
A Review of Post-Factum Software

Integration Methods

Ayaz Isazadeh Glenn H. MacEwen Andrew Malton

October 31, 1995

External Technical Report

ISSN-0836-0227-

95-389

Department of Computing and Information Science

Queen's University

Kingston, Ontario K7L 3N6

Document prepared October 31, 1995

Copyright c1995 Ayaz Isazadeh

Abstract

This paper presents a review and discussion of post-factum software systems

integration. The problem is de�ned; the approaches and associated issues

are discussed. Integration of redundant software components, developed using

diverse software engineering methodologies, into a fault tolerant system is

reviewed. Finally, a novel approach to fault tolerant software integration,

based on the critical properties of software systems and the way in which these

properties can be maintained by the integrated system despite a component

failure, is presented for further research.

Contents

1 Introduction 1

2 Basic Concepts 1

2.1 Program Understanding : 2

2.1.1 Reverse Engineering Approach : : : : : : : : : : : : : : 2

2.1.2 Other Approaches : 3

2.2 Software as a Source of Knowledge : : : : : : : : : : : : : : : 3

2.2.1 Process of Arriving at a Software Solution : : : : : : : 4

3 Integration Architectures 4

3.1 A Generic Framework : 5

3.2 The Broker Architecture : 7

3.3 Interoperability Architectures : : : : : : : : : : : : : : : : : : 8

4 Fault Tolerance 9

4.1 Component Failures : 9

4.2 Fault Tolerant Architectures : : : : : : : : : : : : : : : : : : : 10

4.2.1 Group Failure Masking : : : : : : : : : : : : : : : : : : 11

5 A Novel Approach 12

5.1 Step 1: Identify Critical Properties : : : : : : : : : : : : : : : 12

5.2 Step 2: Analyze Components : : : : : : : : : : : : : : : : : : 13

5.3 Step 3: Design System Architecture : : : : : : : : : : : : : : : 13

6 Conclusion 14

i

List of Figures

1 The essential software process (From [2]) : : : : : : : : : : : : 4

2 GenSIF framework (From [16]) : : : : : : : : : : : : : : : : : 6

3 The Broker approach (From [3]) : : : : : : : : : : : : : : : : : 7

4 The Broker internals (From [3]) : : : : : : : : : : : : : : : : : 8

ii

1 Introduction

Software technology is growing and changing so rapidly that almost any soft-

ware system must be modi�ed or recon�gured to provide enhanced integrated

solutions to the changing world. In many cases, the requirements speci�cation

of an existing software system, is either no longer available or does not corre-

spond to the actual system. Modi�cation and maintenance of such a system,

as well as its integration with a new system, is a serious problem.

The focus of this paper is on the post-factum integration of software com-

ponents. Post-factum1 integration refers to techniques for combining existing

software components to form complete systems. In post-factum integration, a

software component can be a library subroutine, a program developed specif-

ically for the purpose of integration, or a complete and possibly complex sys-

tem. Post-factum integration, however, includes at least one existing software

system, developed in the past with no plan for its systematic integration with

any other component.

2 Basic Concepts

Post-factum software integration problem includes one or more of the following

variations:

1. Systems Integration: Given two or more software systems, subsystems,

or components, each of which functions properly (i.e., satis�es their re-

quirements within their environments), the problem is to integrate them

into one larger system, satisfying the combined requirements within the

newly formed environment.

2. New Function or New Technology Integration: Given a software system,

which may have been functioning properly in the �eld for a signi�cant

period, the problem is to integrate a new function or a new technology

within the given system. The integrated system should provide the new

functionality or use the new technology, while preserving the original

system's functionality.

3. Incremental Engineering: A software system can be developed and de-

livered using available technologies and with less functionality than it is

intended to eventually provide. New technologies and/or more functions,

then, can be integrated within the system. The problem is to design the

system with such future integration in mind.

1Some researchers have also used the term \post-facto" for the same concept [12].

1

4. Modi�cation: Sometimes an existing and properly functioning software

system must be decomposed and reintegrated to carry out a modi�ca-

tion. The reintegration may include a new component, providing a new

functionality and/or employing a new technology, and/or it may exclude

an old component.

5. Building a System from Prefabricated Parts (Reuse) [8]: Software engi-

neering using reusable software components is another form of the sys-

tem integration problem. System designers, here, are constrained by the

software components and are not free, for example, to de�ne the sys-

tem breakdown in a top-down manner. This can be better described as

\component integration engineering".

2.1 Program Understanding

The problem of software systems integration, in any of the above variations,

involves integration of some software components. A software component can

be as small and simple as to provide a simple feature or as large and complex

as a switching system in communication software. A software component can

be a new system, possibly developed for the purpose of integration, or an old

one, which has been in the �eld functioning properly for years. In any case,

a good understanding of the software components is the �rst step one must

take towards systems integration. There are several approaches to achieve this

understanding. Unfortunately, they are all informal; the most systematic ones

are reverse engineering techniques.

2.1.1 Reverse Engineering Approach

Hausi M�uller and others [10] de�ne reverse engineering as the process of ex-

tracting system abstractions and design information out of existing software

systems. Applied to a software component, this process involves identi�ca-

tion of software artifacts in the component, exploration of how these artifacts

interact with one another, and their aggregation to form more abstract rep-

resentations that facilitate program understanding. Software artifacts include

components such as procedures, modules, interfaces, and dependencies among

them.

An example of reverse engineering systems is Rigi [9, 17]. Developed at

the University of Victoria for discovering and analyzing the structure of large

software systems, Rigi provides the following features:

� Parsing the source code and extracting the artifacts: This is a language

dependent feature, which currently supports COBOL and C and C++.

2

� Storing the artifacts in a database: Graphical representations of the ar-

tifacts, extracted from the source code, are stored in a database called

GRAS, which is designed to represent graph structures.

� Editing the graphical representations of the artifacts: This is a language

independent feature, which permits graphical manipulation of the source

code representations.

Another reverse engineering technique, presented recently by Panagiotis Linos

and others is CARE (Computer Aided Reengineering) [6], which maintains

a repository of control-ow and data-ow dependencies of C programs. Dif-

ferent graphical representations of these dependencies can facilitate program

understanding.

2.1.2 Other Approaches

Other approaches to program understanding constitute guidelines and instruc-

tions that a system integrator should follow.

Blum and Moore [2], for example, describe their research on integration

of some Navy tactical computer systems. Their motivation for this research

is the capture of what is known about a software system. To accomplish this

they suggest three principal goals:

1. Collect and organize what is known about a software component.

2. Structure what is known about the implementation of the software com-

ponent.

3. Develop techniques to retrieve what is known about the software compo-

nent.

The problem with this approach and other informal approaches to program

understanding is the uncertainty of these approaches; there is always the pos-

sibility of overlooking certain information about a software component, certain

assumption about the environment, or something else.

2.2 Software as a Source of Knowledge

A good source of information and, in some cases, the only source of infor-

mation about an existing software system is the system itself. However, a

software system is a response to a need. The need is de�ned as a problem

and a software system is engineered and provided as a solution to the prob-

lem. The information collected from a solution does not necessarily reect

the problem. In other words, if one begins from an existing implementation,

it is very di�cult to distinguish between the result of a design decision and

the inherent constraints of the problem. This di�culty can be illustrated by

examining the process of arriving at a software solution.

3

Conceptual ModelsApplication

Domain Formal Models Implementation

Domain

Figure 1: The essential software process (From [2])

2.2.1 Process of Arriving at a Software Solution

Blum and Moore [2] describe the essence of the software process as a transfor-

mation from some need in an application domain into a software implementa-

tion that responds to that need (Figure 1).

Basically, the process of arriving at a software solution has the following

stages:

1. Identi�cation of a Need in an Application Domain: In this stage, a need

for an application is identi�ed.

2. Conceptual Models: Conceptual models describe the proposed response

to the need.

3. Formal Models: Formal models establish the essential behaviors of the

desired software solution.

4. Implementation: In this stage, an implementation of the formal model,

a software system, is developed as a �nal solution to the problem.

Notice that there could be many di�erent conceptual models satisfying the

need, many di�erent formal models satisfying the conceptual model, and many

di�erent implementations for the given formal model. At each stage, therefore,

there are many alternative solutions, from which only one is chosen. Thus,

the solution space, in each stage, becomes smaller and smaller until only one

solution exists. In the process of software engineering, normally, alternative

solutions are also discussed and investigated. However, once a software system

is developed and delivered, knowledge related to the rejected alternatives is of-

ten lost. Furthermore, the software contains additional constraints which have

been added to the system, in di�erent stages, based on the design decisions.

3 Integration Architectures

A software integration architecture, as de�ned by Rossak and Ng [15], is a

general pattern that serves as a blueprint to de�ne the basic layout of an

integrated system. It has to deal with bottom-up integration of existing com-

ponents (post-factum integration [12]) as well as the development of new com-

ponents for top-down integration (pre-facto integration [15]). An integration

4

architecture describes the general strategy of system decomposition, data stor-

age, and communications. The architecture should not be concerned with the

internal structure of the components. A software component within the in-

tegration architecture, therefore, should be monolithic, i.e., allow no access

to its internal structure. There are two major issues concerning the technical

aspects of integration architectures:

� communication in the system, and

� handling data within the system.

These issues and the way in which a large-scale integration architecture may

resolve these issues lead to the following basic types of software integration

architectures:

� Message-passing systems

� Channel-based systems

� Systems with central repository

� Generic systems

� Object-oriented systems

In a message-passing paradigm, for example, a communication system is used

to send messages between components. In architectures with central reposi-

tory, the database is the main integrating factor. In a channel-based archi-

tecture, the (active) components use the channel (i.e., passive communication

components) to communicate with each other.

The remainder of this section reviews some examples of software integration

architectures.

3.1 A Generic Framework

Rossak and Ng [16] propose a Generic Systems Integration Framework (Gen-

SIF). They rely on this framework for systems integration, to tailor a pre-

planed integration process to the needs of an application domain. Their ob-

jective is a software development process: a way in which software components

can be designed and developed to work together as an integrated system. Ob-

viously, this is not within the scope of this paper, which deals with integration

of existing software components. The framework, however, to the extent it

can serve the interest of this paper, is presented here. GenSIF includes three

components (Figure 2):

5

Domain Model

Enabling Technologies

Integration Architecture

Figure 2: GenSIF framework (From [16])

1. Global domain integration: Domain integration involves an analysis of

the application domain to de�ne a common model of the environment

that the system will serve. This is also called semantic integration. Do-

main analysis provides the conceptual basis for the integration architec-

ture.

2. Derivation of an integration architecture: The integration architecture is

a conceptual/structural model. It is also an infrastructure, which pro-

vides the necessary utilities and components to implement an application

system by following the rules of the conceptual model.

3. Assessment and usage of enabling technologies: Provides the tools and

products that are required by the infrastructure of the integration archi-

tecture.

A software integration architectures consists of two parts: the concep-

tual/structural model and the technical infrastructure. The conceptual ar-

chitecture model describes the guidelines and standards of the architecture,

linking the model of the application domain to the implementation-oriented

concepts of development environment and enabling technologies. This model

speci�es a general strategy of system decomposition, inter-process and user-

communications, internal and external interfaces, etc. A good example of

this model is OSCA [7] which is a channel-based integration architecture on

the conceptual/structural level. OSCA relies on free and implementation-

independent communication in a distributed environment. It gives explicit

guidelines for decomposition in building blocks (See Section 3.3). The tech-

nical infrastructure of an integration architecture deals with the development

platforms such as RAPID of AT&T and goes beyond the scope of this paper.

This framework can be adapted to include integration of existing software

components. The third component of the framework (the enabling technolo-

gies), then, would include the existing software components. The infrastruc-

ture of the integration architecture would use these software components in

the integration process. The infrastructure may add a new interface to a given

software component if required by the conceptual model of the integration

architecture.

6

System 1 System 2

System 3

Broker

Figure 3: The Broker approach (From [3])

3.2 The Broker Architecture

Clark and Krumm [3] describe the Broker, their approach to integration of

information across three Air Force legacy systems. Each one of these systems

contains a large amount of information that needs to be shared by the other

systems. The Broker enables autonomous and heterogeneous systems to share

information while maintaining autonomous control over their data (Figure 3).

The following items are the key components of the Broker concept:

� Each system interfaces with the Broker and does not exchange any in-

formation directly with other systems.

� Each system can interface with the Broker in whatever format the system

is designed to support. This is particularly important for legacy systems,

which have di�erent interfaces.

� Data received by the Broker are examined, translated into neutral for-

mat, and forwarded to the appropriate system(s).

� The Broker does some error checking and may request retransmissions.

� Each legacy system maintains control over its own database. Through

data translation and forwarding, the Broker helps ensure data consis-

tency between the systems.

� The Broker uses an internal database for message translation, message

storage, and error logging.

As shown in Figure 4, the Broker is composed of a number of modules. Input

and output modules are concerned with receipt and forwarding of messages

using various data communication standards. There are multiple instances

of these modules because of the multiple data and communication standards

employed by the legacy systems. The event handler takes care of the events

like passing a message to the translation module, storing, re-transmitting, etc.

The Broker architecture provides an approach to integration of information

across di�erent systems. If the problem is information integration then the

7

Message
Queue

Input
Modules

Event
Handler

Transaction
Module

Output
Modules

Database
Broker

Figure 4: The Broker internals (From [3])

Broker provides a solution. The Broker, however, is not a practical approach

to integration of some software components into a larger system, where the

components require tighter interaction.

3.3 Interoperability Architectures

Interoperability, as de�ned by John Mills of Bellcore [7], is the ability to in-

terconnect \business aware software products" to provide access to corporate

data and functionality by any authorized user. Business aware software is soft-

ware which provides functions characteristic of a business. The interest of this

paper, however, is in the concept of interoperability as it may apply to software

integration. Interoperability conicts, in this context, refer to problems that

an integrated software system may have as a side e�ect of the integration,

problems that the software components, as independent systems, do not have.

An example of interoperability architecture is Bellcore's OSCA [7]. OSCA

requires that the business aware functions be separated and grouped into three

layers: corporate data layer, processing layer, and user layer. The software

that implements the functions in these layers is partitioned into building blocks.

A building block is a deployable unit of software product. The interfaces

between building blocks, termed contracts, must meet certain criteria, such as

the use of industry and international standards and isolation from building

block internals. The building blocks must adhere to speci�c interoperability

principles, some of which are as follows:

� Release independence: Building blocks must be upward and downward

compatible; that is, upgrading a building block must not a�ect other

building blocks.

� Resource independence: Building blocks cannot share any resource if it

would cause a violation of any other interoperability principle.

8

� No accessibility assumptions among building blocks: A building block,

when it invokes a contract in another building block, must be prepared

to detect an unavailable contract.

� Location independence: Each building block contract must be addressed

logically; that is, the invoking building block does not need to know

where the other building block is physically deployed (location trans-

parency).

Fundamental to the OSCA architecture is the notion of separation of con-

cerns, which means that business aware functions are allocated to the building

blocks, that no building block contains business aware functions from more

than one layer, and that the interfaces (contracts) o�ered by the functions of

one building block to the functions of other building blocks are well-de�ned

and well-formed, so that the functions of one layer are de-coupled from the

functions of other layers.

Building blocks are sets of program modules, functions, data schemas, etc.

Building blocks are the units of application interoperability, where a high

enough level of de-coupling can be expected to support interoperability. Pro-

gram modules are not considered as units of interoperability; they require

tighter interaction than expected for building blocks.

Building blocks and the interfaces between them, as mentioned above, must

adhere to speci�c interoperability principles. The OSCA architecture, there-

fore, cannot be used for integration of independently developed existing soft-

ware components that do not adhere to the interoperability principles of the

OSCA architecture.

4 Fault Tolerance

Failure, and a consequent temporary unavailability of service, is not an unusual

phenomenon for many software systems. Users of such systems have actually

accepted this fact and learned to live with it. However, there is a growing

number of systems, such as communications software, on line transaction pro-

cessing, and control systems, for which failure and service unavailability is not

acceptable.

Fault tolerance, therefore, is a major requirement in software systems in-

tegration, particularly, in integration of real time (and distributed) systems.

This section describes approaches to achieving this goal.

4.1 Component Failures

In an integrated system, a component failure occurs when the component does

not behave in a manner consistent with its speci�cation. Flaviu Cristian [4] de-

9

scribes his view of fault tolerant distributed systems and classi�es component

failures as follows:

1. Omission Failure: Occurs when a component fails to respond to an input.

Example: a communication link, which may occasionally lose messages.

2. Timing Failure: Occurs when a component's response is functionally cor-

rect but untimely. It could be early timing failure or late timing failure.

Late timing failure is also called performance failure. An excessive delay

in message transmission is an example of communication performance

failure.

3. Response Failure: Occurs when a component responds incorrectly. It

could be value failure, if the value of its output is incorrect, or state

transition failure, if the state transition that takes place is incorrect. A

communication link, which may deliver corrupted messages, for example,

su�ers value failure.

4. Crash Failure: Occurs when a component, after a �rst omission failure,

fails to respond to the subsequent inputs until its restart.

A fault tolerant system requires recovery action upon detection of a compo-

nent failure. For each component, therefore, the likely failure behaviors must

be identi�ed. The term most widely used to describe failure behaviors is fail-

ure semantics. If the likely failure behaviors of a software component are in

class F , then the component is said to have F failure semantics. For exam-

ple, a communication link, which may occasionally lose messages|with no

message corruption or transmission delay|has omission failure semantics. A

component may have F=G failure semantics if its likely failure behaviors are

in F [G. F=G is said to be a weaker failure semantics than F . When any

failure behavior is allowed for a component, then it is said to have arbitrary

failure semantics, which is the weakest of all failure semantics and includes all

the failure classes de�ned above.

4.2 Fault Tolerant Architectures

If a component P of an integrated system S fails and S continues functioning

according to its speci�cations despite the failure of P , then S is said to mask

P 's failure.

The basic idea behind a fault tolerant software architecture is the capabil-

ity of the architecture to mask component failures. In an integrated system,

if a component P has arbitrary failure semantics then any other component

Q which depends on the output provided by P may have arbitrary failure se-

mantics, unless Q has some way of checking the correctness of output provided

10

by P . Designers of fault tolerant systems, therefore, prefer to use components

with stronger failure semantics such as omission or performance. However,

the stronger the failure semantics, the more complex and expensive is the

component that implements it.

An architecture, therefore, should provide a way in which the component

behaviors and outputs are checked for correctness, recovery and corrective ac-

tions are taken as necessary and, consequently, the system's services may be

provided without interruption during a component failure. One such architec-

tural style, called group failure masking, is de�ned below.

4.2.1 Group Failure Masking

A group of redundant software components, in an integrated software system,

masks the failure of a group member, if the group functions as speci�ed despite

the member failure. The group output is a function of the outputs generated

by the group members; it can be, for example, the output of a speci�c member,

or the result of a majority vote on member outputs. Normally, each group is

managed by a group management mechanism. The stronger the failure seman-

tics of the group members the simpler is the group management mechanism.

On the other hand, as mentioned above, the stronger the failure semantics,

the more complex and expensive is the component that implements it. So, a

balance should be achieved here.

Group failure masking can be accomplished using diverse programming

techniques like Recovery Block (RB) [14], N-Version Software (NVS) [1], or a

combination of both [13].

Based on Brian Randell's work [14], a recovery block in an integrated soft-

ware system consists of two or more alternate software components and an

acceptance test component. The alternate components in a recovery block are

di�erent versions of the same software. One version, the primary alternate, is

executed and the result is checked using the acceptance test. If the output of

the primary alternate fails the acceptance test, then the next version is exe-

cuted, hoping that the output of this version will not fail the test. Otherwise,

the third version is executed and so on. The integrated software, therefore, can

mask a component failure by using another component in the same recovery

block.

Introduced by Algirdas Avi�zienis [1], an N-Version Software (NVS) system

consists of two or more functionally equivalent, yet independently developed

software components called member versions. The NVS versions are executed

concurrently under a supervisory system called N-Version Executive (NVX),

which uses a decision algorithm based on consensus to determine �nal outputs.

An integrated system, therefore, can achieve fault tolerance by using NVS

systems (i.e., by masking a component failure using other member versions).

NVS systems reliability, in turn, depend deeply on the diversity in design and

11

development of member versions.

Diverse software design methodology, ideally, pursues the goal of ensuring

that the group members, running diverse programs, do not fail at the same

time despite the possibility of design faults in these programs. However, diverse

programming methodology is still a controversial issue [4]. The increase in

reliability that results from the use of diverse programming techniques has not

yet been convincing for some researchers [5].

5 A Novel Approach

A novel approach to software systems integration is presented in this section

for further research and experimentation.

The major motivation leading to this approach comes from some unpleasant

industrial experiences in software maintenance, enhancement, and integration.

There have been cases where side e�ects of simple modi�cations or small en-

hancements have caused failures of large-scale properly functioning software

systems in the �eld. A software system, functioning as speci�ed in the �eld

for years, may not behave according to the speci�cations when integrated with

another system. Earlier features of communication systems, for example, were

speci�ed and developed based on assumptions which may no longer be true.

Later features, then, added to an environment with changing assumptions, re-

sult in the popular problem of Feature Interactions, discussed by Pamela Zave

[18].

The principal goal of this approach, therefore, is to ensure that certain

properties of a system, called the critical properties, are not a�ected by any

failure, caused by changes in the assumptions and environments or by a fault

in a component. Ideally, in a fault tolerant system, no property of the system

should be a�ected by the failures. Practically, however, it is easier to deal with

a subset of the system properties, the critical properties. Notice that the term

critical properties, here, refers to a subset of the system properties, which are

to be maintained by the system despite the likely failures. The remainder of

this section outlines this approach in a 3-step process.

5.1 Step 1: Identify Critical Properties

The system integrator should identify critical properties of the software compo-

nents. Speci�c properties that are considered critical depend on the software

components and the application, for which the system is being integrated.

Generally, however, critical properties can be classi�ed, with respect to the

component failure classi�cation discussed in Section 4.1, as follows:

1. Response Critical: Properties, the lack of which results in omission fail-

ure of the corresponding component.

12

2. Timing Critical: Properties, the lack of which results in timing failure

of the corresponding component. A subset of these properties is called

performance critical.

3. Value Critical: Properties, the lack of which results in value failure of

the corresponding component.

4. Progress Critical: Properties, the lack of which results in crash failure of

the corresponding component.

5.2 Step 2: Analyze Components

For each component, analyze the component structure concerning any likely

failure a�ecting the critical properties. The objective, in this step, is to ensure

whether the component does have a fault tolerant architecture, maintaining

its critical properties, or not. To achieve this objective the following methods

are suggested:

1. Reverse Engineering Method: Reverse engineering and analysis of the

component could provide the system integrator with the insight needed

to verify whether or not the critical properties can be a�ected by any

likely fault in the component.

2. Formal Method: Given the formal speci�cation of the software compo-

nent, prove that the component satisfy the critical properties despite a

likely fault in the component. If this proof is not possible, for a compo-

nent, then it must be assumed that the critical properties can be a�ected

by a likely fault in the component. Formal methods cannot be used if the

software has no formal speci�cation. Unfortunately, most existing soft-

ware components are developed without a formal speci�cation; in many

cases, however, it may not be too late to produce one. Mark Phillips

[11] describes how IBM introduced the Z speci�cations for a CICS new

release after 20 years of its original development. The experience proved

that Z speci�cations are appropriate for both in new components and

where large changes involve rewrites.

3. Testing Method: Put the component under rigorous testing and verify

that the component maintains the critical properties in the integrated

environment or demonstrate otherwise.

5.3 Step 3: Design System Architecture

Design a fault tolerant architecture, capable of integrating the components

and maintaining the critical properties in the integrated environment. Having

completed Step 2, software components are categorized as follows:

13

1. Components with fault tolerant architectures, maintaining their critical

properties in the integrated environment despite a likely fault that these

components may have.

2. Other components.

Components in the �rst category can be included in the integrated system

architecture as they are. Components in the second category, however, may

fail to maintain their critical properties and cannot be included in the system

architecture as they are. The problem, now, is the way in which the integra-

tion process should deal with these components. The following methods are

suggested:

1. Consider alternative components, providing the same services, repeat

Step 2, and try to minimize the number of components in the second

category.

2. For each component in the second category, develop a program, simulat-

ing the critical properties of the component, and use it as the secondary

alternate in a recovery block with the original component as its primary

alternate (See Section 4.2.1). The system architecture, now, can include

this recovery block instead of the component. This method enables the

system to make use of the full services of the component as long as the

component is functioning properly. In case of the component failure, the

secondary alternate, the simulator, will keep the system running, by pro-

viding exceptional responses. The system, of course, may not have the

functions provided by the faulty component, when the component fails.

The component failure, however, does not make the system fail com-

pletely; services provided by the other components may still be available

to the system and, consequently, to the users. This is, in fact, a gracefully

degrading system.

3. If the gracefully degrading system is not satisfactory and the application

requires a complete fault tolerance, then redundant components, devel-

oped using diverse software engineering methodology should be consid-

ered. NVS, RB, (See Section 4.2.1), or combination of these techniques

can be used to accomplish the task.

6 Conclusion

This paper has presented a discussion of software systems integration with an

emphasis on software fault tolerance. The paper has shown that in order to

integrate some software components into a larger system, one must have a pre-

cise understanding of the components. Reverse engineering techniques (which

14

currently do not go beyond extracting software structural design information)

can facilitate program understanding. However, a precise understanding of

a software component can only be provided by a formal speci�cation of the

software.

Formal methods, therefore, can play an important role in software systems

integration. Unfortunately, no signi�cant work can be found in this area;

extracting formal speci�cations from existing code is still an open problem.

This paper has also presented, for further research, a novel approach to

fault tolerant software systems integration, based on the critical properties of

software systems, and the way in which these properties can be maintained by

the integrated system despite a component failure.

Acknowledgments

Many thanks to Professors Terry Shepard and David Lamb for their comments.

References

[1] Algirdas Avi�zienis. Software fault tolerance. In G. X. Ritter, editor,

Information Processing 89, volume 11 of IFIP Congress Series, pages

491{498, San Francisco, Aug 1989.

[2] Bruce I. Blum and Tamra Moore. Representing navy tactical computer

system knowledge for reengineering and integration. In Proceedings of The

Second International Conference on Systems Integration, pages 530{537,

Morristown, New Jersey, Jun 1992.

[3] David Clark and John M. Krumm. Broker: A system integration ap-

proach. In Proceedings of The Second International Conference on Sys-

tems Integration, pages 162{170, Morristown, New Jersey, Jun 1992.

[4] Flaviu Cristian. Understanding fault{tolerant distributed systems. Com-

munications of the ACM, 34(2):56{78, Feb 1991.

[5] John C. Knight and Paul E. Ammann. Issues inuencing the use of n{

version programming. In G. X. Ritter, editor, Information Processing 89,

volume 11 of IFIP Congress Series, pages 217{222, San Francisco, Aug

1989.

[6] Panagiotis Linos, Phillippe Aubet, and Laurent Dumas. CARE: An envi-

ronment for understanding and reengineering C programs. In Proceedings

of Conference on Software Maintenance, pages 130{139, Montreal, Sep

1993.

15

[7] John A. Mills. Large scale interoperability and distributed transaction

processing. In Proceedings of The Second International Conference on

Systems Integration, pages 392{400, Morristown, New Jersey, Jun 1992.

[8] Roland T. Mittermeir and Evelin Koer. Layered speci�cations to support

reusability and integration. In Proceedings of The Second International

Conference on Systems Integration, pages 699{708, Morristown, New Jer-

sey, Jun 1992.

[9] Hausi A. M�uller and Karl Klashinsy. Rigi: A system for programming{in{

the{large. In Proceedings of the 10th International Conference on Software

Engineering, pages 80{86, Singapore, Apr 1988.

[10] Hausi A. M�uller, Mehmet A. Orgun, Scott R. Tilley, and James S. Uhl. A

reverse engineering approach to subsystem structure identi�cation. Jour-

nal of Software Maintenance: Research and Practice. In press.

[11] Mark Phillips. CICS/ESA 3.1 experiences. In J. E. Nicholls, editor, Z

User Workshop, pages 179{185, Oxford, Dec 1989.

[12] Leigh R. Power. Post{facto integration technology: New discipline for

an old practice. In Proceedings of The First International Conference on

Systems Integration, pages 4{13, Morristown, New Jersey, Apr 1990.

[13] James M. Purtilo and Pankaj Jalote. A system for supporting multi{

language versions for software fault tolerance. In Digest of Papers, FTCS{

19, The Nineteenth International Symposium on Fault{Tolerance Com-

puting, pages 268{274, Chicago, Jun 1989.

[14] Brian Randell. System structure for software fault tolerance. IEEE Trans-

actions on Software Engineering, SE{1(2):220{232, Jun 1975.

[15] Wilhelm Rossak and Peter A. Ng. Some thoughts on systems integration:

A conceptual framework. Journal of Systems Integration, 1(1):97{114,

1991.

[16] Wilhelm Rossak and Peter A. Ng. System development with integration

architecture. In Proceedings of The Second International Conference on

Systems Integration, pages 96{103, Morristown, New Jersey, Jun 1992.

[17] Scott R. Tilley, Hausi A. M�uller, Michael J. Whitney, and Kenney Wong.

Domain{retargetable reverse engineering. In Proceedings of Conference

on Software Maintenance, pages 130{139, Montreal, Sep 1993.

[18] Pamela Zave. Feature interactions and formal speci�cations in telecom-

munications. IEEE Computer, 26(8):20{30, Aug 1993.

16

