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Abstract

To perform dextrous manipulation e�ciently, it is necessary to coordinate the in-

teractions of many component processes. This paper investigates one approach to co-

ordination: discrete-event systems. The applicability of discrete-event systems to the

modeling of dextrous manipulation tasks is studied. Discrete-event control theory o�ers

formal methods for determining whether a coordinator of the components can be gener-

ated. A representative dextrous manipulation task, the planar Grasp-Lift-Replace task

of Howe and Cutkosky, is presented as a discrete-event process. The task is extended

to include two-�ngered exploratory procedures. The e�ectiveness of the discrete-event

system approach is illustrated through simulations of several test cases.



1 Introduction

In many robotics problems, robot hands must perform delicate and precise operations

that include grasping and smoothly lifting an object. Robotics research has addressed

many components of this dextrous manipulation problem. These issues include multi-arm

or �nger coordination for manipulating objects [17],[26],[27], optimally distributing the

load among di�erent arms [28], decomposing the grasp force into equilibrating and inter-

acting force �elds [13], and allowing contact motion while manipulating an object [4],[22].

While e�cient dextrous manipulation requires designing a controller for each component

process (e.g., controlling contact force), it is also necessary to design a mechanism by

which the component processes can be enabled and disabled in a preferred sequence.

Dextrous manipulation is a process in which tactile events mark transitions between

phases of the manipulation task, resulting in control discontinuities. The need for tech-

niques to facilitate a smooth progression of control through the discrete phases of the

manipulation task is presented in [5]. Our work represents an initial e�ort to use a theo-

retical framework for the coordination of these control discontinuities. Describing a task

as a series of distinct segments is not novel to dextrous manipulation; however, there is

a need for a sound theoretical approach to provide not only a high-level coordinator, but

also to provide some insight into the task organisation and help determine when, where

and if sensors should be included as part of the manipulation operation. We apply the

discrete-event control theory of Ramadge and Wonham [18] to the high-level description

and coordination of a dextrous manipulation task. This leads to the design of a con-

troller that permits only a set of desired actions and forbids undesirable actions. The

discrete-event systems approach provides a systematic procedure to generate strategies

guaranteed to achieve a feasible goal for the task.

Discrete-event control theory has been used to control a variety of robotic applications

including manufacturing and assembly tasks [2], [16], the coordination of mobile robotic

agents [12], and a grasping task performed under the supervision of a vision system

[23]. We present here a more complex working example of both the supervisor and the
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plant using the control-theoretic approach of Ramadge and Wonham, thereby explicitly

synthesising a supervisor. There are di�erent ways to represent a discrete-event system,

including Petri nets, �nite-state machines, and formal logic. We use �nite-state machines

to model a dextrous manipulation task because the �nite-state machine formalism is

su�ciently expressive for our purposes and we would like to exploit the existing body of

work in discrete-event control of �nite-state machines.

First, we present a description of the task. We state the assumptions required for

the discrete-event systems model and discuss possible strategies for using two �ngers to

measure several object properties during the manipulation task. Next, a summary of

discrete-event control theory is provided. Finally, the model and results of simulations

are discussed.

An earlier summary version of this paper appeared in [20].

2 Background

The purpose of this paper is to investigate a discrete-event systems approach to designing

a high-level supervisory controller for a dextrous manipulation task. We select a task

(described in Section 2.1) that has received considerable attention in the study of both

biological and robotic tactile systems and that has not been modeled by a discrete-event

system formalism. In addition, we propose a modeling strategy that allows exploratory

procedures (EPs) to be carried out in the course of the task. There are some tasks, like

the Grasp-Lift-Replace task, where it is possible to incorporate into the manipulation

task itself the determination of certain physical properties of an object. To that end we

indicate how two existing exploratory procedures, a friction EP and a sti�ness EP, could

occur with minimal intrusion during the Grasp-Lift-Replace task. To our knowledge,

incorporating EPs into the task itself has not been examined in existing work.
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Approach phase Loading phase Manipulation phase Unloading phase Release phase
Proximal Remote Remote Proximal

make contact break contact make contact break contact

Figure 1: Phases of a Grasp-Lift-Replace task and the tactile events that distinguish

phases as adapted from studies by Johansson and Westling(1987) by Howe et al. (1990);

after Howe et al. (1990).

2.1 The Grasp-Lift-Replace Task

Johansson and Westling [11] addressed the role of tactile signals during manipulations

performed by humans | in particular, manipulating objects using a precision grip. The

task selected for their series of studies is deceptively simple: an object is grasped between

the thumb and index �nger, lifted vertically o� the table, and subsequently replaced on

the table. The Grasp-Lift-Replace task is divided into a series of distinct phases where

a transition from one phase to the next is triggered by one or more of the four types of

tactile units in the �ngertips.

Of particular interest is the relationship between the grip force, which is the force

required to secure the object between the �ngers, and the load force, which is the vertical

lifting force required to overcome gravity. In a typical lifting task, the ratio between the

grip and load force remains constant after the initial contact with the object. To perform

the manipulation task smoothly, it is necessary to sense the coe�cient of friction at the

point of contact.

The series of experiments conducted by Johansson and Westling has contributed much

towards an understanding of how tactile sensors in the hands control �ne manipulation

tasks. To determine whether similar mechanisms would aid in the control of robot ma-

nipulation tasks, Howe and Cutkosky [8],[10] apply the hypotheses of the human studies

to a robotic system. The robotic Grasp-Lift-Replace task involves �ve phases which are

linked by four contact events (see Figure 1): the approach phase | the two �ngers

move towards the object in anticipation of the grasp; the loading phase | when both
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�ngers make contact with the object, the grip (horizontal) force is increased simultane-

ously with the load (vertical) force until the object is both secure in the grasp and lifted

o� the table, signaling the beginning of the next phase; the manipulation phase | con-

tact between the object and the table is broken, the object is lifted to a pre-determined

height and then returned to the table ; the unloading phase | the object is on the

table and the grip force is decreased; and the release phase | the �ngers break contact

with the object and move away to a neutral position. A change in contact marks the

transition from one phase to another. In fact, the contact events also indicate a change

from one low-level control mode to another. For instance, the end of the approach phase

is indicated by contact between the �ngers and the block (proximal make contact) and

signi�es a change from position to force control.

Robotic tactile sensors, described in [8], [9] and [24], detect the contact events and

trigger the transitions through the phases of the Grasp-Lift-Replace task. The specialised

sensors detect slip during �nger/object contact, as well as vibrational information to

identify the remote contact events.

2.2 Exploratory Procedures

Exploratory procedures (EPs), �rst described by Lederman and Klatzky [14], elucidate a

set of hand con�gurations and actions that humans consistently use to determine speci�c

properties of objects. The structured nature of the EPs provides a framework for the de-

velopment of similar procedures for robotic hands. Robotic EPs have been implemented

for dextrous manipulators [1],[25] and for robot �ngers[3],[6]. Some of the sampled ob-

ject properties include: gross object size (volume), surface texture, thermal properties,

weight, gross object shape, hardness/softness, and the shape of the contact area.

3 Task Description

We have selected the Grasp-Lift-Replace manipulation task of Howe and Cutkosky [10],

with an additional step to determine sti�ness, to be modeled as a discrete-event sys-
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tem. This provides a simple and concrete example against which we test the modeling

framework. Information available from the manipulation task includes three important

properties: coe�cient of friction between the �nger and the object, weight and sti�ness

of the object. These properties play a signi�cant role in grasping and manipulation and

sometimes need to be determined through tactile exploration.

To conform to the experimental set-up of Howe and Cutkosky, the following restric-

tions apply:

� The objects are block-shaped.

� The location of an object in space is known.

� Each �nger is equipped with a two-axis force sensor, to measure the grasp and load

forces.

� Only one �nger has a multi-element stress-rate sensor [24], to detect incipient slip.

� The dynamic tactile sensors are able to distinguish incipient slip from other vibra-

tions.

� Fingertip position information is available.

� Once the coe�cient of friction is estimated, the subsequent adjustment to the grasp

force is su�cient to ensure no further slip occurs.

To impose some reasonable constraints on the discrete-event system, the following as-

sumption is made: there is a maximum number of attempts allowed for aligning the

�ngers on either side of the object and for achieving stable contact | exceeding this

threshold results in starting the task again or, in the latter case, failure of the task with

no re-initiation permitted.

The task is divided into seven phases and includes two EPs, as illustrated in Figure 2.

The approach, loading, manipulation, unloading and release phases are adopted directly

from Howe et al. [10]. The squeezing phase incorporates the Sti�ness EP. The Friction

EP spans the loading and initial manipulation phases.
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Unloading phase Release phase
Remote Proximal

make contact break contactbreak contact
Remote

Loading phase
Proximal

make contact

Squeezing phase Manipulation phaseManipulation phase

Stiffness EPFriction EP

Approach phase

Figure 2: Phases of a Grasp-Lift-Replace task as modi�ed for the discrete-event model.

After successful completion of the approach phase, the Friction EP occurs. The

coe�cient of friction is calculated from normal and tangential force signals immediately

preceding the detection of incipient slip [24]. Starting with a small grip force (loading

phase), the load force is applied to lift the object (manipulation phase). When slip is

detected (by the multi-element stress rate sensor), the grip force is increased, and another

attempt is made to lift the object. This procedure repeats until the maximum number

of increments is exceeded or the object is successfully lifted. The lifted object is held

in static equilibrium at the end of the �rst manipulation phase. From the Friction EP

we measure the minimum grip force, Fg, and the load force, Fl. Once the Friction EP

is determined, the weight of the object, W , can be calculated. With an estimate of the

coe�cient of friction, �, for the contact between the �nger and the block, and the grip

force the weight W is given by W = 2�Fg = Fl.

The Sti�ness EP is patterned after the one-�nger \Hardness" EP of Dario et al. [6]

and constitutes the squeezing phase of the task. With the object held stationary at the

end of the �rst manipulation phase, the gripping force is increased by �Fg which we

call the squeezing force. This produces a deformation of the object by an amount �x,

which can be determined by the position of the �ngertips. The sti�ness is the ratio of

the squeezing force to the deformation produced, K = �Fg=�x. It is possible that the

deformation produced at each �nger is di�erent, though the squeezing force is the same,

because the object is not homogeneous. In that case, the sti�ness is taken as the average

of the two.
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4 Discrete-Event System Background

This work adopts the framework for discrete-event systems as described by Ramadge

and Wonham in [19]. A brief review of essential concepts, collected from [18],[19],[21], is

provided in this section.

A discrete-event system is a process characterised by sequences of events. In par-

ticular, a change in a system state of a process is precipitated by the occurrence of an

action or event, not merely by the passage of time. Ideally we would like to control the

undesirable behaviour of a discrete-event system by either preventing some events from

taking place or allowing | but not forcing | others to occur.

The uncontrolled discrete-event system is modeled by an automaton, called the plant,

of the following form:

G = (Q;�; �; qo; Qm)

where Q is a set of states; � is a non-empty set of event labels called an alphabet; � is

the transition function, a partial function � : ��Q! Q; qo 2 Q is the initial state; and

Qm � Q is the set of marker (terminal) states. When Q is �nite, G can be described as

a �nite-state automaton and can be represented by a directed graph where the nodes of

the graph are the states in Q, the arcs of the graph are the transitions de�ned by the

function �, and the set of labels for the arcs are the events in �. Thus for any event

� 2 � and an initial state qo 2 Q, �(�; qo) is de�ned (written �(�; q)!) if there is an arc

from qo to some other state labeled by �.

The set �� contains all possible �nite sequences, or strings, over � plus the null string

". The de�nition for � can be extended to ��

�("; q) := q,

(8� 2 �)(8s 2 ��)�(s�; q) := �(�; �(s; q)).

The language generated by G, also called the closed behaviour of G, describes all possible

event sequences that the discrete-event system can undergo

L(G) := fs : s 2 �� and �(s; qo)!g:
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The language Lm(G), or the marked behaviour of G, describes all possible event sequences

that represent completed tasks

Lm(G) := fs : s 2 �� and �(s; qo) 2 Qmg:

By de�nition, Lm(G) � L(G).

For any string s 2 ��, we say that t 2 �� is a pre�x of s if s=tu for some u 2 ��.

Thus every string s 2 �� has at least two pre�xes, " and s.

If L � ��, the pre�x closure of L is a language, denoted by L, consisting of all pre�xes

of strings of L

L := ft 2 ��jt is a pre�x of s; for some s 2 Lg:

Because every string is a pre�x of itself, L � L. A language is said to be pre�x-closed if

L = L.

To establish supervision onG, we partition the set of events � into the disjoint sets �c,

controllable events, and �uc, uncontrollable events. Controllable events are those events

whose occurrence is either preventable (i.e., may be disabled) or allowable (i.e., are said

to be `enabled'). Uncontrollable events are those events which cannot be prevented and

are deemed permanently enabled. A supervisor (or controller) may enable or disable

controllable events at any time during its observation of a sequence of events generated

by G. Thus the supervisor allows only a subset of L(G) to be generated.

Formally, a supervisor S is a pair (S;  ) in which S is an automaton

S = (X;�; �; xo; Xm)

where X is a set of states for the supervisor; � is the alphabet used by G; � is the

transition function, a partial function � : � � X ! X; xo is the initial state for the

supervisor; Xm is the set of marker states; and  , called a feedback map, is given by

 : ��X ! f0; 1g satisfying

 (�; x) = 1 if � 2 �uc; x 2 X;

 (�; x) 2 f0; 1g if � 2 �c; x 2 X:
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The number 0 is interpreted as the command \disable" and the number 1 as \enable".

That is,  is interpreted as a rule for disablement and ensures that uncontrollable events

are never disabled. The automaton S monitors the behaviour of G and changes state

according to the events generated by G. The control rule  (�; x) dictates whether �

should be enabled or disabled at the corresponding state in G.

The behaviour of G when it is constrained by S is described by the automaton S=G,

called the supervised discrete-event system:

S=G = (�; Q�X; (� � �) ; (qo; xo); Qm �Xm):

The behaviour of S=G is described by L(S=G) and Lm(S=G). The modi�ed transition

function (� � �) is de�ned as a mapping ��Q�X ! Q�X :

(� � �) (�; (q; x)) :=

8>>>>>><
>>>>>>:

(�(�; q); �(�; x)) if �(�; q)!;

�(�; x)!; and  (�; x) = 1;

unde�ned otherwise:

A supervisor S = (S;  ) is nonblocking for G if

L(S=G) = Lm(S=G):

That is, a nonblocking supervisor ensures that, in closed-loop, any sequence s that is

started (i.e., s 2 L(S=G)) can be completed to a marked sequence (i.e., s 2 Lm(S=G)).

The centralised control problem we consider is introduced in [18]:

Given a plant G over an alphabet � (with controllable events �c) and given

some non-empty languages A and E where A � E � L(G) �nd a nonblocking

supervisor S such that

A � L(S=G) � E:

What this formalism captures is problems where some process that can be described as

a �nite state machine is given (in this case, G), and some set of desirable (or \legal")

sequences is given (in this case, E) and a controller is sought to inhibit process behaviour
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so that only desirable sequences are generated. The language A describes the minimally

acceptable set of sequences that any closed-loop solution must contain.

To describe a solution to the above problem, it is convenient to use the notion of

controllability. Given G over an alphabet �, for a language K � L(G), K is controllable

with respect to G if

K�uc \ L(G) � K (1)

where K�uc := fst js 2 K and t 2 �ucg. If we think of E as a set of \legal" sequences,

then we want to know when it will be impossible to stop an illegal sequence from hap-

pening. It must be that the introduction of an uncontrollable event into a legal sequence

results in another legal sequence. If E is not controllable, a largest (or supremal) con-

trollable sublanguage of E (possibly ;), denoted supC(E;G), can always be found [18].

The standard solution to the control problem produces a supervisor that acts on G to

generate supC(E;G). The important point to note is that such a solution is said to be

\minimally restrictive" in that the supervisor disables events in G only when absolutely

necessary to prevent an illegal sequence from occurring. That is, the largest possible

subset of legal sequences is generated.

Software developed in the Systems Control Group in the Department of Electrical

Engineering at the University of Toronto (TCT931124), under the supervision of W. M.

Wonham, was used to compute all results reported here. This software tool performs op-

erations on discrete-event systems such as �nding the supremal controllable sublanguage

of a given legal language.

5 Modeling the Dextrous Manipulation Task

For the Grasp-Lift-Replace (GLR) task, we can model the capabilities of the two robotic

�ngers as �nite-state machines, which together play the role of the \plant", and we can

characterise desirable or \legal" sequences by a set of �nite-state machines (captured in

one composite automaton). Our goal is to �nd a supervisor to monitor the behaviour of
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the plant. This amounts to determining when the �ngers must be prevented from taking

certain actions. To solve this problem, we use the TCT software and input our �nite-state

descriptions of the plant G and the legal language E. The software produces supC(E;G),

the largest achievable legal behaviour. If a sequence can be generated by G but is not in

supC(E;G), it must be prevented from occuring. Thus, our problem solution is a listing

of commands that indicates when the �ngers must be prohibited from performing certain

actions.

The dextrous manipulator has two �ngers, and therefore we model the actions of each

�nger separately. However, there are some aspects of the GLR task (e.g., remote make

contact) in which the behaviour of both �ngers must be synchronised. To accommodate

these situations, our plant is the synchronous product of the �nite-state automata for

Finger 1 and Finger 2: G=FINGER1==FINGER2. An event occurs in the synchronous

product only if it occurs in all automata in which the event appears. Shared events lead

to coupled transitions which model the actions where the �ngers operate concurrently.

In general, a synchronous product models the behaviour of two �nite-state machines

operating concurrently. For example, consider G1 and G2 in Figure 3. The synchronous

product G1==G2 admits sequences that can be generated by G1 and G2 where events

common to both machines (in the example, only �) can occur only when each machine is

in a state where such an event is de�ned. In other words, initially either � or 
 can occur;

if � occurs, then � may occur next since G1 will be at state 2 and G2 at state 1 and �

is de�ned at each of these states. Events that are not common to both machines may

occur as long as they occur in the appropriate order de�ned by the transition function of

the �nite-state machine in which they appear. The behaviour of a synchronous product

may be characterised by an automaton whose state set is given by the Cartesian product

of the composite automata. When the event sets of G1 and G2 are disjoint, the resulting

behaviour of G1==G2 is called the shu�e product of G1 and G2. For a more formal

de�nition, see [7].

The �nite-state diagram for Finger 1 is given in Figure 4. Finger 2 is analogous.

Nodes represent states of the plant, while the arc labels are the events in �. An arc
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Figure 3: Example for synchronous product.

label superscripted with an asterisk(*) indicates an event in which both �ngers must be

synchronised. The remaining events are de�ned independently for each �nger. The initial

state is identi�ed by a small entry arrow and marker states are identi�ed by a small exit

arrow. The plant has only two marker (terminal) states: the initial state prior to the

start of the task, and the �nal state resulting from both �ngers breaking contact with

the object at the conclusion of the task. Note that because the initial state is marked,

the task of \doing nothing" is considered a completed task. The resulting automaton

for our dextrous manipulator (G = FINGER1==FINGER2), which de�nes all possible

coordinated and independent behaviour of the two �ngers, has a total of 90 states and

242 transitions.

There are many ways in which the GLR task can be decomposed into a set of discrete

events. We chose to describe each phase of the GLR task as a sequence of subtasks.

While these subtasks are not necessarily comprehensive, the set of events we describe

for our discrete-event system captures su�cient detail to illustrate the applicability of

our approach. For example, planning a �nger trajectory to the object is not speci�cally

enumerated and is subsumed by the approach1 and approach2 events. Similarly, there is

an assumption that underlying control exists to coordinate the continuous-time dynamics

of the system. The set of events in the GLR task is given by the set � below. A subscript

of 1 or 2 indicates the �nger to which the event relates. A superscript of * indicates an
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event shared by both �ngers.

� = fapproach1; approach2; retract finger1; retract finger2;

detect misalignment�; re-align with finger1�; align finger2�;

prox make C1; prox make C2; prox breakC1; prox breakC2;

unstable contact1; unstable contact2; suppress vib1;

suppress vib2; orient normal1; orient normal2;

f ing1 obj misalign; fing2 obj misalign; apply gripF
�;

apply loadF �; incip slip�; inc gripF �; remote breakC�;

dec gripF �; move to Z�; stiffness EP �; remote makeC�g

where, for i=1,2,

� approachi is the approach of Finger i towards the object;

� retract �ngeri is the removal of Finger i from the proposed contact location; unlike

prox break Ci, no contact has been made and �ngers are simply withdrawn;

� detect misalignment� occurs when Finger 2 is not lined up in space with Finger 1;

to check for this error state we assume position information available to determine

that the grip force is approximately collinear;

� re-align with �nger1� occurs when the two �ngers are not lined up in space and

Finger 2 must be moved to a position opposite to the reference point Finger 1;

� align �nger2� is the pre-contact alignment of Fingers 1 and 2 : Finger 1 is used as

a point of reference to determine a contact location for Finger 2;

� prox make Ci indicates that contact is made between Finger i and the object;

� prox breakCi is the retraction of the �ngers and signals the end of contact between

the �ngers and the object;

� unstable contacti is the result of an inability to suppress contact vibrations and

local contact is not su�ciently stable to continue the task;
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� suppress vibi means it is necessary to suppress any contact vibration between the

�nger and the object;

� orient normali is the action of rotating the �nger at the contact location until the

�nger is oriented normally to the object;

� �ngi obj misalign indicates that Finger i cannot be oriented normally to the object;

� apply gripF� is the application of a horizontal force to the object to secure it between

the �ngers;

� apply loadF� is the application of a vertical force to overcome gravity;

� incip slip� is the tactile sensing of incipient slip at a contact point;

� inc gripF� indicates an incremental increase in the grip force in response to the

tactile sensing of slip at a contact point;

� remote breakC� is the tactile sensor signal that the object has broken contact with

the table;

� dec gripF� is the incremental decrease of grip force to initiate incipient slip for

purposes of determining the coe�cient of friction at the contact point;

� move to Z� is the event requiring the object to be lifted to a pre-speci�ed height

above the table;

� sti�ness EP� indicates that the Sti�ness EP occurs;

� remote makeC� is the event signaled by a tactile sensor which indicates that the

object is once again in contact with the table.

The set of uncontrollable events for the two �ngers is

�uc = fdetect misalignment�; unstable contact1; unstable contact2;

f ing1 obj misalign; fing2 obj misalign; incip slip
�g:
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To construct a supervisor for G, we �rst detail the desired or legal behaviour of G. We

present four speci�cations, each of which can be expressed as a �nite-state automaton,

that de�ne the legal language E:

1. Finger 1 approaches the object before Finger 2.

2. Only two consecutive attempts (per approach) are allowed for aligning the two

�ngers prior to contact.

3. A total of two attempts to make contact will be permitted. After the third un-

successful attempt, the task terminates with both �ngers returning to a starting

position.

4. If incipient slip is detected just after the load force is applied, only two attempts to

adjust the grip force are allowed. If slip is sensed a third time, the task terminates

and both �ngers return to a starting position.

The automaton for each speci�cation is shown in Figure 5. It might not be obvi-

ous that these �nite-state machines do, indeed, capture the verbal speci�cations. The

modeling of the constraints for the GLR task was an iterative process where successive

attempts were incomplete due to sequences that would be missing from supC(E;G).

This led to new insights on how to alter the �nite-state machines that would generate

the system behaviour intended by the verbal speci�cations. It was also this stage of

the modeling that proved to be the most di�cult. Whenever verbal speci�cations must

be translated into a language (such as �nite-state machines) used by a formalism, the

same modeling problem arises: how do we know that this translation accurately re
ects

the original speci�cations? This uncertainty is not indigenous to discrete-event control

theory. Without a systematic approach, one would still need to produce an algorithm or

a computer program from a verbal description of the problem. In discrete-event control

theory, we can at least pinpoint the place where such modeling accountability is required.

We calculate E by taking the intersection of the four speci�cations: E = Spec1 \

Spec2 \ Spec3 \ Spec4. The legal language has 1412 states and 13724 transitions. For
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the third speci�cation, only the �rst �nger is shown; an isomorphic automaton is de�ned

for Finger 2, and Spec3 is the shu�e product of the two automata. It is important to

observe that the legal language presented here is one of many possible combinations of

constraints that could be prescribed for the GLR task.

The control problem we are interested in requires that the supervisor S must impose

the legal behaviour or the largest controllable subset of legal behaviour on G. Thus we

need an automaton that recognises only the desirable sequences as described by E. In

addition we need a set of control rules that will indicate whether or not a given event

at the current state of the plant is enabled or disabled. A supervisor that will solve

our problem can be constructed as follows: �rst, we compute supC(E;G), the largest

controllable sublanguage of E; then we de�ne a supervisor that ensures that only those

strings and all those strings of G that are in this controllable sublanguage are permitted

to occur. The minimally adequate language A will capture error-free executions of the

task. Formally, A is

fapproach1; approach2; align finger2
�; prox make C1; prox make C2;

suppress vib1; suppress vib2; orient normal1; orient normal2;

apply gripF �; apply loadF �; remote breakC�; dec gripF �; incip slip�;

inc gripF �; move to Z�; stiffness EP �; remote makeC�;

prox break C1; prox break C2g:

It can be checked that A � supC(E;G). That is, under control, the system is certainly

able to execute the GLR task if no error occurs. A supervisor does exist for the GLR

task and has 1318 states and 2684 transitions.

It can be seen that for our system, supC(E;G) 6= E. Thus there are some sequences

that are legal but lead to a bad state if followed by an uncontrollable event. For example,

suppose a string s = approach1 approach2 align �nger2� prox make C1. According to the

third speci�cation the following is a valid sequence:
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s0 := s unstable contact1 prox break C1

s unstable contact1 prox break C1

s unstable contact1 prox break C1 s

but if we let � =unstable contact1 then s
0� 2 L(G) and � 2 �uc so it cannot be prevented

from occurring. However, s0� would be illegal (i.e., s0� 62 E). Therefore, our control

solution ensures that even though s0 is legal, it is prevented from occuring since s0� is

illegal and if s0 happened, s0� could not be stopped.

We present representative results of our supervised discrete-event system S=G in the

next section.

6 Simulation Results

Our solution, by construction, ensures that the largest possible subset of the legal lan-

guage is met. We have conducted a series of simulations to illustrate that the supervisor

takes appropriate actions for various sequences of plant behaviour. The simulation takes

a desired sequence of events as input, performs a simple breadth-�rst search of the plant

and the supervisor, and, using the feedback map, ascertains the status of each event

(disable, enable). To illustrate that our controller correctly disables events, we selected

two cases: a scenario where the �ngers were not aligned on either either side of the block

after three consecutive attempts to re-align the �ngers, and an attempt at lifting the

block where incipient slip occurs three times in a row after subsequent increases in the

grip force.

6.1 Problems aligning the �ngers

The �rst sequence tests speci�cation two: the task is successfully started, but more than

three consecutive e�orts are attempted to align the �ngers in space.

approach1, approach2,

detect misalignment�, re-align with �nger1�,
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detect misalignment�, re-align with �nger1�,

detect misalignment�, re-align with �nger1�.

When we use this sequence of events as input to our supervisor S, the plant G, and

feedback map  , our simulation produces the following output:

Event approach_1 is enabled at state 0

Event approach_2 is disabled at state 0

Event approach_2 is enabled at state 1

Event detect_misalignment* is enabled at state 2

Event re-align_with_finger1* is enabled at state 6

Event detect_misalignment* is enabled at state 12

Event re-align_with_finger1* is enabled at state 24

Event detect_misalignment* is enabled at state 42

Event re-align_with_finger1* is disabled at state 69

The controller correctly disables the third attempt to re-align the �ngers. Additionally,

at state 0, the �rst �nger is required to approach the object before the second �nger.

6.2 Problems lifting the block

The second sequence demonstrates that the controller correctly handles the fourth spec-

i�cation: the block is grasped between the two �ngers but after two adjustments to

the grip force, remote contact is not yet broken and slip has occurred for a third time

(perhaps the block is too heavy or slippery).

approach1, approach2, align �nger2�,

prox make C1, prox make C2, suppress vib1, suppress vib2,

orient normal1, orient normal2, apply gripF�, apply loadF�,

incip slip�, inc gripF�,

incip slip�, inc gripF�,

incip slip�, inc gripF�.
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The output from the simulation produced the following control sequence:

Event approach_1 is enabled at state 0

Event approach_2 is disabled at state 0

Event approach_2 is enabled at state 1

Event align_finger2* is enabled at state 2

Event prox_make_C1 is enabled at state 3

Event prox_make_C2 is enabled at state 8

Event suppress_vib1 is enabled at state 17

Event suppress_vib2 is enabled at state 29

Event orient_normal1 is enabled at state 49

Event orient_normal2 is enabled at state 73

Event apply_gripF* is enabled at state 106

Event apply_loadF* is enabled at state 147

Event incip_slip* is enabled at state 194

Event inc_gripF* is enabled at state 248

Event incip_slip* is enabled at state 313

Event inc_gripF* is enabled at state 390

Event incip_slip* is enabled at state 472

Event inc_gripF* is disabled at state 564

The controller cannot disable an uncontrollable event (incip slip�) so to meet the fourth

speci�cation (i.e., allow only two chances to increase the grip force and avoid further

incipient slip) the third occurrence of inc gripF� is disabled.

7 Discussion

Previous discrete-event system models of robotic applications have presented relatively

coarse decompositions of the task under consideration. We believe that models of dex-

trous manipulation tasks require a �ner breakdown to more accurately represent the
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integration of sensors into the task. While the planar GLR task has well-de�ned roles for

sensors, such delegation may not be as straightforward for a new task. A �ner granularity

of the model will help in understanding how the dextrous manipulation task should be

performed.

The complexity of the model is a function of the level of detail for the task descrip-

tion as well as the number of �ngers on the dextrous robot hand. We chose to model

the behaviour of a planar two-�ngered manipulator; however, many dextrous manipula-

tion tasks can be accomplished with only three �ngers and thus a di�erent manipulator

with more �ngers would not necessitate exponential growth in the size of the plant and

supervisor.

We have presented the design of a discrete controller for a dextrous manipulator and

have illustrated some of its functionality with a computer simulation. Incorporating

the controller into part of the overall control of a robot hand raises many issues. At

the implementation level, in the event that there is more than one way to accomplish

the task, some events or transitions may have to be prioritised. For instance, if at a

particular state there are several transitions that will eventually lead to the �nal state

some criteria must determine which one to chose. Additionally, Leduc and Wonham [15]

recently described the complications of implementing a discrete controller. For example,

very large systems are best served by a modular control strategy, thereby reducing the

size of the supervisor by taking advantage of obvious parallelism in the application. There

is no parallelism inherent to the GLR task and thus this would not be a useful strategy

for reducing the size of the supervisor.

One of the di�culties we encountered in the modeling of the GLR task was capturing

the uncontrollable event of slip. Ideally, in keeping with the Ramadge-Wonham model,

the event of incipient slip should be self-looped; however, since an arbitrary number of

slips without a corresponding increase in the grip force would be illegal, controllability

would ensure that the task would end before ever getting to a state where incipient

slip could occur. Thus we had to impose the control of slip into the plant by removing

the self-loop and replacing it with the incip slip�/inc gripF� loop. This is because the
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interpretation of transitions in the Ramadge-Wonham model is that an event can occur,

not that it must occur. So if there is a slip event that leads out of some state Y and the

inc gripF� event also leads out of Y, the Ramadge-Wonham model does not provide a

way to guarantee that inc gripF� must occur.

8 Conclusions

This initial study suggests that the discrete-event control theory of Ramadge and Won-

ham provides a useful formalism for capturing the high-level structure of a robotic dex-

trous manipulation task. Discrete-event control theory o�ers a simple methodology for

describing the characteristics of a plant and for determining the existence of a supervisor.

If a supervisor exists, then we can guarantee that there exist sequences of events that

will result in a completed task. Describing the desired behaviour of the plant requires

only the speci�cation of a �nite set of constraints. Similarly, changing any aspect of the

plant's \good" behaviour is a matter of adding or removing a constraint.

We have considered the centralised control problem where one supervisor tracks the

behaviour of the plant, and all events are observable. Our study revealed that more

complicated models capture the richness of a representative sensory-driven dextrous ma-

nipulation task. Future work would include an examination of timed or even hybrid

models to address the issue of providing a more accurate description of sensor behaviour

as well as handling situations where events can be forced to occur and not merely enabled.
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Figure 4: Finite-state automaton of Finger 1 for the Grasp-Lift-Replace task. Due to

space limitations, the automaton has been separated into two parts, where state X of the

top diagram is understood to be state X of the bottom diagram.
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Figure 5: Speci�cations 1, 2, 3 and 4 expressed as �nite-state automata. It is assumed

that all other events in � are self-looped (i.e., can occur at every state).

28


