
11/30/95 1

CORDS Schema Integration Environment *

November 1995
External Technical Report

ISSN 0836-0227-95-391

Patrick Martin and Wendy Powley
Dept. of Computing and Information Science

Queen’s University at Kingston
Kingston, Ontario
Canada K7L 3N6

({martin, wendy}@qucis.queensu.ca)

Abstract
The CORDS Multidatabase System (MDBS) provides applications with an integrated
view of a collection of distributed heterogeneous data sources. Applications are presented
with a relational view of the available data and are able to access the data using standard
SQL operations. An application's view of the data is defined by a process called schema
integration. This paper describes the schema integration method developed for the
CORDS MDBS and outlines a set of tools to support the method.

1. Introduction
Recent progress in communication and database technologies has drastically changed user
data processing capabilities. The current data processing situation is characterized by a
growing number of applications that require access to data from various pre-existing
databases distributed among sites in a network. These databases are pre-existing in the
sense that they were created independently, in an uncoordinated way, without any
consideration of future integration. They can also be heterogeneous, that is they may use
different underlying data models, different data definition and manipulation facilities, and
run under different operating systems and on different hardware [2].

There are three approaches to integrating these databases. The first is physical
integration of all data needed by an application into one database. The drawbacks to this
method are that it is expensive, it does not allow maintaining data independently, and it
leads to unnecessary replication. The second approach is providing interoperability, that is
integration at the access language level, which provides users with functions for
manipulating data in visibly distinct databases [10]. Interoperability is convenient for

* This research is supported by IBM Canada Ltd. and the National Science and Engineering Council of
Canada.

11/30/95 2

database administrators since it does not require data integration, but it places an extra
burden on application developers by forcing them to explicitly deal with a variety of data
sources. The third approach is logical integration of all data used by an application into
one logical database which gives the application developers a single interface and hides the
differences among the component databases (CDBSs). Popular names for this type of
system are federated database systems and multidatabase systems (MDBSs).

One way to view the work in the area of MDBSs is to look at the systems and
solutions in the three dimensional space defined by distribution, heterogeneity and
autonomy. The prior research in distributed databases dealt with the problems of
distribution. The current research is focused on the problems related to heterogeneity, and
the problems related to autonomy have so far not been addressed. Most of the research
into heterogeneity has studied system issues such as transaction management, concurrency
control and recovery. Much less progress can be claimed regarding the semantic issues of
heterogeneity [15].

Schema integration, within the context of MDBSs, is the process of combining
related schema objects from multiple CDBSs into a single logical view of the combined
data. Semantic heterogeneity appears during schema integration in the form of schema
conflicts among the CDBSs’ schemas which result from either the use of different
structures for the same information or from the use of different specifications for the same
structure, which includes different data models, names, data types and constraints for
semantically equivalent objects.

In the paper we present a schema integration methodology and describe a set of
tools to support the methodology. The remainder of the paper is structured as follows:
Section 2. outlines the CORDS MDBS project, and briefly describes the system structure
and the schema architecture of the MDBS. Section 3. presents the schema integration
environment developed for the CORDS MDBS. It discusses a method for schema
integration based on an analysis of the conflicts present in the CDBSs’ schemas and then
outlines a toolkit developed to support the method. Section 4. presents an integration
scenario which uses the method and toolkit. Section 5. discusses related work and
Section 6. summarizes the paper.

2. CORDS MDBS
CORDS (COnsortium for Research on Distributed Systems) was a collaborative research
project involving the IBM Centre for Advanced Studies, IBM Research and a number of
universities in Canada and the United States. The focus of CORDS was the development,
operation, and management of distributed applications. It concentrated on issues within
five core areas: application management services, data management services, visualization
and user interfaces, development languages and tools, and midware and high speed
networks [5].

The CORDS MDBS [2] as indicated by the system architecture diagram in Figure
1, is a full-function DBMS. The common data model used in the CORDS MDBS is the
relational model, so schemas define a collection of data in terms of relational tables and
their columns and any applicable constraints. Applications interact with a MDBS Server

11/30/95 3

via a library of interface functions called the MDBS Client Library. A MDBS Server
performs DBMS functions, such as query processing and optimization, transaction
management, and security, at the global level. A MDBS Server connects to a CDBS
through a Server Library which accepts SQL requests from the MDBS, interacts with the
CDBS through its normal application program interface, and then translates the response
into the form expected by the MDBS. CDBSs currently supported by the prototype
include the Empress1, Oracle2, and DB2/6000 relational systems, the IMS3 hierarchical
database system, and VAX DBMS4 network database system. A key difference between
the CORDS MDBS and a commercial DBMS is its reliance on services provided by the
surrounding environment, in particular security services, transaction management services,
and an information repository service to maintain the MDBS Catalog.

The MDBS Catalog is the central repository for metadata needed by the
multidatabase system. Three classes of metadata are required: schemas, mappings, and
descriptions of CDBSs. Two types of schemas are stored: export schemas and MDBS
schemas. An export schema defines the data made available to the MDBS from a CDBS
and MDBS schemas define collections of data at the MDBS level which are drawn from
the exported data. The mappings needed to transform export schema objects into MDBS

1 Empress is a trademark of Empress Software Corporation.
2 Oracle is a trademark of Oracle Corporation.
3 DB2/6000 and IMS are trademarks of International Business Machines Corporation.
4 VAX DBMS is a trademark of Digital Equipment Corporation.

Server Library

Request Coordinator

Catalog Parser

View
Integration

Decomposition
& Optimization

Execution
Engine

D
U

A

L
ib

ra
ry

Client Library

Client Library Client Library

Server Library Server Library Server Library

Metadata
Repository
(X.500)

Global
Transaction
Manager

Schema
Integration

MDBS
Application

CDBS CDBS CDBS

Figure 1: CORDS MDBS Architecture

11/30/95 4

schema objects are created during the schema integration process. As shown in Figure 1,
the schema integration tools are viewed as an application by the MDBS.

3. Schema Integration Environment
The process of schema integration in the CORDS MDBS takes schemas from a set of
CDBSs and produces one or more integrated views of the available data. We do not define
a single all-encompassing global schema but instead define MDBS schemas to provide the
data for individual applications, or groups of applications. MDBS schemas are equivalent
to federated schemas as defined by Sheth and Larson [14]. MDBS schemas are made up
of virtual global relations we call MDBS Views.

MDBS Views are views that span multiple heterogeneous databases. They are like
relational views in that they are not physically materialized but rather are stored as
mappings which are invoked whenever an MDBS View is accessed. The syntax for
MDBS Views extends the standard SQL view definition facility with support for attribute
contexts and transformation functions. Attribute contexts are used to describe the
semantics of the attributes and transformation functions are used to resolve several types
of schema conflicts.

3.1. Schema Conflicts
The key issue in schema integration is the resolution of conflicts among the schemas. A
schema integration method, therefore, can be viewed as a set of steps to identify and
resolve conflicts. Schema conflicts represent differences in the semantics different schema
designers associate with syntactic representations in the data definition language so it is
not practical to attempt to fully automate the schema integration process. Our approach is
to develop a method and a set of tools to assist the schema integrator. Figure 2 contains a
set of example CDBS schemas which are used to illustrate the types of schema conflicts
discussed below. The schemas describe data for the management of individual research
projects within CORDS at three of the member universities. SQL table definitions of the
CDBS relations are given in Appendix A.

Attribute Relation Schema
Data Type X
Scale X
Precision X
Default Value X
Name X X X
Key X
Isomorphism X X
Union Compatibility X
Abstraction Level X X
Missing Data X
Integrity Constraint X

Table 1: Schema Conflict Classification

11/30/95 5

The first step in developing a schema integration method is to identify and classify
the schema conflicts handled during integration. A number of classifications have been
proposed, for example Kim and Seo [8] and Missier and Rusinkiewicz [10]. Our
approach, as shown in Table 1, classifies conflicts according to two dimensions: location
(columns in Table 1) and type (rows in Table 1). The location of a conflict, given that our
integration model is based on the relational data model, can be either in an attribute, within
a relation or within a schema (that is involve multiple relations). Our set of conflict types,
based on the categorization of Missier and Rusinkiewicz, include the following:

1. Data type conflicts occur when semantically equivalent attributes have different types.
For example, the identifiers for research projects in CDBS1, “Project.Id”, and in
CDBS2, “ProjectInfo.ProjId”, are of type integer and char(10), respectively.

2. Scale conflicts arise when semantically similar attributes use different units of measure.
For instance, the project budgets in CDBS2, “ProjectInfo.Budget”, and CDBS3,
“Proj.pBudget”, are in thousands of dollars and in dollars, respectively.

3. Precision conflicts arise when different granularity’s are used for semantically
equivalent attributes. For example, email addresses in CDBS1, “Members.Email”, and
in CDBS2, “Personnel.Email”, are local addresses and full Internet addresses,
respectively.

4. Default value conflicts occur when attributes defined in the same domain carry
different default values from that domain. For example, the default values for project
lengths in CDBS1 (“Project.Length”) and CDBS3 (“Proj.pLength”) are 0 years and 1
year, respectively.

5. Name conflicts occur when either semantically similar objects carry different names
(synonyms), or when semantically unrelated objects carry the same name (homonyms).
For instance, project participants are called “Members” in CDBS1 and “Personnel” in
CDBS2.

6. Key conflicts occur when two or more relations model semantically equivalent objects
but have semantically different keys. For example, the key for the project participant
table is “Members.Phone” in CDBS1 and “Personnel.EmpNo” in CDBS2.

7. Schema isomorphism conflicts arise when a different number of attributes, or
relations, are used to describe semantically similar objects. For instance project
participants’ addresses are described by the combination of the attributes
“Members.Street”, “Members.City” and “Members.AptNo” in CDBS1 and by the
single attribute “Personnel.Address” in CDBS2.

8. Union compatibility conflicts occur between two relations if there is a mismatch in
the number, or in the domains, of the attributes. For example, the relations
“Deliverables” in CDBS2 and “Milestones” in CDBS3 are not union compatible.

11/30/95 6

9. Abstraction level incompatibility conflicts occur when semantically similar objects
are described at different levels of abstraction. For example, project participants are
described as either “Employees” or “Students” in CDBS3 and as the more general
entity “Members” in CDBS1.

10. Missing data conflicts arise when an object is described in one schema by a subset of
the attributes used in the other schema. For example the relation “Deliverables” in
CDBS2 contains a subset of the attributes in “Milestones” in CDBS3.

11. Integrity constraint conflicts arise when there are different integrity constraints for
semantically similar objects. This type of conflict is not considered in this paper but is
discussed elsewhere [3].

3.2. Schema Integration Method
Our schema integration method decomposes schema integration into a number of tasks
which may be linked together into an iterative process as shown in Figure 3. We expect
that a user may return to any of the previous steps and, using the feedback obtained by
moving through the process, either modify or augment the schemas at any stage. The steps
break down conflict resolution according to the locations of the conflicts.

CDBS1 - Queen's University

Project (Id, Name, PI, Description, Budget, Length)
Members (Name, Position, EMail, Phone, Office, Street, City, AptNo, Wage)
MileStones (Name, ProjectId, ExpDelDate, ActDelDate)

CDBS2 - University of Michigan

ProjectInfo (ProjId, Name, Leader, Budget, StartDate, EndDate)
Personnel (ProjId, EmpNo, Name, Address, Phone, OfficeNo, Email, Salary)
Deliverables (Name, ProjId, DeliveryDate)

CDBS3 - University of Western Ontario

Proj (pId, pName, pDescription, pLeader, pStatus, pBudget, pLength)
Employees (eNum, eProj, eName, eAddress, ePhone, eEmail, eSalary)
Students (sNum, sProject, sName, sAddress, sPhone, sOffice, sEmail, sSalary)
Milestones (mName, mProjectId, mDescription, mDate)

** Primary keys for the relations are shown in italics.

Figure 2: Example CDBS Schemas

11/30/95 7

3.2.1. Export
Exporting a local schema (or portion of a local schema) makes that schema, and its
corresponding data, available to the MDBS. The export task involves two activities:
translating the local schema into its corresponding representation in the common data
model, and providing the contexts through which the data can be interpreted.

Attribute contexts support the resolution of attribute level conflicts by providing a
mechanism to describe the semantic properties of the attributes, for example data type,
scale, precision, etc. The context of an attribute consists of a number of facets where each
facet corresponds to a semantic property. The facets included in the context are

1. uniqueness - constraint specifies that two tuples cannot have the same value for the
attribute;

2. cardinality - constraint on the number of values that can be present in the attribute
(just NULL or NOT NULL in relational);

3. type - set of values from which an attribute may draw;

4. precision - specifies the granularity of the data values;

5. scale - specifies the interpretation of the values, for example unit of measurement for
numeric and language or code for nonnumeric;

6. default value - specifies the default value assumed if no value is provided.

Export

Resolve Attribute Conflicts

Merge

Input Schemas

Export Schemas

MDBS Schema

Resolve Relation Conflicts

Resolve Schema Conflicts

MDBS Views

Figure 3: Schema Integration Process

11/30/95 8

3.2.2. Resolve Attribute Level Conflicts
Corresponding attributes from the various export schemas are identified and mapped to a
MDBS attribute using the MDBS View definition. Name conflicts are resolved by this
mapping. The other types of attribute level conflicts, which involve the context facets, are
resolved by the introduction of transformation functions to map the export attribute
contexts to the MDBS attribute context. A transformation function is a user-defined
function which is applied to the data from a CDBS to convert it into the format expected
by the MDBS user. For example, a transformation function may be defined to convert a
data value expressed in inches into one expressed in feet, or transformation function might
be used to combine a number of attributes into a single attribute to resolve a schema
isomorphism conflict.

3.2.3. Resolve Relation Level Conflicts
Relations from the various export schemas that represent semantically equivalent objects
are identified and conflicts that occur within the scope of these relations are resolved using
transformation functions.

3.2.4. Resolve Schema Level Conflicts
Schema level conflicts involve more than one relation within a single export schema.
Conflicts of this type are usually resolved by combining the relations into a single logical
relation using a join or union within the MDBS View statement.

3.2.5. Merge
A MDBS View definition is created that combines the corresponding MDBS Views
created from the individual export schemas in the previous steps.

11/30/95 9

3.3. Schema Integration Toolkit
The CORDS Schema Integration Toolkit is a set of tools and services to support a MDBS
DBA using the schema integration method described above to create MDBS Schemas. It
has an AIX Windows graphical interface and was developed on an RS/6000 machine. It
runs as an application of the CORDS MDBS. The structure of the prototype is shown in
Figure 4. A user performing the integration tasks described in Section 3.2 uses one or
more of the available integration tools to carry out each task. The integration tools, in
turn, are implemented using one or more of the Common Services provided by the
environment.

The integration tools available include the following:

1. Schema Translator: The schema translator is a tool that automates the translation
from one data model to another. It takes as input a file containing the local schema
expressed in terms of the local data model. The output is a file containing the schema
expressed in terms of the desired data model. Currently we support translation among
schemas defined in relational, hierarchical, network and object-oriented models. The
schema translator automatically generates basic export table definitions from the
translated schema which can then be manually edited, augmented with facet
information, then submitted to the MDBS. The translation process is described in
detail elsewhere [1].

Export
Resolve
Attribute
Conflicts

Merge

Edit Repository
Interface

Browse
Graphical
Display

Integration Tasks

Common Services

MDBS
Catalog

Schema
Translator

Thesaurus
Trans Fcn
Library Mgr

MDBS View
Compiler

Resolve
Relation
Conflicts

Resolve
Schema
Conflicts

Integration Tools

Figure 4: Schema Integration Toolkit

11/30/95 10

2. Thesaurus: The thesaurus is used to help with name conflict resolution. It stores
information about relationships, in particular synonyms, among object names. Users
are able to add information to the thesaurus as new names and relationships are
encountered. The thesaurus analyzes a schema expressed in the common data model
and highlights possible relationships among names in the schema with names currently
stored in the thesaurus. It may also be used in conjunction with the browser.

3. Transformation Function Library Manager : A number of basic transformation
functions have been implemented in the schema integration environment; for example,
functions that convert integers to character strings or convert from one character
length to another. These functions are maintained in a library by the Transformation
Function Library Manager. Descriptions of the transformation functions are stored in
the MDBS Catalog and may be accessed using the Browser. In resolving a conflict,
the user searches the Catalog for an appropriate transformation function and, if one is
found, a call to that function is included in the MDBS View definition. Transformation
functions are later invoked from the library by the MDBS. If a suitable transformation
function is not found in the library the user can invoke the Editor, create and compile
new transformation functions, and then add them to the library.

4. MDBS View Compiler: The MDBS View Compiler parses and checks an MDBS
View definition and then stores the appropriate information in the MDBS Catalog.

The Common Services available in the Schema Integration Environment are used
by the integration tools or may be invoked directly by a user. They include the following:

1. Editor : A common editor is used to create and modify MDBS View definitions and
transformation functions.

2. Catalog Interface: The Catalog Interface is a set of routines used to access the
MDBS Catalog. The implementation of the Catalog and the interface are described
elsewhere [9].

3. Browser: The MDBS catalog browser allows users to browse and query the catalog
to find out what objects are currently available via the MDBS. The browser facilitates
the selection of names and attribute types during the exportation stage in order to
simplify the integration mappings. Filters allow users to locate items with particular
properties. The implementation of the browser is described in detail elsewhere [9].

4. Graphical Interface: A common graphical interface is used by all the tools to
facilitate easy movement through the steps of the schema integration process.

4. Scenario for Schema Integration
In this section, we provide a sample scenario to show how the tools and method can be
used to combine data from different sources into a single logical view. To illustrate, we
use the sample component database schemas shown in Appendix A. Personnel
information is stored local to each CDBS. For our scenario, we show how this
information may be logically combined in a step-by-step manner so that it may be accessed
as a single logical relation.

11/30/95 11

4.1. Export
Export schemas are defined using an extended SQL. An export table definition includes
the export table name (which must be unique within the MDBS), the attribute names and
types, and information about the component data source (the site, the database and the
table where the actual data resides). Unique names are created by concatenating site
name, schema name and table name. Additional semantic information may be added to the
attributes by the inclusion of facets. The current prototype allows for the specification of
cardinality, domain, range, scale (units) and default values.

Initial versions of export tables are produced from the CDBS schemas by the
Schema Translator. They are then refined by the DBA using the editor supplied with the
schema integration toolkit. Once an export schema has been defined, the DBA submits it
to the MDBS where it is parsed and stored in the MDBS catalog.

Figure 5, Figure 6 and Figure 7 show the export tables which are selected for
inclusion in our sample MDBS view. These tables contain semantically equivalent
information, namely information about people involved in research projects at different
sites. The browser facilities may have been used to locate the participating export tables.

EXPORT TABLE UMichiganMembers (
 ProjId char(10),
 Name char(40),
 EmpNo integer
 (Cardinality = “not Null”),
 Address char(80),
 Phone integer,
 Salary dollar
 (Units = “US dollars”),
 OfficeNo char(6),
 Email char(30)
)
from umichigan.CDBS2.Personnel;

Figure 5: Michigan Export Table

11/30/95 12

EXPORT TABLE QueensMembers (
 Name char(40),
 Position char(20)
 (Domain = (student, faculty, research)),
 Wage dollar
 (Units = “canadian dollars”),
 Email char(30),
 Phone integer
 (Cardinality = “not Null”),
 Office integer,
 Street char(40),
 City char(20),
 AptNo char(10)
) from queensu.CDBS1.Members;

Figure 6: Queen's Export Table

EXPORT TABLE WesternStudents (
 Num integer
 (Cardinality =“not Null”),
 Project integer,
 Name char(30),
 Address char(60),
 Phone integer,
 Office integer,
 Salary dollar
 (Units=“canadian dollars”),
 Email char(60)
) from westernu.CDBS3.Students;

EXPORT TABLE WesternEmployees (
 Num integer
 (Cardinality =“not Null”),
 Project integer,
 Name char(40),
 Address char(80),
 Phone integer,
 Salary dollar
 (Units=“canadian dollars”),
 Email char(60)
) from westernu.CDBS3.Employees;

Figure 7: Western Export Tables

11/30/95 13

4.2. Resolve Attribute Level Conflicts
The next step is to identify the attributes that are to be included in the integrated schema.
For our integrated view, we include the name, address, email address, and salary
information for each project member. The Thesaurus tool is used to discover potential
correspondences among attributes based on the names used for the attributes. Name
conflicts are then resolved by mapping the export attributes to a common generic name
using the MDBS View definition statement.

Once corresponding attributes are identified the Transformation Function Library
Manager is used to analyze the contexts of the attributes and to suggest transformation
functions, if required, to map the export attributes to the view attributes. If an appropriate
transformation function is not already available in the library, the DBA uses the editor to
create a new transformation function and then includes the new function in the library.
Figure 8, Figure 9 and Figure 10 show the creation of four views (one corresponding to
each of the export tables) in which several attribute conflicts are resolved through the use
of transformation functions.

4.3. Resolve Relation Level Conflicts
We next identify the relation level conflicts. Resolution of these conflicts are shown in
Figures 8, 9 and 10. Name conflicts can be resolved by renaming via the MDBS view
definition. The schema isomorphism conflict concerning the address information across the
three CDBSs is resolved by applying a transformation function “StringConcat” to the
three fields in the Queen’s table to produce a single address field.

To resolve the key conflict present in our example, Phone, the key in
CDBS1.Members, is used as an employee identifier. Since employee numbers may not be
unique across universities an attribute to identify the university is added to the views with
the “EXPLICIT” function and the key becomes the combination of “University” and
“EmpId”.

CREATE VIEW MichiganView (
 Name char(80),
 Address char(100),
 University integer,
 EmpId integer
 (Cardinality = “not Null”),
 Email char(60),
 Salary dollar
 (Units = “US dollars”)
)
AS SELECT ToChar80(Name), ToChar100(Address), EXPLICIT(1), EmpNo,

ToChar60(Email), UStoCanDollar(Salary)
 FROM UMichiganMembers;

Figure 8: Michigan View - Resolve Attribute and Relation Conflicts

11/30/95 14

4.4. Resolve Schema Level Conflicts
There is an abstraction level incompatibility between the Western views in Figure 10
which consider employees and students separately, and the other two CDBSs which use a
single, more general, relation to capture both types of project participants. The two
Western views are combined into a more general one in Figure 11.

4.5. Merge
The intermediate views are merged together into a final MDBS View in Figure 12.

CREATE VIEW QueensView (
 Name char(80),
 Address char(100),
 University integer,
 EmpId integer
 (Cardinality=“not Null”),
 Email char(60),
 Salary dollar
 (Units = "canadian dollars")
)
AS SELECT ToChar80(Name), StringConcat(Street, City, AptNo),

EXPLICIT(2), Phone, ToChar60(Email), Wage
 FROM QueensMembers;

Figure 9: Queen's View - Resolve Attribute and Relation Conflicts

11/30/95 15

CREATE VIEW WesternStdView (
 Name char(80),
 Address char(100),
 University integer,
 EmpId integer
 (Cardinality=“not Null”),
 Email char(60),
 Salary dollar
 (Units = "canadian dollars")
)
AS SELECT ToChar80(Name), ToChar100(Address), EXPLICIT(3), Num,

Email, Salary
 FROM WesternStudents;

CREATE VIEW WesternEmpView (
 Name char(80),
 Address char(100),
 University integer,
 EmpId integer
 (Cardinality = “not Null”),
 Email char(60),
 Salary dollar
 (Units = "canadian dollars")
)
AS SELECT ToChar80(Name), ToChar100(Address), EXPLICIT(3), Num,

Email, Salary
 FROM WesternEmployees;

Figure 10: Western Views - Resolve Attribute and Relation Conflicts

CREATE VIEW WesternView (
 Name char(80),
 Address char(100),
 University integer,
 EmpId integer,
 Email char(60),
 Salary dollar
 (Units = "canadian dollars")
)
AS SELECT Name, Address, University, Num, Email, Salary
 FROM WesternStdView
 UNION
 SELECT Name, Address, University, Num, Email, Salary
 FROM WesternEmpView;

Figure 11: Western Combined View - Resolve Schema Conflicts

11/30/95 16

5. Related Work
Johannesson and Jamil [7] observe that, in most approaches to schema integration in the
literature [4,6,11,12,16], the schema integration process can be divided into three major
phases: schema comparison, schema conforming and schema merging. Schema
comparison involves analyzing and comparing schemas in order to determine
correspondences, in particular different representations of semantically equivalent objects.
Schema conforming transforms schemas in order to increase their similarity, and schema
merging produces the integrated schema. The schema integration method presented here
contains these three activities though not in distinct phases. The schema comparison and
conforming activities are blended throughout the export and conflict resolution steps of
our approach.

Schema integration methods may be grouped according to whether they are
procedure-based or assertion-based. Assertion-based approaches [16], use assertions to
state correspondences between constructs in the different CDBS schemas. The assertions
are then used to guide the integration. An advantage of this type of approach is that
assertions can be “model-independent”. Procedure-based approaches [4,6,11,12]
manipulate the input schemas directly. Integration is typically performed by creating views
on top of the input schemas. Approaches of this type assume a particular common data
model. The method discussed in this paper is a procedure-based approach.

Our work is different from most methods presented in the literature, with the
exception of Pegasus [12], in that it is part of a working MDBS system and it deals with

CREATE VIEW CORDSMembers (
 Name char(80),
 Address char(100),
 EmpId integer,
 University integer,
 Email char(60),
 Salary dollar
 (Units = "canadian dollars")
)
as SELECT Name, Address, PhoneNumber, University, Email, Salary
 FROM QueensView
 UNION
 SELECT Name, Address, EmpId, University, Email, Salary
 FROM MichiganView
 UNION
 SELECT Name, Address, EmpId, University, Email, Salary
 FROM WesternView;

Figure 12: Final Merged View

11/30/95 17

the complete range of activities associated with schema integration from schema
translation of heterogeneous schemas through to schema merging.

Our notion of attribute contexts is based on work by Sciore, Siegel and Rosenthal
[13] which uses semantic contexts to support interoperability. They introduce the concept
of a semantic value, which is a data value together with its associated context, as the unit
of information exchange between information systems. This exchange is handled by a new
system component called a context mediator. We use contexts for a similar purpose,
namely to describe the semantic properties, or facets, of a data value. The context
information is used to guide the user in locating, and/or creating, appropriate
transformation functions which perform some of the duties of the context mediator.

6. Summary
Semantic heterogeneity is one of the more difficult issues in MDBSs. The CORDS MDBS
provides the CORDS Schema Environment to deal with the problem. We have described
the schema integration method and integration toolkit that compose the environment.
Schema integration is a complex process. Our approach has not been to try and automate
integration but rather to provide the user with an organized approach and a set of tools
that operate within a common environment.

Our schema integration method is based on the concept of MDBS Views, an
extension of relational views, which span multiple heterogeneous CDBSs. MDBS Views
are a mechanism with which a user may perform the logical integration of data and
subsequently transparently access the data in the CDBSs. We provide a classification of
possible schema conflicts according to both type and location. The schema integration
method then uses the classification to divide the integration process into a series of steps.
The process is illustrated by a schema integration scenario and example.

An important aspect of the schema integration toolkit is that it supports the user
through all phases of the integration process within a common working environment. The
integration tools share a number of common services and the metadata for all phases of
the integration is stored in a common repository, the MDBS Catalog. The tools automate
some tasks in the integration process and support the user in performing others.

References

[1] R. Abu-Hamdeh, J. Cordy and P. Martin. Schema Translation using Structural
Transformation. Proc. of CASCON' 94: IBM Centre for Advanced Studies
Conference, 202 - 215 (October 1994).

[2] G. Attaluri, D. Bradshaw, N. Coburn, P.-A. Larson, P. Martin, A. Silbershatz, J.
Slonim and Q. Zhu. The CORDS Multidatabase Project. IBM Systems Journal 34(1),
39 - 62 (1995).

[3] P. Baliga. Computing Constraints on Multidatabase Views. M.Sc. Thesis, Dept. of
Computing and Information Science, Queen’s University (1994).

11/30/95 18

[4] C. Batini, M. Lenzerini and S. Navathe. A Comparative Analysis of Methodologies for
Database Schema Integration. ACM Computing Surveys 18(4), 323 - 364 (1986).

[5] M. Bauer, N. Coburn, D. Erickson, P. Finnigan, J. Hong, P.-A. Larson, J. Pachl, J.
Slonim, D. Taylor and T. Teory. A Distributed System Architecture for Distributed
Application Environment. IBM Systems Journal 33(3), 399 - 425 (1994).

[6] U. Dayal and H. Hwang. View Definition and Generalization for Database Integration
in a Multidatabase System. IEEE Trans. on Software Engineering 10(6), 628 - 645
(1984).

[7] P. Johannesson and M. Jamil. Semantic Interoperability Context Issues and Research
Directions. Proc. of the Second International Conference on Cooperative Information
Systems, 180 - 191 (May 1994).

[8] W. Kim and J. Seo. Classifying Schematic and Data Heterogeneity in Multidatabase
Systems. IEEE Computer 24(12), 12 - 18 (Dec. 1991).

[9] P. Martin and W. Powley. Storing MDBS Catalog Information in an X.500 Directory
Service. Proc. of CASCON’94, IBM Centre for Advanced Studies 1994 Conference,
216 - 226 (October 1994).

[10] P. Missier and M. Rusinkiewicz. Extending a Multidatabase Manipulation Language
to Resolve Schema and Data Conflicts. Proc. of the Workshop on Interoperability of
Database Systems and Database Applications, 19 - 37 (October 1993).

[11] A. Motro. Superviews: Virtual Integration of Multiple Databases. IEEE Trans. on
Software Engineering 13(7), 785 - 798 (1987).

[12] A. Raffi, R. Ahmed, M. Ketabchi, P. DeSmedt and W. Du. Integration Strategies in
the Pegasus Object-Oriented Multidatabase System. Proc. of the 25th Hawaii
International Conference on System Sciences, 323 - 334 (1992).

[13] E. Sciore, M. Siegel and A. Rosenthal. Using Semantic Values to Facilitate
Interoperability Among Heterogeneous Information Systems. ACM Trans. on
Database Systems 19(2), 254 - 290 (June 1994).

[14] A. Sheth and J.A. Larson. Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. ACM Computing Surveys 22(3), 183 -
236 (Sept. 1990).

[15] A. Sheth. Semantic Issues in Multidatabase Systems. ACM Sigmod Record 20(4), 5 -
9 (December 1991).

[16] S. Spaccapietra, C. Parent and Y. Dupont. Model Independent Assertions for
Integration of Heterogeneous Schemas. VLDB Journal 1(2), 81 - 126 (1992).

11/30/95 19

Appendix A: Schema Integration Example

CDBS1 - Queen's University

CREATE TABLE Project
 Id integer NOT NULL,
 Name varchar(40),
 PI char(40),
 Description char(80),
 Budget integer,
 Length integer;

CREATE TABLE Members
 Name char(40),
 Position char(20),
 Wage dollar,
 Email char(30),
 Phone integer NOT NULL,
 Office integer,
 Street char(40),
 City char(20),
 AptNo char(10);

CREATE TABLE MileStones
 Name char(30) NOT NULL,
 ProjectId integer, NOT NULL,
 ExpDelDate date,
 ActDelDate date;

CDBS2 - University of Michigan

CREATE TABLE ProjectInfo
 Name char(40),
 ProjId char(10) NOT NULL,
 Leader char(40),
 Budget integer,
 StartDate date,
 EndDate date;

CREATE TABLE Personnel
 ProjId char(10),
 EmpNo integer NOT NULL,
 Name char(40),
 Address char(80),
 Phone integer,
 Salary dollar,
 OfficeNo char(6),
 Email char(30);

11/30/95 20

CREATE TABLE Deliverable
 ProjId char(10) NOT NULL,
 Name char(80) NOT NULL,
 DeliveryDate date;

CDBS3 - University of Western Ontario

EXPORT TABLE Proj
 pId integer NOT NULL,
 pName char(80),
 pDescription char(100),
 pLeader char(40),
 pStatus char(20),
 pBudget integer,
 pLength integer;

CREATE TABLE Employees
 eNum integer NOT NULL,
 eProj integer,
 eName char(40)
 eAddress char(80),
 ePhone integer,
 eSalary dollar,
 eEmail char(60);

CREATE TABLE Students
 sNum integer NOT NULL,
 sProject integer
 sName char(30),
 sAddress char(60),
 sPhone integer,
 sOffice integer,
 sSalary dollar,
 sEmail char(60);

CREATE TABLE Milestones
 mProjectId integer NOT NULL,
 mName char(60) NOT NULL,
 mDescription char(100),
 mDate date;

