(�B) = ')_

(OPENk(B) \BACKk(A�) = '))

It is easily seen that a grammar that is GF(k) is also GF(k + 1); however, a grammar that is GF(k + 1) is not
necessarily GF(k). A GF(k) language is a language generated by a GF(k) grammar.

3.5 Parsing Algorithm

The parallel parsing algorithm, shown in Figure 2, works in the following manner. End markers are added to
the input string and a processor is assigned to each token !i. In parallel, the processors compute the initial set

8

for i 0 to N do in parallel
if i = 0
then P [i] h ,!

else if i = N

then P [i] h -

else P [i] h!i
parallel reduce([P0 : : :PN] ;�)
return ([([] ; 0; L)] 2 P [0])

Figure 2: Parsing Algorithm

of con�gurations for the token. The algorithm then carries out the well known logarithmic combining process,
represented by the call to parallel reduce. , called join,is de�ned to handle the joining of a pair of con�gurations.
The associative operator, �, operates on two sets of con�gurations and applies on all the pairs of con�gurations
consisting of a con�guration from each set.

The time required by the algorithm is O(X � log N) where X is the time required to compute �.

3.6 Initialisation Function

The initialisation function h operates on singleton tokens and creates the initial sets of con�gurations. It is based on
two operators, � and
, which are the operators for the left-to-right and right-to-left directed reductions, respectively.
They represent all of the actions that an LR(1) or RL(1) parser3 (respectively) would perform on receiving the next
token (i.e., all actions up to, and including, shifting the token).

h!i = f[([] ; S; [])] jS is a starting stateg � !i

[!i
 f[([] ; S; [])] jS is a starting stateg

4 Computing �

The computation of � is signi�cant in the timing of the parsing algorithm. Initialisation takes O(log N) time and the
parallel combining process will result in O(log N) parallel sets of computations of �. The number of con�gurations
in a set cannot grow because of the GF(k) restriction so the algorithm requires O(X log N) time, where X is the
time required to compute �. There are two steps in computing �. First, delayed reductions must be performed.
Reductions are delayed when a con�guration spans an entire rule but the lookahead symbol required for the reduction
is spanned by the neighbouring con�guration. After computing the delayed reductions, the con�gurations are joined.
Therefore, the time required to compute � is that needed to compute the delayed reductions plus that needed to
join the con�gurations.

The way that two con�gurations combine depends on the shapes of the parse trees described by the con�gurations.
A con�guration in which the starting state is the left-most state in the deque is called a right treewhile a con�guration
with the starting state at the right end is called a left tree. A con�guration with the starting state in the middle of
the deque is called a tent. A tent has a left and right side where a side is that portion of the deque that is between
the starting state and the respective edge. The starting state in a tent is considered to be in both sides e�ectively
making a tent a left and right tree that share a starting state.

When applying the associative operator, the sets of con�gurations being combined span adjacent substrings of
the input. Those con�gurations from the set to the left are referred to as left con�gurations while those from the
right are called right con�gurations.

There are several signi�cant entries in the deque. De�ne SS(D) to be a function which returns the starting state
of a con�guration. The left edge and right edge of a con�guration are the states at the the respective end of the deque
describing the tree. The right edge of a left con�guration and the left edge of a right con�guration are called inner

edges. The left edge symbol and the right edge symbol are the left-most and right-most symbols, respectively, of the

3Recall that the RL(1) parsing algorithm is modi�ed to produce a top-down parse order

9

con�gurations. Let D = �SS(D)� be a deque that spans !i : : : !j and de�ne LE(D) = �SS(D), RE(D) = SS(D)�,
LES(D) = !i, and RES(D) = !j , read left-edge of D, right-edge of D, left-edge-symbol of D and right-edge-symbol

of D, respectively.

4.1 Delayed Reductions

A con�guration may span all the symbols of a rule but reductions are delayed since the lookahead needed is in
a neighbouring con�guration. The �rst step in joining two con�gurations is resolving these delayed reductions,
including any delayed null reductions in the left set. The lookahead symbol for these reductions is the left-edge
symbol of the con�gurations in the right set. There may also be delayed reductions in the right con�guration.
However, reducing delayed null reductions in the right con�guration will cause a duplication of rule applications.
Consider the situation where a null reduction is expected on the inner edge of a con�guration. Reductions are
performed on the left con�guration and the null reduction is performed among these reductions. The null production
is also delayed on the left edge of the right con�guration. If all delayed reductions were performed, this reduction
would be performed twice. To avoid this, as many reductions in the right con�guration are performed until a null
production is indicated. A con�guration is removed from the set if it does note have su�cient depth to perform a
chain of reductions.

De�ne two operators *R (C; t) and *L (C; t) which operate on a con�guration and a lookahead symbol and
compute delayed reductions in the left and right con�gurations, respectively. *L is de�ned such that the production
reduced is not a null production.

4.2 Algorithm for Reductions

The �rst step in joining two con�gurations is to perform reductions that are delayed because of unavailable lookahead.
Computing the delayed reductions in polylogarithmic time is accomplished in parallel by viewing the reductions as
chains to be linked together.

All delayed reductions, including those associated with null productions, are recognised in the left con�guration
while only those reductions up to, but not including, the �rst null production are recognised in the right con�guration.
Similar methods are used in both situations but the discussion will center on the method for recognising all delayed
reductions, including those associated with null productions.

The algorithm for computing the delayed reductions in O(log N) time and the data required are shown in Figure 4
and Figure 3, respectively. The algorithm determines which entries are to be popped from the deque and the rules
that are applied. It is assumed that concatenation of strings is performed in constant time across the entire string
since O(N) processors are available. As well, it is assumed for the sake of clarity that the table entries that the
initial chains are read from do not have entries for states that have inadequacies. This will result in such reductions
failing, which is the appropriate action.

The elements in the various data structures used by the algorithm are related to the states on the right side of
the deque. A reduction cannot extend past the starting state of the deque so the starting state, for the purposes of
the algorithm, is considered to be the left-most state in the deque. The values in the arrays at index i refer to the
state at position i, with the states in the deque being numbered from right to left. Therefore, the top right state of
the deque is numbered 0 while the starting state is numbered N � 1, there being N states being considered. This
reverse ordering of the states was chosen to simplify the description of the algorithm.

The values in the array CHAIN describe the chains of reductions and there are two di�erent data structures

that can exist within CHAIN [i]. The �rst, a triple (P; d;Q), represents an incomplete chain of reductions, starting
at state i and extending to the left to state d. This chain is expecting some symbol Q and produces some symbol
P . If i = 0 (i.e., it is the top right state), Q is ", otherwise Q is a nonterminal symbol. P is always a nonterminal
symbol. The triple is interpretted as meaning that state i has a basis item that has Q� for right desired symbols.
�

�

=) " with the lookahead symbol and the reductions to the right of this state must reduce to Q for this chain to
be valid. Consider Figure 5 which represents the chain of reductions (P; d;Q). The dotted portion represents several
repetitions. The chain is made of several links, the link at the top representing the left end of the chain. It indicates
that if Q is produced by the reductions that occur lower in the con�guration (to the right in the deque), �i will
produce " with the lookahead symbol. This will result in Ai, which is the expected symbol of the next link. The
symbols in �(i�1) will produce null, and the process repeats, until the end of the chain is reached. At the end, state

10

TC[S; t] =

(
f(P; j��j; ")g if [P ! w;� � � � ; t] 2 BASIS(S);

�

=) "

f(0; ")g if [P ! p;� � � � ; q] 2 BASIS(S);
�

=) t�

TR[S; t] =

8<
:

[� R] if [N ! w; �� � ; t] 2 BASIS(S);

�

=) " using rules �; N ! � is rule R

" otherwise

MC[S; t] =

�
(P; j��j; Q) j

[P ! w;� � � � ; t] 2 BASIS(S);

�

=) Q�
�

=) Q; Q 2 VN

�

MR[S;Q] =

8>><
>>:

[�� R] if [N ! p; �� �A�; q] 2 BASIS(S);

A
�

=) Q� using rules �; �
�

=) " using rules �;

�
�

=) " using rules ; N ! �A� is rule R

" otherwise

EC[S; t] =
n
Q j [P ! w;� � � � ; v] 2 S ^ (

�

=) Q� t�
�

=) Q t�) ^ (Q 2 VN)
o

ER[S;Q] =

8>><
>>:

[��] if [N ! p;� � � �A�; q] 2 BASIS(S);

A
�

=) B�t�; �
�

=) " using rules ;

B
�

=) Q� using rules �; �
�

=) " using rules �

" otherwise

Produces[S;Q] =

8<
:

A if [N ! p;� � � �B; q] 2 BASIS(S);

B
�

=) A�
�

=) Q�

' otherwise

Figure 3: De�nition of Tables for reduce Algorithm

d, the symbol produced is P . This chain could link with another incomplete chain at either end or with a chain
ending in a shift at the left end, which is the other data structure that can exist in the set in CHAIN [i].

A chain ending in a shift is represented by a pair representing the left end of a chain of reductions. After
performing the reductions in the chain, making a transition on the nonterminal symbol produced by the reductions
and making a series of null reductions, the lookahead becomes the desired symbol. This situation is represented by
a pair (d;Q) where d is the left end of the chain. This state has an item with Q for right desired symbols such that

�

=) �t�
�

=) t�. The chain of reductions has reached its left end since after these reductions are performed, the
lookahead symbol is the right desired symbol and would be shifted onto the deque. A chain represented by a pair
is represented in Figure 6. Again, the dotted portion represents several repititions. The end of the chain doesn't
produce a nonterminal; instead, some (possibly 0) number of reductions are performed and then the lookahead
symbol is t, terminating the chain of reductions.

The value in LINK[i] is non-" only when state i is a reduce state in the chain of reductions that has the inner
top state as its right end. LINK[i] is the symbol that is the desired nonterminal in the item that forms a link in the
chain.

There may be several chains originating from any state. These chains represent possible reductions but there can
only only be one chain originating from the inner top state. If there were more than one chain, this would indicate a
reduce-reduce conict in the grammar. Since the grammar is LR(1), this is impossible. This lone chain is extended
to the left and the left extreme is found. Only those i involved in this chain have non-" values for LINK[i]. These
values in LINK indicate the nonterminal produced at each stage in the chain which is su�cient to determine the
rules in the reduction chain. After the transition on the symbol, any remaining desired symbols in the item must be
nullable so the nonterminal must determine the rule that is recognised for the grammar to be LR(1).

Null reductions are only performed on the inner half of the left deque. This avoids performing any delayed
null reductions in both con�gurations. The algorithm for delayed reductions without nullable reductions functions
in a similar manner except that when the chains are initially set up, chains are only created for those states that
have a single nonterminal expected; no null reductions following the expected nonterminal are allowed. As well, the
computation of the �nal rule list di�ers in that it is the rules associated with each of the symbols in a rule followed

11

reduce(D[N � 1 : : :0]; N; LookAhead;NewDeque; Size)

for i 0 to N � 1 do in parallel
if i = 0
then CHAIN [i] TC[D[i]; LookAhead]
else mid MC[D[i]; LookAhead]

C1 f(P; d+ i; Q) j (P; d;Q) 2 midg
C2 f(i; Q) j Q 2 EC[D[i]; LookAhead]g
CHAIN [i] C1 [C2

for i 0 to N � 1 do in parallel
LINK[i] "

if CHAIN [0] = '

then for i 0 to N � 1 do in parallel
NewDeque[i] D[i]

Size N

else for j 1 to dlog Ne
for i 0 to N � 1 do in parallel

NC[i] '

for (P; d;Q) 2 CHAIN [i] do
if d < N

then if (A; x; P) 2 CHAIN [d]
then NC[i] NC[i][f(A; x;Q)g

if LINK[i] = Q

then LINK[d] P

if (B;P) 2 CHAIN [d]
then NC[i] NC[i][f(B;Q)g

if i = 0
then LINK[d] P

NC[i] f(S;Q)j(S;Q) 2 CHAIN [i]g
for i 0 to N � 1 do in parallel

CHAIN [i] NC[i]
if CHAIN [0] = (P; i;Q)
then Size �1
else (S; P) CHAIN [0]

for i 0 to N � 1 do in parallel
if i = 0
then Rules[i] TR[D[i]; LookAhead]
else if i = S

then Rules[i] ER[D[i]; Q]
else if LINK[i] 6= "

then Rules[i] MR[D[i]; LINK[i]]
else Rules[i] "

R D[S]:right ++ � � �++D[1]:right
R R ++Rules[0] ++ � � �++Rules[S]
D[S]:right R

T (";D[S]
Produces[S;P]
�! ; ")

TEMP PUSHR(T;D[N; : : : ; S � 1])
NewDeque POPR(TEMP � LookAhead)
Size SIZE(NewDeque)

Figure 4: Algorithm for Delayed Reductions

12

�i Q �i
�

=) "

�(i�1) Ai �(i�1)
�

=) "

�1 A2 �1
�

=) "

A1
�

=) "

P

Figure 5: Chain Represented by Triple

Q �
�

=) "

Ai �i
�

=) "

A2 �2
�

=) "

A1 �1
�

=) "

P �
�

=) " t �

Figure 6: Chain Represented by Pair

by the reductions on the completion of that rule. This is repeated for the next link and so on, resulting in the proper
parse order.

Consider the grammar and relevent PCFSM states in Figure 7. The deque starting in state 0 and making
transitions on ,! f � f is the following.

[([] ; 0; [])([] ; 1; [7])([] ; 4; [])([] ; 10; [])([] ; 15; [])]

A trace of the e�ects of having - as the lookahead symbol is shown in Figure 8. Recall that the deque is numbered
from right to left. Figure 8 shows the computation of CHAIN and LINK. After these values are computed, the
production lists for the recognised rules are computed. The values read from the tables for Rules are as follows.

4 3 2 1 0

[] [3; 1] [4] [6; 5] [7]

These are used to build up the rule list that is associated with E, the nonterminal produced by the reduction. Recall
that the values in Rules are concatenated in numerical order which is from the right to the left.

[7] ++ [] ++ [] ++ [] ++ [7] ++ [6; 5] ++ [4] ++ [3; 1] ++ []

 - is then scanned and popped from the deque resulting in no change as there are no delayed empty reductions after
the chain and reductions are complete resulting in the following deque.

[([] ; 0; [])([] ; 1; [7; 7; 6; 5;4; 3; 1])([] ; 2; [])]

13

0. S0 ! E -

1. E ! T Ts

2. Ts ! + T Ts
3. j "

4. T ! F Fs

5. FS ! * F Fs
6. j "

7. F ! f

STATE (ITEM)

0 � [S0 !; �� ,! E -;] ,!) 1

1 � [S0 !; � ,! � E -; S0] E) 2
[E ! ,!; � � T Ts; -] T) 3
[T ! ,!; � � F Fs; - +] F) 4
[F ! ,!; � � f ; - + �] f) 5

4 � [T ! ,!; � F � Fs; - + T] Fs) 9
[Fs! f ; � � � F Fs; - +] �) 10
[Fs! f ; ��; - +]

10 � [Fs! f ; � � � F Fs; - + Fs] F) 14
[F ! �; � � f ; - + �] f) 15

15 � [F ! �; � f�; - + � F]

Figure 7: Example Grammar and Relevant States From PCFSM

chain LINK

j 4 3 2 1 0 4 3 2 1 0

initialisation ' (3; E) (T; 3; F s) (Fs; 2; F) (F; 1; ") " " " " "

(3; T)
(3; F)

1 ' (3; E) (3; F s) (T; 3; F) (Fs; 2; ") " " " F "

(3; T)
(3; F)

2 ' (3; E) (3; F s) (3; F) (3; F s) " T Fs F "

(3; T)
(3; F)

3 ' (3; E) (3; F s) (3; F) (3; F s) " T Fs F "

(3; T)
(3; F)

Figure 8: Computation of CHAIN and LINK

4.3 Joining Con�gurations

The joining of two con�gurations is accomplished using . Delayed reductions are resolved and is applied to all
possible combinations of con�gurations from the left and right sets.

L �R = fA BgwhereA 2 f*R (M;LES(N))g ;

B 2 f*L (N;RES(M))g ;

M 2 L;N 2 R

The de�nition of is in Figure 9. Choice (1) is a special case that checks for the �nal combining of con�gurations.

Choices (2) and (3) result from recursive calls and are discussed with choice (7). Choices (4) and (5) also express
base cases for the recursion. There is assumed to be no overlap with these choices and choices (2) through (6). As
well, it is assumed that choices (2) and (3) take precedence over choices (4) and (5), respectively. Choice (6) is a
special case where both con�gurations are outside trees.

Choice (4) is used when the left con�guration is a left tree4. The starting state of the left con�guration represents
starting to parse in the same position as the inner edge of the right con�guration. The transitions to the left from the

4For the sake of brevity, many de�nitions of functions, such as left tree, are omitted. They are presented in detail in [18].

14

A B =

8>><
>>:

([] ; 0; �++ [0]) if (LE(A) = SS(A) = RE(A) ^B spans ,! S -)
_(A spans ,! S - ^LE(B) = SS(B) = RE(B)
_(A spans ,! S ^B spans -)
where S is the starting nonterminal of the

grammar and � is associated with S

(1)

B if LE(A) = SS(A) = RE(A);
[N ! p;� � ��; q] 2 BASIS(RE(A))
� [N ! p;� � � � ; q] 2 BASIS(LE(B))

(2)

A if LE(B) = SS(B) = RE(B);
[N ! p;� � � � ; q] 2 BASIS(RE(A))
� [N ! p;�� � �; q] 2 BASIS(LE(B))

(3)

left tree(A;B) if [N ! p;� � ��; q] 2 BASIS(RE(A))
� [N ! p;� � � � ; q] 2 BASIS(LE(B))

(4)

right tree(A;B) if [N ! p;� � � � ; q] 2 BASIS(RE(A))
� [N ! p;�� � �; q] 2 BASIS(LE(B))

(5)

A0 ++B0 if [N ! p;� � ��; q] 2 BASIS(RE(A))
� [N ! p;� � ��; q] 2 BASIS(LE(B));

B0 = POPL(([] ; SS; �); B);
A0 = PUSHR((�; SS; �); POPR((�; SS; []); A))

(6)

join(A;B;N; j�j; j�j; R) if 9 [N ! p; �� � �; q] 2 BASIS(RE(A))
where [p;� � ��; q N] 2 BASIS(LE(B));
N ! �� is production R

(7)

Figure 9: Joining Con�gurations

starting state in A are transferred to the right side of B by making appropriate transitions on the symbols spanned
by the subtree. The number of symbols spanned is bounded by some constant based on the grammar so this is
accomplished in constant time. Case (5) (the right con�guration is a right tree) is the analogous adding of B to A.

Case (6) handles the case when the left con�guration is a left tree and the right con�guration is a right tree, both
starting states are the same and the two combine to form a tent. The two deques are joined by removing the starting
state from one of the deques and joining the two together.

When neither inside edge is a starting state, the inside halves of the con�gurations are joined and then the outside
halves of the two con�gurations are added. For the con�gurations to join, the starting states must represent di�erent
portions of a similar parsing situation.

Consider a series of transitions on the inner half of a con�guration starting from the starting state. A closure
transition indicates that the con�guration does not comprise all of the symbols that constitute the right hand side
of the basis desired symbol. The rest of this half of the con�guration is expanding the desired symbol. The inside
half of the other con�guration must also be expanding the same desired symbol since the two con�gurations are
neighbours. In e�ect, there is a series of partially recognised rules in both con�gurations. The desired symbols of
the states in the left con�guration are the recognised symbols of the right con�guration and vice versa.

The joining of the two con�gurations can be pictured as a zipper. The inner-most states join in the recognition of
a rule, producing a nonterminal symbol. A transition is made on this symbol by one of the con�gurations, producing
a new set of inner-most states which are then joined, and the process repeats. Like a zipper closing, the rules are
brought together one by one until the two con�gurations are joined. Choice (7) is recursive and produces this e�ect.

The inner-most states of the two con�gurations will not, in general, contain the same items. However, if the two
con�gurations can combine, there is an intersection of at least one basis item between the two states. There is only

15

the con�gurations do not combine. The process of joining the inner halves fails when the deques do not have enough
depth to perform a reduction.

There are three cases that must be handled in the de�nition of join, distinguished by the completeness of the
inner-most transitions of the con�gurations. Therefore, the following functions are de�ned. A complete(A;X;L;A0)
returns TRUE if X states can be popped from the right side of the deque before encountering the starting state and
returns FALSE otherwise. When true, L is set to the ordered list of pairs, each pair consisting of the symbol on
which a transition was made and the rules associated with each state that is removed from the deque. When false,
L is set to the longest list of pairs before the starting state is encountered. In both cases, A0 is set to the remaining
deque. B complete is analogous to A complete and removes states from the left side of the deque.

join, shown in Figure 10, has several options. In the �rst choice of join, the inner states span the symbols
desired by the inner state of the other deque. A combined production list is computed and join1 is called to push
the nonterminal onto one of the two deques. The nonterminal may cause a chain of reductions which are performed
by join1 (also shown in Figure 10). Note that join1 recursively calls itself and that the call to A complete is used
to remove the recognised rule from the list. After no more reductions can be performed, is recursively called to
complete the joining of the deques.

In the second choice of join, the left con�guration is incomplete and the right con�guration is complete. The
desired symbols are transferred from the right con�guration to the left con�guration and appropriate adjustments
to the production lists of the right deque are made. Finally, the resulting con�gurations are joined using . The
�nal choice is similar except that the states are removed from the left deque and transitions are made in the right
deque. Again, a recursive call is made to complete the joining of the two con�gurations. The call to join may have
removed all of the elements from one deque, leaving a deque with just the starting state and spanning no symbols.
When this happens, the recursive call of results in case (2) or (3). In both of these cases, the starting state is
compared with the inner edge of the other con�guration to ensure that the two con�gurations join.

4.4 LL(1)\RL(1)

The number of con�gurations cannot grow because of the GF(k) restriction and delayed reductions are computed in
O(log N). The last step is to develop a polylogarithmic time algorithm for joining con�gurations. The outer halves
join in constant time but a polylogarithmic time algorithm is needed for joining the inside halves of the deques.
This is done by limiting the languages considered to LL(1)\RL(1). It can be shown that every LL(1) grammar is
also an LR(1) grammar and properties of the PCFSM that are guaranteed by the LL(1) nature of the grammar are
presented. Finally, an O(log N) algorithm for joining the insides of the deque is presented.

LL(1) grammars are normally parsed from left to right in a top-down manner. This is not a necessary requirement
as any LL(1) grammar is also an LR(1) grammar and can be parsed in a bottom-up fashion. A PCFSM must exist
for any LL(1) language and the associative operator for LR(1)\RL(1) grammars also parses those languages in
LL(1)\RL(1). The added structure imposed by the top-down nature of the LL(1) languages is exploited to achieve
joining the inside halves of the con�gurations in O(log N) time. Due to their top-down nature, the LL(1) languages
give the PCFSM certain characteristics which are used to achieve an O(log N) algorithm for joining con�gurations.
These are presented now so that they can be used in the algorithm for joining the inner halves of con�gurations.

Recall that the generation of the PCFSM begins with the generation of the PCFSM with only one basis item
in the initial state. Since there are no left recursive symbols, there can only be one basis item in each state in the
PCFSM. States with multiple basis items are introduced by transitions to the left on right recursive symbols. All
states in the PCFSM, even those states with multiple basis items retain certain characteristics due to the LL(1)
nature of the grammar and the generation of the PCFSM.

Lemma 4 The states of a PCFSM for a grammar that is LL(1) have the following characteristics.

(1) A transition to the right is either a basis or a closure transition.

(2) For every string S of right desired symbols of basis items, every shorter string of right desired symbols

of items in the same basis are pre�xes of S.

(3) All basis items have the same right desired symbol or have no right desired symbols.

16

join(A;B;N;
LA;LB;R)

=

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

D if A complete(A;LA; [(S1; �1) : : : (SLA; �LA)] ; A
0) = TRUE;

B complete(B;LB; [(T1; �1) : : : (TLB ; �LB)] ; B
0) = TRUE;

 = �1 ++ � � �++�LA ++�1 ++ � � �++�LB ++ [R] ;
D = join1(A0; B0; N;)

(1)

D if A complete(A;LA; [(SM ; �M) : : : (SLA; �LA)] ; A
0) = FALSE;

B complete(B;LB;�;�) = TRUE;

B0 = POPL(([] ;W; �); B);

Vi =
Si:::SLA
 � W;

B00 = PUSHL(([] ; VM ; [])(�M ; V(M+1); []) : : :
(�(LA�1); VLA; [])(�LA;W; �); B

0);
D = A0 B00

(2)

D if B complete(B;LB; [(T1; �1) : : : (TLB ; �LB)] ; B
0) = FALSE;

A0 = POPR((�; S; []); A);

Vi = S
T:::Ti
�! ;

A00 = PUSHR((�; S; �1)([] ; V1; �2) : : :
([] ; V(M�1); �M)([] ; VM ; []); A

0);
D = A00 B0

(3)

' otherwise (4)

join1(A;B;N;) =

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

join1(A000; B;M;L) if A0 = POPR((�; S; []); A)

A00 = PUSHR((�; S;)([] ; S
N
�!; []); A0);

reduce(A00; B;M;�) = TRUE;

M ! � is rule R;

A complete(A00; B; j�j; [(T1; �1) : : : (TN ; �N)] ; A
000);

L = �1 ++ � � �++�N ++ [R]

A00 B if A0 = POPR((�; S; []); A)

A00 = PUSHR((�; S;)([] ; S
N
�!; []); A0);

reduce(A00; B;�;�) = FALSE

A B00 if TOPR(A)
N
�!;=

B0 = POPL(([] ; S; �); B);

B00 = PUSHL(([] ;
N
 � S; [])(; S; �); B0)

reduce(A;B;M;�) =

8>><
>>:

TRUE if [M ! p; ���; q] 2 BASIS(TOPR (A));
[M ! p; ���; q] 2 BASIS(TOPL(B))

FALSE otherwise

Figure 10: De�nition of join and join1

17

A1

A2

A3

A4

B1 B2

B3 B4

B5 B6

A1

A2

A3

A4

B1 B2

B3 B4

B5 B6

Figure 11: Partial Parse Tree Rooted at A1 and Its Match

(4) For each right closure item, there can only be one series of productions from the basis right desired

symbol to the left hand side symbol of the closure item.

(5) The number of rules in the derivation from the right desired symbol of a basis item to the left hand

side symbol of the closure item is �nite.

(6) The only states that can be reached by transitions to the right that have more than one basis item are

reached by a series of basis transitions from some starting state.

4.5 Joining Inner Halves

These properties are now used to develop a polylogarithmic time algorithm for joining the inner halves of the
con�gurations. Property 4 of the Lemma is key to achieving sublinear time for joining the inside halves of the two
con�gurations. Consider a closure transition from a state on the inside half of the left con�guration. There is only
one item with the desired symbol on which the transition is made and only one derivation from the basis desired
symbol to the symbol so a section of the parse tree is uniquely speci�ed. If the closure transition is not the left-most
closure transition in the inner half of the con�guration, there is only one item in the basis so the basis desired symbols
are also known. The desired symbols in the items of the derivation are the unmatched nodes in the partial parse tree.
The symbols spanned by the inner half of the right con�guration must match for the two con�gurations to combine.
Therefore, the strings of symbols that are indicated by the closure transitions in the left deque are joined together to
form a string that speci�es the symbols that must be spanned by the right con�guration. The predictions are built
and the symbols are compared in parallel. If all match, the joining of the inner halves is complete and a recursive call
to ensures that the starting states match. The transitions between the states in the right con�guration specify
the symbols spanned by the con�guration. These symbols are determined and then veri�ed against the prediction
made by the left con�guration.

Consider the following state in some LL(1)\RL(1) PCFSM. Assume that a transition to the right has been made
on the terminal symbol A to the inner top state and the expansion of Ai is rule Ri.

� [N ! x1; �� �A1�; y1]
[A1 ! x2; � �A2B1B2; y2]
[A2 ! x3; � �A3B3B4; y3]
[A3 ! x4; � �AB5B6; y4]

The partial parse tree rooted at A1 that has A recognised and the lower portion of the right con�guration are shown
in Figure 11. However, it may not be possible to determine this form by only examining the right con�guration.

The lengths of the strings of predicted symbols are constant since they are based on the grammar rather than the
input. The positions in the right deque of the predicted strings are computed in parallel. Each prediction is validated
by a single processor, appending together the rule lists associated with each symbol and adding the recognised rules
in the appropriate positions. This takes constant time since the number of symbols validated by each processor
is bounded by a constant based on the grammar. Assuming that all of the symbols are valid and that �i is the
production list associated with Bi, the resulting production list for A1 is [�5�6R3�3�4R2�1�2R1]. A parallel su�x
sums (analogous to pre�x sums except from the right to left) is used to compute the index of the entries in the

18

expected actual symbols rule list

[B5B6 [R3]B3B4 [R2]B1B2 [R1]] B5B6B3B4B1B2 []
[B6 [R3]B3B4 [R2]B1B2 [R1]] B6B3B4B1B2 �5
[[R3]B3B4 [R2]B1B2 [R1]] B3B4B1B2 �5�6
[B3B4 [R2]B1B2 [R1]] B3B4B1B2 �5�6R3

[B4 [R2]B1B2 [R1]] B4B1B2 �5�6R3�3
[[R2]B1B2 [R1]] B1B2 �5�6R3�3�4
[B1B2 [R1]] B1B2 �5�6R3�3�4R2

[B2 [R1]] B2 �5�6R3�3�4R2�1
[[R1]] �5�6R3�3�4R2�1�2
[] �5�6R3�3�4R2�1�2R1

Figure 12: Validation of Prediction

right deque. Typically, the list of expected symbols is stored in a table indexed by states and symbols. This list has
markers of the form [R] indicating that rule R has been recognised. The processor validates the string and builds
the rule list as shown in Figure 12. The validations are done in parallel and take constant time since the sizes of the
strings validated are based on the grammar. The su�x sums algorithm requires O(log N) time so the joining of the
two halves of the con�gurations takes O(log N) time.

4.5.1 Algorithm

The algorithm for joining two inner halves of a pair of adjacent con�gurations is divided into three parts. The
tables used by the algorithm and part of the algorithm are shown in Figures 13 and 14. The algorithm for handling
the case of the starting state of the left con�guration being higher than the right's starting state is shown in Figures 15
and 16.

The algorithm for handling a higher right starting state is shown in Figure 17. The algorithm for matching
all of the symbols in a group of levels is shown in Figure 18. The algorithm for creating the production lists of the
matched group of levels in shown in Figure 19. rules initially contains the production lists that were formed by
matching a group of levels while prods contains the production lists of the symbols on which basis transitions where
made. At the lowest level in the parse tree, the desired list is the rules associated with the basis transitions followed
by the rules from the matched symbols. The production list for the next higher level is the list associated with the
basis transitions followed by the list from the lower level followed the list from the matched symbols and so on. The
production list for n levels is prods[n] ++ � � �++prods[0] ++rules[0] ++ � � �++rules[n] The values in rules and prods
are not adjacent, nor are they in the proper order. A su�x sums computation is used to compute the position of
each portion of the rule and the values in prods are stored in list in reverse order. The values in rules are stored
in list to the right of the prods values in the order speci�ed by the su�x sums computation. Note that A[0] is the
number of non-" elements of rules.

5 P(k) Languages

The algorithm for joining the inner halves of two con�gurations relies on the LL(1) characteristics of the grammar
so the grammar must be in LL(1)\RL(1). As well, the grammar must be GF(k) for some �nite k to avoid growth in
the number of con�gurations. An analogous algorithm works for those grammars that are in LR(1)\RR(1), where
RR(1) is the analogous right to left parsing method as LL(1), again assuming that the grammar is GF(k) for some
k. All of these requirements are captured in the following language class.

The P(k) (Parallel with GF(k)) grammars are de�ned as the set of grammars that are GF(k) and are in
LL(1)\RL(1) or LR(1)\RR(1). A P(k) language is any language generated by a P(k) grammar. For P(k) lan-
guages, the parsing algorithm using � runs in O(log2 N) time using O(N) processors since there are O(log N)
phases of combining partial answers using �. Each phase of combining requires O(log N) time since there are at
most some constant number of con�gurations that are combined in a phase and each combining of a pair of con�gu-

19

BC[S] = [[R] j [N ! p;� � � � ; q] 2 BASIS(S); N ! �� is rule R]

BCL[S] = jBC[S]j

BD[S] = A j [N ! p;� � � �A; q] 2 BASIS(S)

BLHS[S] = N j [N ! p;� � � � ; q] 2 BASIS(S)

BE[S] = [[R] j [N ! p;� � � �A; q] 2 BASIS(S); N ! �� is rule R]

BEL[S] = jBE[S]j

CE[S;Ai] =
�
�(i�1)

�
R(i�1)

�
: : : �1 [R1]

�
j

[N ! x;� � � �A1; y] 2 BASIS(S);
[A1 ! q; � �A2�1; p] 2 CLOSURE(S);

...�
A(i�1) ! q; � �Ai�(i�1); p

�
2 CLOSURE(S);�

Ai ! q; � �A(i+1)�i; p
�
2 CLOSURE(S);

Aj ! A(j+1)�j is rule Rj

CEL[S;A] = jCE[S;A]j

NRS[S] = j�j such that [N ! p;� � � � ; q] 2 BASIS(S)

RTS[S1; S2] = T j S1
T
�! S2

LTS[S2; S1] = T j S2
T
 � S1

CT [S1; S2] =

�
TRUE if closure transition[S1; S2]
FALSE otherwise

GL[S;A] = T j T
A
 � S

GR[S;A] = T j S
A
�! T

Figure 13: Table Entries for Algorithm

rations requires O(log N) time using O(N) processors. Therefore, the algorithm runs in O(log2 N) time using O(N)
processors.

6 Conclusion

A test was presented for a grammar that ensures that the number of con�gurations in a partial result cannot
grow without bound. Grammars for which the test succeeds are said to be GF(k), growth free within k symbols. A
polylogarithmic time algorithm for resolving the delayed reductions in the con�gurations in O(log N) time usingO(N)
processors was presented. A polylogarithmic time algorithm for joining the inner halves of two con�guration that runs
in O(log N) time using O(N) processors was described. This algorithm requires that the grammar be LL(1)\RL(1).
Finally, the P(k) class of languages was de�ned. The parallel parsing algorithm has a strong theoretical basis in list
theory and for P(k) grammars, it runs in O(log2 N) time using O(N) processors. Unfortunately, membership in the
class of grammars is not intuitive as is the case for the LL(1) and LR(1) classes of grammars.

References

[1] I. Bar-on and U. Vishkin. Optimal parallel generation of a computation tree form. ACM Transactions on

Programming Languages and Systems, 7(2):348{357, April 1985.

[2] D.T. Barnard, J.P. Schmeiser, and D.B. Skillicorn. Deriving associative operators for language recognition.
Bulletin of the EATCS, 43:131{139, February 1991.

20

join(left[0 : : : LN � 1]; LN;
right[0 : : :RN � 1]; RN;
new[0 : : :NN � 1]; NN)

find closuretransition()
closure expected()
suffix sums(A;LL;LN � 1)
bounds()
transition symbols()
if upper[LL] > RN � 1
then left higher()
else right higher()

find closuretransition()
i 0
while (i < LN � 1) ^:CT [left[i]; left[i + 1]]

i i+ 1
LL i

closure expected()
for i LL to LN � 1 do in parallel

if i = LN � 1
then E[i] BC[left[i]]

A[i] BCL[left[i]]
else if i = LL

then T RTS[left[i]; left[i + 1]]
E[i] CE[BD[left[i]]; T]
A[i] CEL[BD[left[i]]; T]

else if CT [left[i]; left[i+ 1]]
then Z CE[BD[left[i]]; T]

ZL CEL[BD[left[i]]; T]
E[i] BE[left[i]] ++Z
A[i] BEL[left[i]] + ZL

else A[i] 0

bounds()
for i LL to LN � 1 do in parallel

if i = LN � 1
then lower[i] 0
else lower[i] A[i+ 1]
upper[i] A[i]� 1

transition symbols()
for i 0 to RN � 1 do in parallel

if i = RN � 1
then symbols[i] "

else symbols[i] LTS[right[i + 1]; right[i]]

Figure 14: Algorithm to Join Inner Halves

21

left higher()
for i LL to LN � 1 do in parallel

rules[i] []
prods[i] []
matches[i] TRUE

complete match(i)
replicate()
if complete
then do complete()
else do incomplete()

complete match(i)
if ((i = LN � 1) _CT [left[i]; left[i + 1]])
^(lower[i] � RN � 1)

then if upper[i] � RN � 1
then rules[i] match all(i)

if rules[i] = []
then matches[i] FALSE

else for j[i] i� NRS[left[i]] to i� 1
prods[i] prods[i] ++left[j[i]]:right

if upper[i] = RN � 1
then highest i

complete TRUE

R LL � 1
if upper[i] > RN � 1
then highest i

complete FALSE

R highest

replicate()
for i 0 to R do in parallel

if i = R

then new[i]:right []
else new[i] left[i]

do complete()
if and(matches; LL; LN � 1)
then new[R]:right prod list()

S GR[left[R]; BLHS[left[highest]]]
new[R+ 1] ([] ; S; [])
NN R+ 2

else fail

Figure 15: Algorithm for Left Higher (i)

22

do incomplete()
if and(matches; LL; LN � 1)
then new[R]:right left[R]:right

top R

j 0
i lower[highest]
while (i � RN � 2) ^ (top � 0)

reduce recognised()
if E[highest][j] = symbols[i]
then top top+ 1

new[top� 1]:right right[i+ 1]:left
S GR[new[top� 1]; symbols[i]])
new[top] ([] ; S; [])
i i + 1

else top �2
j j + 1

NN top+ 1
else fail

reduce recognised()
while E[highest][j] = [r]

prods []
for k top� rule size[r] to top � 1

prods prods++new[k]:right
lhs BLHS[new[top]]
top top� rule size[r]
new[top]:right prods++ [r]
top top+ 1
S GR[new[top� 1]; lhs]
new[top] ([] ; S; [])
j j + 1

Figure 16: Algorithm for Left Higher (ii)

[3] D.T. Barnard and D.B. Skillicorn. Parallel parsing on the Connection Machine. Information Processing Letters,
31, No.3:111{117, 8th May 1989.

[4] R.S. Bird. Lectures on constructive functional programming. Oxford University Programming Research Group
Monograph PRG-69, 1988.

[5] M.P. Chytil and B. Monien. Caterpillars and context-free languages. In C. Cho�rut and T. Lengauer, edi-
tors, STACS90 7th Annual Symposium on Theoretical Aspects of Computer Science, Springer Lecture Notes in
Computer Science 415, pages 70{81, February 1990.

[6] E. Dekel and S. Sahni. Parallel generation of post�x and tree forms. ACM Transactions on Programming

Languages and Systems, 5(3):300{317, July 1983.

[7] A. Gibbons and W. Rytter. E�cient Parallel Algorithms. Cambridge University Press, 1988.

[8] A. Gibbons and W. Rytter. Optimal parallel algorithms for dynamic expression evaluation and context-free
recognition. Information and Computation, 81(1):32{45, April 1989.

[9] W. Daniel Hillis and G.L. Steele. Data parallel algorithms. Communications of the ACM, 29, No.12:1170{1183,
December 1986.

23

right higher()
match symbols()
if and(matches; LL; LN � 1)
then j upper[LL] + 1

for i j to RN � 1 do in parallel
if i = j

then new[LL+ 1] right[i]
new[LL+ 1]:left prod list()
else new[LL+ 1 + (j � i)] right[i]

new[LL]:right []
S GL[new[LL+ 1]; BD[left[LL]]]
new[LL]:state S

NN (LL + 1) + (j � (RN � 1) + 1)
i LL

basis transitions()
new[0]:left []

else fail

match symbols()
for i LL to LN � 1 do in parallel

rules[i] []
prods[i] []
matches[i] TRUE

if (i = LN � 1) _CT [left[i]; left[i + 1]]
then rules[i] match all(i)

if rules[i] = []
then matches[i] FALSE

else for j[i] i� NRS[left[i]] to i� 1
prods[i] prods[i] ++left[j[i]]:right

basis transitions()
while i � 1

S GL[new[i]; RTS[left[i� 1]; left[i]]]
if S 6= ERROR

then new[i] (left[i � 1]:right; S; [])
i i� 1

else fail

Figure 17: Algorithm for Right Higher

24

match all(entry)
/* match all expected symbols */

prods []
j 0
if lower[entry] > upper[entry]
then prods []

while j < jE[entry]j
prods prods++E[entry][j]

else for i lower[entry] to upper[entry]
while E[entry][j] = [r]

prods prods++r
j j + 1

if E[entry][j] = symbols[i]
then prods prods++deque[i + 1]:left
else return []
j j + 1

prods prods++E[entry][j]
return prods

Figure 18: Algorithm for Matching Symbols

[10] P. N. Klein and J. H. Reif. Parallel time O(log n) acceptance of deterministic CFLs on an exclusive-write
P-RAM. Siam Journal of Computing, 17(3):463{485, June 1988.

[11] D. E. Knuth. Semantics of context-free languages. Mathematical Systems Theory, 2(2):127{145, November 1967.

[12] D. E. Knuth. The Art of Computer Programming, Volume 1: Fundamental Algorithms. Addison Wesley, 1972.

[13] P.H.W.M. Oude Luttighuis. Parallel parsing of regular right-part grammars. Technical Report INF89-63,
Faculteit der Informatica, Universiteit Twente, 1989.

[14] P.H.W.M. Oude Luttighuis. Optimal parallel parsing of almost all ll(k) grammars. Technical report, Memoranda
Informatica INF 91-78, Department of Computer Science, University of Twente, Oct. 1991.

[15] R. Mattheyses and C.M. Fiduccia. Parsing Dyck languages on parallel machines. In Proceedings of the 20th

Allerton Conference on Communication, Control and Computing, pages 272{280, 1982.

[16] W. Rytter. On the complexity of parallel parsing of general context-free languages. Theoretical Computer

Science, 47:315{321, 1986.

[17] R. M. Schell, Jr. Methods for Constructing Parallel Compilers for use in a Multiprocessor. PhD thesis, University
of Illinois at Urbana-Champaign, 1979.

[18] James. P. Schmeiser. Polylogarithmic Parallel Parsing. PhD thesis, Queen's University at Kingston, 1992.

[19] James. P. Schmeiser and David T. Barnard. Producing a top-down parse order with bottom-up parsing. Infor-
mation Processing Letters, (accepted March, 1995).

[20] Y. N. Srikant and P. Shankar. A new parallel algorithm for parsing arithmetic in�x expressions. Parallel

Computing, 4:291{304, 1987.

[21] Y.N. Srikant and P. Shankar. Parallel parsing of programming languages. Information Sciences, 43:55{83, 1987.

[22] J.P. Tremblay and P.G. Sorenson. The Theory and Practice of Compiler Writing. McGraw-Hill, 1985.

25

prod list()
/* build up the rule list for the joined levels */

for i 0 to LN � 1 do in parallel
if rules[i] 6= []
then A[i] 1
else A[i] 0

suffix sums(A; 0; LN � 1)
for i 0 to LN � 1 do in parallel

if rules[i] 6= []
then list[A[0]�A[i]] prods[i]

list[A[0] +A[i]� 1] rules[i]
return list[0] ++ � � �++list[2 �A[0]� 1]

Figure 19: Algorithm to Construct Production Lists

26

