
Viewcharts: A Behavioral Speci�cation

Language for Complex Systems

Ayaz Isazadeh David A. Lamb Glenn H. MacEwen

October 31, 1995

External Technical Report

ISSN-0836-0227-

95-388

Department of Computing and Information Science

Queen's University

Kingston, Ontario K7L 3N6

Document prepared October 31, 1995

Copyright c
1995 Ayaz Isazadeh

Abstract

This paper introduces a formalism, called Viewcharts, for speci�cation and

composition of software behavioral views. The objective is software behav-

ioral requirements speci�cation independent of implementation. The paper

claims that behavioral requirements of large-scale and complex systems can

be described formally as compositions of simple behavioral views. The View-

charts formalism is presented to demonstrate the behavioral views and support

the claim.

Keywords: Formal Methods, Statecharts, Speci�cation Languages



Contents

1 Introduction 1

1.1 Application Domain : : : : : : : : : : : : : : : : : : : : : : : 1

1.2 Previous Work : : : : : : : : : : : : : : : : : : : : : : : : : : 1

2 Viewcharts 2

2.1 Ownership of Elements : : : : : : : : : : : : : : : : : : : : : : 3

2.2 Composing Behavioral Views : : : : : : : : : : : : : : : : : : 4

2.2.1 Separate Composition of Views : : : : : : : : : : : : 4

2.2.2 Or Composition of Views : : : : : : : : : : : : : : : : 5

2.2.3 And Composition of Views : : : : : : : : : : : : : : : 5

2.2.4 Hierarchical Composition of Views : : : : : : : : : 5

2.3 E�ect on Transitions : : : : : : : : : : : : : : : : : : : : : : : 6

3 Example: Manufacturing Control System 7

3.1 Specifying Behavioral Views : : : : : : : : : : : : : : : : : : : 9

3.2 Composing Behavioral Views : : : : : : : : : : : : : : : : : : 11

4 Conclusions 12

4.1 Contributions : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

4.2 Future Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

i



List of Figures

1 Visual representation of separate compositions. : : : : : : : 5

2 A hierarchical composition of views. : : : : : : : : : : : : : 6

3 Product and information 
ow in a manufacturing line. : : : : 8

4 A viewchart for the Serialization Workstation. : : : : : : : : : 10

5 The workstations' views of the system. : : : : : : : : : : : : : 11

6 A viewchart for a manufacturing line. : : : : : : : : : : : : : : 12

ii



1 Introduction

Large-scale real-time distributed systems, can be complex to describe, con-

struct, manage, understand, and maintain. Current research approaches to

reducing this complexity separate software structural and behavioral descrip-

tions [2, 11, 14, 15]. It is, therefore, important to identify and formally

describe software behavioral views1 and structural patterns; these patterns

and/or views, then, can be used in software systems analysis, speci�cations,

design, and con�gurations. Much research has been done on software struc-

tures and their patterns, characterizations, and classi�cations. Little or no

attention, however, has been given to the identi�cation and analysis of soft-

ware behavioral views that can be used as a basis for software behavioral

requirements engineering.

This paper introduces the concept of software behavioral views, and

presents a formal notation for their speci�cation and composition. The ob-

jective is software behavioral requirements speci�cation independent of design

and implementation. The paper claims that software behavioral requirements

can be described formally in terms of behavioral views. To establish this

claim, the paper introduces a notation, called Viewcharts, which is based on

David Harel's Statecharts [7]. The Viewcharts notation extends Statecharts

to include behavioral views and their compositions, limits the scope of broad-

cast communications, and consequently, reduces the complexity of scale that

Statecharts faces in behavioral speci�cations of large systems.

1.1 Application Domain

The Viewcharts formalism can be viewed as a high-level speci�cation language

that uses Statecharts; and Statecharts is designed for real-time event-driven

reactive systems. Furthermore, Viewcharts extends Statecharts to include be-

havioral views and their composition; consequently, it describes behavioral

requirements of large-scale complex systems as a composition of views. The

domain of the Viewcharts formalism, therefore, is behavioral speci�cation of

large-scale complex real-time event-driven reactive systems.

1.2 Previous Work

There is a body of work on state-transition based formal methods and soft-

ware behavioral requirements speci�cations using these methods. This work

includes Statecharts of Harel [7, 9], Modechart of Jahanian and Mok [12], Com-

municating Real-Time State Machines (CRSM's) of Shaw [19], Augmented

1In the literature, the term behavioral view (in contrast to structural or functional views)

generally refers to the behavioral aspect of a system. In this paper, however, we talk about

di�erent behavioral views of the same system. See Section 2 for our de�nition of the term.

1



State Transition Diagram of Hendricksen (ASTD) [10], and Requirements

State Machine Language (RSML) of Leveson [13]. In object-oriented analysis

and design methods also Rumbaugh [17], Selic [18], Walters [20], and others

[3] have used state-transition based methods to describe software behavior.

To our knowledge, however, no one has ever attempted to formally specify

software behavioral requirements in terms of behavioral views.

2 Viewcharts

A Behavioral view of a software system is the behavior of the system observable

from a speci�c point of view. A client's view of a server, for example, is the

behavior that the client expects from the server. This behavior, of course, may

di�er from the behavior that the server exhibits to another client. A server,

therefore, may have several behavioral views. The caller view of a telephone

set and the telephone set's view of a switching system are also examples of

behavioral views.

The Viewcharts notation is based on Statecharts.2 Statecharts, however,

has no concept of behavioral views. Viewcharts extends Statecharts to include

views and their compositions.

Statecharts is often criticized for not being practical for large-scale sys-

tems speci�cations. Speci�cally, the issue of scale in Statecharts leads to the

following problems:

1. Explosion of States: In conventional �nite state machines the number

of states grows exponentially as the scale of the system grows linearly.

Statecharts reduces this blow-up, but for a large-scale system this is still

a problem.

2. Global Name Space: All names, in Statecharts, are de�ned globally. A

given event, for example, can be sensed throughout the system and,

therefore, it must have a unique name. Managing the name space is

di�cult in large-scale systems.

Viewcharts attempts to eliminate these problems.

A viewchart consists of a hierarchical composition of views. The leaves of

the hierarchy, described by independent statecharts, represent the behavioral

views of the system or its components. The higher levels of the hierarchy

are composed of the lower level views. Views are represented just like states,

except that the arc-boxes representing views have thicker borders than those

of states.

2The reader is assumed to be familiar with the Statecharts formalism; relevant references

are given in Section 1.2.

2



Notice that the statecharts describing views, in a viewchart, are indepen-

dent. In other words, the scope of broadcast communications of Statecharts is

limited to the views and does not cover the entire viewchart. (See Section 2.2

for extended scopes.)

Notice also that a statechart describing a view, in a viewchart, describes

only a behavioral view of the system or, more importantly, its component. In

other words, the number of states and the size of such a statechart are a�ected

only by the scale of the behavioral view. Consequently, considering that a

large-scale system behavior can be described in terms of simple behavioral

views, Viewcharts is expected to eliminate the issue of scale.

2.1 Ownership of Elements

The Viewcharts notation limits the scope of broadcast communications. In

other words, the scope of an element (event, action, or variable) in a given

view is limited to the view. On the other hand, composition of views may

require communication between the composing views; the scope of an event in

one view, for example, may be extended to cover other views. In a given view,

therefore, Viewcharts must distinguish two di�erent types of events:

� Events that belong to the view: These are the events that the view can

trigger. They must be declared by the view.

� Events that do not belong to the view: The view cannot trigger these

events. An event of this type can occur only if it is triggered elsewhere

and if the view is covered by the scope of the event.

An event may have multiple owners; in other words an event can be trig-

gered by more than one view. An event may also have no owner, in which case

the event can never occur. The Viewcharts notation allows this case, because

of the possibility of further composition of the viewchart with additional views,

which may a�ect the event. This is exactly analogous to the notion of free

variables in program fragments, which can be be bound in a larger context.

The notion of ownership for events is a natural consequence of composing

views, while the scopes of events are limited. This notion also applies for

actions. However, actions are implicitly declared: an action belongs to the

view (or views) that generates (or generate) the action. There is no need,

therefore, for explicit declaration of actions. However, an action may also be

owned as an event by some other views, in which case it must be declared

accordingly.

Similarly, a variable belongs to the view that declares it. The scope of a

variable declared by a view is the view and all its subviews. If a variable x is

declared by a view V and redeclared by another view V1 within the scope of

x, then Viewcharts recognizes two di�erent variables which can be referenced

3



by their full names, V.x and V1.x. In a view that is covered by the scopes of

both variables, the base name x refers to V1.x. In the case of events, on the

other hand, there is no need to specify them by there full names; Viewcharts

determines the a�ect of each event occurrence based on the ownership and

scoping rules. However, an event occurrence may still be speci�ed by its full

name, provided that it does not violate these rules.

Consequently, unlike events and actions, variables cannot have multiple

owners. On the other hand, if a variable is used in a view, but not declared

by the view or any of its superviews (i.e., it has no owner), then the variable,

by default, belongs to the top view of the corresponding viewchart.

Syntactically, elements owned by a view can be declared by listing them

following the name of the view either in the viewchart, as in Figure 2, or out

of it as a separate text. In referencing a view by its name, however, it should

be noted that the view must be uniquely identi�ed. It may be necessary to

identify a view by its full name, which is a full path from the root to the

view, consisting of the base name pre�xed by the names of its ancestors in the

hierarchy separated by dots.

In a viewchart, if the triggering view of an element is obvious and there is

no ambiguity in the ownership of the element, then there is no need for explicit

declaration of the element.

2.2 Composing Behavioral Views

Views can be composed in four ways: separate, or, and, and hierarchical

compositions.

2.2.1 Separate Composition of Views

In a separate composition of views, all the views are active;3 no transition

between the views is allowed, the scopes of all the elements are una�ected; and

any subview or state in one view is hidden from (i.e., cannot be referenced by)

the other views. No view is, in fact, aware of any other view in the composition.

Visually, the views involved in a separate composition are drawn on the top

of each other, as shown in Figure 1, giving the impression that they are located

on di�erent planes and, consequently, are hidden from each other.

The representation (a), in this �gure, speci�es a separate composition

of the view V with a �nite number of other views; (b) speci�es a separate

composition of V, U, and W; and (c) speci�es a separate composition of

�ve views V4; : : : ;V9. In all these cases, the behavior of the �rst view, the

one located on the top, can be speci�ed. By default all the other views are

identical to the �rst one. Exceptions are represented by specifying the others

3A view is active if, and for a period of time during which, the system is in a state of the

view.

4



V4; : : : ;V9V, U, W

V

(a) (b) (c)

Figure 1: Visual representation of separate compositions.

separately and referencing them in the composition by their names using the

representations (b) or (c). If only a small number of views are involved in

the composition, then it may be practical to give them enough space to show

their behaviors. An example of this representation is given in Figure 2, which

includes a separate composition of views V5 and V6.

2.2.2 Or Composition of Views

The or and separate compositions are similar, except that in an or compo-

sition, only one view can be active and there can be transitions between the

views. In Figure 2, for example, the view V consists of an or composition of

V1 and V2.

2.2.3 And Composition of Views

In an and composition of views, all the views are active; the scopes of all

the elements owned by each view are extended to the other views. All the

subviews and states in one view are visible to (i.e., can be referenced by) the

other views; variables, however, must be referenced by their full names. The

view V7 of Figure 2, for example, is anded with a separate composition of

V5 and V6.

2.2.4 Hierarchical Composition of Views

In a hierarchical composition of views, some views form a superview; all

the subviews and states in a superview are visible to the superview; and the

scopes of the elements owned by a superview covers all its subviews.

The viewchart of Figure 2, for example, is composed of a separate compo-

sition of V5 and V6, which in turn is anded with V7 forming V3. A separate

composition of two identical views V3 and V4 forms V2. The full view V is an

or composition of V1 and V2.

5



B
a

A

b

V2

V1
c

c

A

c

B

a
A B

b
C

b

C

Ba
A

c

V3, V4

V5 : b

V7 : a

V : c

V6 : b

Figure 2: A hierarchical composition of views.

2.3 E�ect on Transitions

The following examples demonstrate the way in which the compositions a�ect

transitions with the same label. A possible con�guration of the system, de-

scribed in Figure 2 is fV3:V5:A;V3:V6:B;V3:V7:B;V4:V5:B;V4:V6:C;V4:V7:Ag.
Recall (Section 2.1) that a view can trigger the events it owns. Assuming

that the system is in sub-con�guration fV3:V5:B;V3:V6:A;V3:V7:Ag,

� if the view V3.V7 triggers a, then the sub-con�guration will change to

fV3:V5:A;V3:V6:B;V3:V7:Bg;

� if the view V triggers c, nondeterministically, then the entire system

con�guration will change to either fV1:Ag or fV1:Bg;

� no other event can change the sub-con�guration.

Assuming that the system is in sub-con�guration

fV3:V5:A;V3:V6:B;V3:V7:Bg,

� if the view V3.V5 triggers b, then the sub-con�guration will change to

fV3:V5:B;V3:V6:B;V3:V7:Cg;

6



� if the view V3.V6 triggers b, then the sub-con�guration will change to

fV3:V5:A;V3:V6:C;V3:V7:Cg;

� if the view V triggers c, nondeterministically, then the entire system

con�guration will change to either fV1:Ag or fV1:Bg;

� no other event can change the sub-con�guration.

Assuming that the system is in sub-con�guration fV3:V6:Cg,

� if the view V triggers c, nondeterministically, then the sub-con�guration

will change to fV3:V6:Ag or the entire system con�guration will change

to either fV1:Ag or fV1:Bg;

� no other event can change the sub-con�guration.

3 Example: Manufacturing Control System

This section presents a Viewcharts speci�cation of a Manufacturing Control

System (MCS), demonstrating the way in which the behavioral requirements

of a software system can be speci�ed as a composition of its behavioral views.

An informal, but detailed, description of a similar system is given by Dunietz

and others [4].

Notice that a system can be speci�ed at di�erent levels of abstractions. We

need a level of abstraction that illustrates the Viewcharts notation. Further

re�nements of a viewchart, beyond a certain level of abstraction, can be State-

charts tasks and may not provide any additional information in illustrating

Viewcharts. Therefore, we will keep the speci�cations at an appropriate level

of abstraction.

Consider a \
exible"4 and \just-in-time"5 manufacturing shop. It consists

of a number of workstations, where each workstation performs a certain process

on the product. Figure 3 shows an informal diagram representing the 
ow of

product and information in the shop. Our objective is to specify the behavioral

requirements of a Manufacturing Control System (MCS) for this shop.

Central to the system is a database server (DBS) which maintains and

supplies the information requirements of the workstations. At the beginning

of the manufacturing line, the �rst workstation associates each product with a

4The term 
exible refers to the capability of the shop to handle the manufacturing process

of di�erent types of products. A 
exible circuit pack manufacturing shop, for example, may

handle the manufacturing process of hundreds of di�erent circuit packs.
5The term just-in-time refers to the capability of the shop in the on-time delivery of the

products which are manufactured on the basis of actual orders (as opposed to anticipated

orders). Such a shop requires that di�erent components of a given product, at di�erent

stages of its manufacturing process, should come together just in time.

7



Database
Server

Data FlowProduct Flow

1

Workstation

2
Workstation

n-1
Workstation

n
Workstation

Figure 3: Product and information 
ow in a manufacturing line.

unique identi�cation number/string pid, which must be communicated to DBS

to create a record for the corresponding product. From there on, each product

is identi�ed and tracked by the associated pid. When a product arrives at a

workstations, the pid is scanned and communicated to DBS which, in turn,

informs the workstation of the process that must be performed on the product.

The workstation then proceeds with the process and when it is completed,

informs DBS to update the product record.

Considering that concurrent processes are performed on di�erent products

at di�erent workstations, DBS may receive concurrent transaction requests.

If we model DBS as a single entity which interacts with multiple worksta-

tions, then we must also specify the way in which DBS handles concurrent

transactions. Doing so, not only complicates the speci�cation, but also re-

quires making design decisions regarding the concurrency. We can, however,

simplify the speci�cation and leave the design issues to designers by modeling

the behavior of DBS as a collection of behavioral views that it exhibits to the

workstations. Each workstation then interacts with its own view of DBS on a

one to one basis.

Furthermore, considering that the purpose of this example is not to specify

the details of a database management system, we use a single but compound

variable db to represent the MCS database. we refer to a product record (a

component of db) by a compound variable prec, which includes a pid and some

other product attributes. db.prec then refers to the product record prec in the

8



database and db.prec.pid is a product id. We also use the notation db:prec(pid)

to refer to the product record of the given pid.

Database transactions are time consuming activities; therefore, they can-

not be represented by events or actions (which are instantaneous). However,

we can use actions like add, retrieve, or update to initiate the corresponding

transactions. Similarly we can use events like added(db:prec), abbreviated

as ad(db:prec), retrieved(db:prec(pid)), abbreviated as rt(db:prec(pid)), or

updated(db:prec(pid)), abbreviated as ud(db:prec(pid)), which occur at a

point in time when the associated transaction is completed;

With this introduction, we can now specify the behavioral requirements of

MCS as a composition of its behavioral views.

3.1 Specifying Behavioral Views

The viewchart WS1, shown in Figure 4, describes the behavior of the system

observable at the Serialization Workstation, which is the �rst workstation in

the manufacturing line. It consists of two anded views: WS, which describes

the behavior of the workstation, and DBS, which describes the workstation's

view of DBS.

The declaration \WS1 : prec", in this �gure, shows that prec is owned by

WS1 and, therefore, its scope is WS1. db is not declared anywhere in WS1

and, therefore, it is global to WS1. All other elements in WS1 are implicitly

declared; they belong either to WS or DBS and their scope is WS1. the event

ad(db:prec), for example, can only be triggered by the state ADDING and

consequently belongs to DBS. The scope of ad(db:prec), which is originally

DBS, because of the and composition of WS and DBS is extended to cover

WS1.

WS speci�es that the workstation by default is in the state of SERIALIZ-

ING, where each product is associated with a unique product ID and a prod-

uct record is prepared and written to the compound variable prec. When

the writing is completed, the event wr(prec), which is an abbreviation for

written(prec), occurs which, in turn, generates add which, in turn, takes DBS

to the state of ADDING. DBS in this state adds prec to the database and when

it is done the event ad(db:prec) occurs, generating the action next and taking

both DBS and WS back to their starting states.

Other workstations, at the abstraction level of this speci�cation, have iden-

tical behaviors. Therefore, a separate composition of n�1 behavioral views,

as shown in Figure 5, can specify the behavior of the system observable at

these workstations. Each views, of course, can be further re�ned to describe

the speci�c and detailed behavior at the corresponding workstation.

The declaration \WS2; : : : ;WSn : prec; pid", in this �gure, shows that for

each view WSi (i = 2; : : : ; n), the elements prec and pid belong to WSi and,

therefore, their scope is WSi. db is not declared anywhere in WSi and, there-

9



WS

DBS

SERIALIZING wr(prec)=add WAIT

next

READY add ADDING

ad(db:prec)=next

WS1 : prec

Figure 4: A viewchart for the Serialization Workstation.

fore, it is global to WSi. All other elements in WSi are implicitly declared;

they belong either to WSi:WS or WSi:DBS and their scope is WSi.

The event rd(pid), which is an abbreviation for read(pid), occurs at a

point in time when a pid is read (scanned) When WS is in the state of RE-

CEIVING, it expects instructions from DBS. On the other hand, DBS retrieves

the product record and based on the history and type of the product sends

out the appropriate instructions6 regarding the process to be performed on the

product.

WhileWS is in the state of PROCESSING, it may provide DBS with certain

information regarding the status of the product and/or outcome of the process.

This information are included in the product record and its a�ect on the system

behavior can be speci�ed by re�ning the PROCESSING and other a�ected

states.

Figure 5 should now be self explanatory.

6Some examples of the instructions are outlined below:

� \Reject (wrong station) and reroute to the station x, where x is a station ID."

� \Perform the current process on the product."

� \Perform a di�erent process: transmitting the required program or instructions."

� \Ship" or \Do not ship;" at the shipping station.

These and similar details can be speci�ed by re�ning the states.

10



WS

RECEVINGrd(pid)=retrieve

gonext

=update PROCESSING

DBS

READY retrieve RETRIEVING

rt(db:prec(pid))

SENDING=goWAITUPDATING

ud(db:prec(pid))=next

STAND BY

SCANNING

update

WS2; : : : ;WSn : prec; pid

Figure 5: The workstations' views of the system.

3.2 Composing Behavioral Views

Having speci�ed the behavioral views of the system, we can now compose

them to form the overall system behavioral requirements speci�cation. Fig-

ure 6 shows a separate composition of n views where each view describe the

behavior of the system from a workstation's point of view.

Notice, once again, the declarations \WS1 : prec" of Figure 4,

\WS2; : : : ;WSn : prec; pid" of Figure 5, and \MCS : db" of Figure 6. These dec-

larations mean that each view WSi (i = 2; : : : ; n) has its own variables pid and

prec, WS1 has its own variable prec, and db is global to all WSi (i = 1; : : : ; n).

All the views, therefore, can access and update the same database db, while

they have their local variables for the information retrieved from, or to be

added to, the database.

Notice that a Statecharts speci�cation of this example would consist of

n + 1 orthogonal components: one for each workstation and another one for

11



WS

DBS

MCS : db
WS1; : : : ;WSn

Figure 6: A viewchart for a manufacturing line.

DBS. If the manufacturing line consists of only a few workstations, then there

is no problem; however, the speci�cation becomes complex when the number of

workstations increases. For example, the Viewcharts description of a worksta-

tion, for all workstations but the �rst one, speci�es a local variable pid, which

is used for passing a product ID fromWS to DBS. To provide this speci�cation

in a global environment of Statecharts, we have to de�ne di�erent variables

for the product IDs being scanned (concurrently) by di�erent workstations.

Similarly, we have to uniquely identify the associated events and actions. Fi-

nally, we have to specify the way in which DBS is supposed to handle all these

events, actions, and variables. Furthermore, suppose that an action to update

a product record is generated by a workstation, while DBS is in a state of

retrieving another one. We cannot ignore the action; should we queue it, or

specify a method for concurrent processing of database transaction requests?

In any case, we are forced to make some design decisions; and doing so not

only limits design choices, but also unnecessarily complicates the speci�cation.

4 Conclusions

A large-scale software system may exhibit a combination of many di�erent and

identical behavioral views. The Viewcharts notation allows these views to be

speci�ed as stand-alone systems and provides a method of composing them to

form the overall system behavior speci�cation. It is important, however, to

realize that composing behavioral views is di�erent from integrating them. In

a composition of views, the views keep their identities and are used as building

blocks of the requirements speci�cation; each requirement can be traced back

to its originating view. In an integration of views, on the other hand, the

12



views may loose their identities and be replaced by a di�erent mechanism; the

requirements cannot be traced back to their originating views. Integration

requires making design decisions, while composition does not. Viewcharts

leaves the integration of views to designers and implementers.

Furthermore, a statechart describing a view, in a viewchart, describes only

a behavioral view of the system or, more importantly, its component. In other

words, the number of states and the size of such a statechart are a�ected only

by the scale of the behavioral view. Consequently, considering that a large-

scale system behavior can be described in terms of simple behavioral views,

Viewcharts simpli�es the speci�cation and reduces the complexity of scale that

the underlying Statecharts notation faces in behavioral speci�cations of large

systems

Others have also used the term \view", but not exactly for the same concept

as we have. Embley and others [5], for example, introduce their notion of view,

which is an abstraction mechanism for reducing complexity in large Object-

Oriented Systems Analysis (OSA) models. Their notion of a view, however, is

a grouping of some entities in the OSA models; it reduces the complexity of

understanding a complex OSA model and communicating about it, but does

not a�ect the complexity of specifying or building the model.

Goldberg [6], Ayers [1], and Rumbaugh [16], also describe the notion of view

within Model-View-Controller (MVC) paradigm of Smalltalk community. A

view, in MVC, refers to the method of presenting the information contained in

the underlying model of an application. In regard to reducing the complexity

of describing the model they neither make any claim nor o�er any mechanism.

4.1 Contributions

The contribution of this paper is the introduction of the Viewcharts notation.

The notation is designed to specify the behavioral requirements of large-scale

complex systems on a need-to-specify basis. In Viewcharts, one does not have

to specify the full behavior of a system and, therefore, is not concerned with

the complexity or scale of the system. A complex system may consist of many

di�erent sub-systems and components, distributed world-wide, and it may ex-

hibit a combination of many di�erent and identical behavioral views. Current

research and industrial advances in networking and distributed systems indi-

cate that software systems will get even larger and more complex. One cannot

envision producing an integrated behavioral requirements speci�cation for an

arbitrarily large and complex system. However, if we de�ne the behavior of

a system in terms of behavioral views, then all we need to do is to specify

the views of our interest. The Viewcharts notation allows these views to be

speci�ed independent of each other.

13



4.2 Future Work

The following is a list of further extensions that would make Viewcharts richer

and more expressive:

1. It is necessary to establish a semantic basis for Viewcharts. This is,

however, the subject of another paper, in which we prove:

Given a viewchart, there is a statechart that describes the same

behavior as the viewchart does.

The paper (which is currently under preparation) also provides an algo-

rithm that translates a given viewchart to its equivalent statechart.

2. In a separate composition of views, Viewcharts does not allow transi-

tions between the views. Because a separate composition of views in

a viewchart is transformed to an and composition of states in the corre-

sponding statechart; and Statecharts does not allow transitions between

anded states. However, it would be interesting to extend the semantic

basis of Viewcharts to allow such transitions.

3. In a hierarchical composition of views, the scope of an element owned

by a view covers the view and all its subviews. There are, however, other

alternative which should be explored. It may, for example, better encap-

sulate the views, in this composition, to limit the scope of an elements,

to the view that owns the element, but instead introduce the notion of

export and import. A view then can export an element to its immediate

superview and thereby extend the scope of the element to the exported

view. Similarly, a view may import an element from its immediate su-

perview.

4. Finally, modeling viewcharts is another topic of future research. It is

possible to produce an executable model of a viewchart using the al-

gorithm mentioned in Item 1 and an available Statecharts tool (e.g.,

statemate [8]). However, it would be more e�cient and practical to

provide a method of producing the executable models directly from the

Viewcharts notation.

References

[1] K. E. Ayers. The MVC paradigm in Smalltak4. Dr. Dobb's Journal: Software

Tools for the Professional Programmer, 15(7):168{175, November 1990.

[2] M. R. Barbacci, C. B. Weinstock, D. L. Doubleday, M. J. Gardner, and R. W.

Lichota. Durra: A structure description language for developing distributed

applications. IEE Software Engineering Journal, 8(2):83{94, Mar 1993.

14



[3] D. Coleman, F. Hayes, and S. Bear. Introducing Objectcharts or how to use

Statecharts in object oriented design. IEEE Transactions on Software Engi-

neering, 18(1):9{18, January 1992.

[4] I. S. Dunietz, J. L.C. Hsu, M. T. McEachern, J. H. Stocking, M. A. Swartz,

and R. M. Trombly. MPCS|the manufacturing process control system. AT&T

Technical Journal, 65(4):35{45, July 1986.

[5] D. W. Embley, B. D. Kurtz, and S. N. Wood�eld. Object-Oriented Systems

Analysis, A Model-Driven Approach. Prentice-Hall, Englewood Cli�s, New

Jersey, 1992.

[6] A. Goldberg. Information models, views, and controllers. Dr. Dobb's Journal:

Software Tools for the Professional Programmer, 15(7):54{61, July 1990.

[7] D. Harel. Statecharts: A visual formalism for complex systems. Science of

Computer Programming, 8:231{274, 1987.

[8] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-

Trauring, and M. Trakhtenbrot. STATEMATE: A working environment for

the development of complex reactive systems. IEEE Transactions on Software

Engineering, 16(4):403{414, April 1990.

[9] D. Harel and A. Pnueli. On the development of reactive systems. In K. R. Apt,

editor, Logics and Models of Concurrent Systems, pages 477{498. Springer-

Verlag, New York, 1985.

[10] C. S. Hendricksen. Augmented state-transition diagrams for reactive software.

ACM SIGSOFT Software Engineering Notes, 14(6):61{67, October 1989.

[11] C. Hofmeister, E. White, and J. Purtilo. Surgeon: A packager for dynami-

cally recon�gurable distributed applications. IEE Software Engineering Jour-

nal, 8(2):95{101, Mar 1993.

[12] F. Jahanian and A. K. Mok. Modechart: A speci�cation language for real-

time systems. IEEE Transactions on Software Engineering, 20(12):933{947,

December 1994.

[13] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese. Requirements

speci�cation for process control systems. IEEE Transactions on Software En-

gineering, 20(9):684{707, September 1994.

[14] J. Magee, N. Dulay, and J. Kramer. A constructive development environment

for parallel and distributed programs. In Proceedings of the Second Interna-

tional Workshop on Con�gurable Distributed Systems, pages 4{14, Pittsburgh,

Pennsylvania, Mar 1994.

[15] J. Nehmer, D. Haban, F. Mattern, D. Wybraniertz, and D. Rombach. Key

concepts of the INCAS multicomputer project. IEEE Transactions on Software

Engineering, SE1-13(8):913{923, August 1987.

15



[16] J. Rumbaugh. Modeling models and viewing views: A look at the model-view-

controller framework. Journal of Object-Oriented Programming, pages 14{,

May 1994.

[17] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-

Oriented Modeling and Design. Prentice-Hall, Englewood Cli�s, New Jersey,

1991.

[18] B. Selic, G. Gullekson, and P. T. Ward. Real-Time Object-Oriented Modeling.

Wiley, New York, 1994.

[19] A. C. Shaw. Communicating real-time state machines. IEEE Transactions on

Software Engineering, 18(9):805{816, September 1992.

[20] N. Walters. Using Harel Statecharts to model object-oriented behavior. ACM

SIGSOFT Software Engineering Notes, 17(4):28{31, October 1992.

16


