
Information Capacity Preserving Translations of Relational

Schemas Using Structural Transformation�

November 1995

External Technical Report

ISSN 0836-0227-95-392

Patrick Martin, James R. Cordy and Rateb Abu-Hamdeh

Dept. of Computing and Information Science

Queen's University at Kingston

Kingston, Ontario

CANADA K7L 3N6

Abstract

Schema translation is one step in the process of schema integration in a multidatabase sys-

tem. We describe an approach to the problem of schema translation which is based on structural

transformation, or syntactic rewrite rules. There are two main advantages with our approach.

First, the translation process can be directly automated using the transformation language TXL.

Second, the correctness of the translation system can be proved using a straightforward anal-

ysis based on information capacity. We develop a set of translation rules to convert relational

schemas to entity-relationship model schemas. We show that the translation rules are informa-

tion capacity preserving and outline how they are automated with TXL.

Topic Area: Interoperability of Heterogeneous Information Systems

1 Introduction

Schema translation is the process of transforming a schema in one data model into a corresponding

schema in a di�erent data model. Historically, the main use of schema translation has been in the

view integration phase of conceptual schema design, which takes several user views representing the

information requirements of di�erent users and integrates them into a single conceptual schema [5].

The user views may be expressed in di�erent data models, in which case they must be translated to

a common data model before performing integration.

Recent interest in the problem of dealing with legacy information systems has renewed interest

in schema translation as it applies to the problems of database integration in multidatabase, or

�
The authors thank IBM Canada Ltd., NSERC and ITRC for their support of the research.

1

federated database, systems [14], database migration [11], and schema evolution [16]. As part of

the CORDS Multidatabase System (MDBS) project [2], our main use of schema translation is in

database integration which takes the schemas from a collection of heterogeneous component database

systems, and provides an integrated view of the available data.

The principles for de�ning a schema in a particular data model may be formal, in the sense that

they are inherent to the model, or they may be part of standard design practice. In either case,

the principle used is represented by a distinctive structure in the schema. The structure is in turn

represented by a particular pattern in the DDL de�nition of the schema.

Structural transformation recognizes structures in a source object (schema, program, etc.) and

transforms them into other structures in a target language to produce a translation of the original

object. One can naturally apply it to the problem of schema translation by searching for the

structures in a schema that represent the design rules followed in building the schema and then

transforming them to corresponding structures in order to construct the translated schema. A

structure in the source schema for which there is no corresponding structure in the target data

model means there is a potential loss of information.

Structural transformations of schemas can be implemented as source-to-source syntactic trans-

formations provided that, for each data model,

1. there exists a concrete data description language for expressing schemas in the model and

2. the syntactic structure of the data description language representation of a schema re
ects the

logical structure of the schema in some way.

When both these constraints hold, we can implement the structural transformation as a syntactic

transformation from the data description language of the original data model to the data descrip-

tion language of the target data model. Our approach does exactly this, using the TXL source

transformer [9] to implement the syntactic transformations.

In this paper we discuss the development of a set of structural transformation rules, which

we collectively call a translation system, for translating relational schemas to Entity-Relationship

schemas. Such a system may be used to extract the conceptual schema from an exisiting relational

schema or as an intermediate step in the translation to other data models such as an object-oriented

model [1].

2

The remainder of the paper is organized as follows. Section 2 presents a brief review of related

work. Section 3 de�nes the source and target data models. Section 4 describes the rules in the

translation system and section 5 presents a proof of the information capacity preserving properties

of the system. Section 6 brie
y discusses an implementation of the translation system using TXL

and Section 7 presents our conclusions.

2 Related Work

Approaches have been developed to translate between a variety of data models. Most of the work

related to conceptual schema design has focussed on translation of schemas in high-level conceptual

models, most commonly the entity-relationship (ER) model, into schemas in the three traditional

data models, namely the hierarchical, network, and relational models [12, 15, 22]. Dumpala and

Arora [12] also present reverse mappings to translate relational, hierarchical, and network schemas

to the ER model which can be used to extract the conceptual structure of existing schemas. Johan-

nesson [16], Castellanos and Saltor [7], Markowitz and Makowsky [18], and Davis and Arora [10] all

describe approaches to extracting the logical structure from relational schemas. Work has also been

reported on mapping schemas between the traditional data models. The two approaches used have

been either to map schemas directly between data models, for example Zaniolo [23], or to map to an

intermediate representation. Biller [6], for example, uses a semantic data model as an intermediate

form when mapping relational schemas to network schemas.

One problem with most of these approaches, except the one described by Davis and Arora [10],

is that they require knowledge of the semantics of the source schema, and thus they are intended

to be performed manually by a database designer. In practice, however, source schemas can be

large and complex, which makes the translation process tedious, time consuming, and prone to

error. Another problem with most of the proposed translation schemes is that, with the exception

of Johannesson [16] and Markowitz and Makowsky [18], they are all informal and do not show that

the schemas produced have the same information capacity as the original schemas.

The approach discussed in this paper overcomes both shortcomings. The translation systems

produced can be automated and translate existing schemas without added information. Our ap-

proach does, however, accommodate extended schemas. It also lends itself to a formal analysis of

3

the relative information capacities of the source and target schemas.

3 The Data Models

A data model is a tool that provides an interpretation for data describing real-world situations. It

consists of a set of constructs to describe the structure and constraints of the data, or data de�nition

language (DDL), a set of operations to access the data, or data manipulation language (DML), and,

at least informally, a set of principles for arranging the structures to represent the situation. The

description of a particular database in the DDL is called the database schema.

De�nition 1 A database schema D of data modelM is a pair < S;C > where S is set of distinct

structure descriptions, and C is a set of distinct constraint descriptions, and members of S and C

are expressed in the DDL of M.

3.1 Source Data Model: Relational Model

We present the basic relational concepts and terminology used in the paper. Further details can be

found in any text book, for example Atzeni and De Antonellis [3].

De�nition 2 A relation scheme is a relation name R together with a set of distinct attribute

names, X = fA1; A2; :::; Ang where each Ai belongs to some valid domain Di. To indicate the

relation scheme we write R(A1; A2; :::; An) or R(X).

A relation instance of the relation scheme R is a �nite set of tuples r = ft1; t2; :::; tmg where each

tuple is an ordered list of values t =< v1; v2; :::; vn > and vi 2 Di, 1 <= i <= n, corresponds to the

attribute Ai.

De�nition 3 An integrity constraint
 on a relation scheme R is a function that associates each

relation instance r of R with a boolean value
(r). We say r satis�es
 if
(r) = true and r violates

 if
(r) = false.

We consider the following integrity constraints in our translation:

1. A unique constraint, speci�ed by a UNIQUE clause in the SQL table de�nition, identi�es one

or more candidate keys in addition to the primary key of a relation. Each attribute appearing

in a UNIQUE clause must also be declared NOT NULL.

4

For a relation scheme R(X), relation instance r of R(X) and set of attributes U � X

unique(r; U) = true if 8t1; t2 2 r; t1 6= t2) t1[U] 6= t2[U]

2. A primary key constraint, represented by the PRIMARY KEY clause in the SQL table de�ni-

tion, is a special case of the unique constraint. A candidate key is designated as the primary

key of the relation. Each attribute appearing in a PRIMARY KEY clause must also be declared

NOT NULL.

For a relation scheme R(X), relation instance r of R(X) and set of attributes PK � X called

prime attributes,

primaryKey(r; PK) = true if 8t1; t2 2 r; t1 6= t2) t1[PK] 6= t2[PK]

We also de�ne the nonprime attributes of R(X) to be the attributes in the set X � PK.

3. A not null constraint, indicated by the NOT NULL clause in the SQL table de�nition, states

that a particular attribute may not take a null value.

For a relation scheme R(X), relation instance r of R(X) and attribute A 2 X

notNull(r; A) = true if 8t 2 r; t[A] 6= null

4. A referential constraint, speci�ed by a FOREIGN KEY clause in the SQL table de�nition,

states that for all tuples in the referencing relation the speci�ed attributes (that is the FOR-

EIGN KEY attributes) either have a null value or contain a value found in the corresponding

attribute in the referenced relation.

For relation schemes R1(X1) and R2(X2), relation instances r1 and r2 of R1(X1) and R2(X2),

respectively, and set of attributes fk2 � X1 ^X2

references(r1; r2; fk2) = true if �fk2(r1) � �fk2(r2)

5

where �fki(ri) is the projection of ri on fki which is ft[fki]jt 2 ri; i 2 f1; 2gg.

For relation scheme R(X) we de�ne FK = fk1 [fk2 [:::[fkn to be the set of all foreign key

attributes where n is the number of distinct foreign keys in R.

De�nition 4 A database schema D for the relational model is a pair < R;C > where R is set

of relation schemes with distinct names, and C is a set of integrity constraints.

A database instance (or simply database) on a database schema D with R = fR1(X1); R2(X2); :::; Rn(Xn)g

is a set of relation instances r = fr1; r2; :::rng where each instance ri is de�ned on the corresponding

scheme Ri and satis�es the corresponding integrity constraints in C.

An example source relational schema is given in Appendix A.

3.2 Target Data Model: Entity-Relationship Model

The target data model for our translation is the Entity-Relationship model [8]. As explained earlier,

we chose the ER model because it can serve as the basis for further work on extracting conceptual

schemas or as an intermediate stage in translations to other data models.

The ER model does not have a generally accepted DDL. We chose to represent the ER schema

information as a set of Prolog facts which we call a schema factbase. A fact represents a single piece

of information and is de�ned as follows.

De�nition 5 A schema fact p(A1; A2; :::; An) is composed of a predicate symbol p and a list of

arguments A1; A2; :::; An where n >= 1. The predicates correspond to constructs in the ER model

and the arguments are either names from the source schema or constants.

De�nition 6 A schema factbase F for the ER model is a triple < E;R;C > where E, R and C

are the sets of facts describing entity types, relationship types and integrity constraints, respectively.

De�nition 7 A database on a schema factbase F is a collection of database facts which are triples

< s; l; t > where s and t are values and l is a label describing the connection between them. The

database forms a semantic network [13] where the values are nodes and the connections are directed

labelled edges.

For example, consider a simple schema factbase and its ER diagram representation which are

shown in Figures 1 and 2 respectively. Entity types, such as \EMPLOYEE", generate an \entity"

6

entity(EMPLOYEE)
entityAttribute(EMPLOYEE, SIN, INTEGER)
entityAttribute(EMPLOYEE, Fname, CHARACTER(20))
entityAttribute(EMPLOYEE, Lname, CHARACTER(20))
entityAttribute(EMPLOYEE, Address, CHARACTER(40))
key(EMPLOYEE, SIN)

relationship(WORKS FOR, BINARY)
entityInRelationship(WORKS FOR, EMPLOYEE, (1,1), employee)
entityInRelationship(WORKS FOR, DEPARTMENT, (0,n), department)

entity (DEPARTMENT)
entityAttribute (DEPARTMENT, Number, INTEGER)
entityAttribute (DEPARTMENT, Name, CHARACTER (40))
multivaluedAttribute (DEPARTMENT, Locations, CHARACTER (40))
key (DEPARTMENT, Number)
key (DEPARTMENT, Name)

relationship (MANAGES, Binary)
entityInRelationship (MANAGES, DEPARTMENT, (1, 1), department)
entityInRelationship (MANAGES, EMPLOYEE, (0, 1), employee)

entity(PROJECT)
entityAttribute(PROJECT, Name, CHARACTER(40))
key(PROJECT, Name)

relationship (WORKS ON, Binary)
relationshipAttribute (WORKS ON, Hours, INTEGER)
entityInRelationship (WORKS ON, EMPLOYEE, (0, n), employee)
entityInRelationship (WORKS ON, PROJECT, (0, n), project)

Figure 1: Example Factbase

7

Figure 2: Example ER Schema

8

fact, an \entityAttribute" fact for each attribute which identi�es the name and type of the attribute,

and a \key" fact for each key of the entity type. We assume that, in the case of more than one key

fact, the �rst fact represents the primary key.

Relationship types, such as \WORKS ON", generates a relationship fact which contains the

arity of the relationship, a \relationshipAttribute" fact for each attribute of the relationship, and

an \entityInRelationship" fact for each entity type participating in the relationship which identi�es

the minimum and maximum cardinalities and the role of the entity type in the relationship. The

participation (that is, total or partial) of the entity type in the relationship may be inferred from

the minimum cardinality. Other types of facts, which are shown in the example, may be generated

for other ER constructs such as weak entities and composite attributes. Examples of these types of

facts appear in Appendix B.

A portion of a possible database on the schema factbase given in Figure 1 is shown in Figure 3.

The nodes may be actual attribute values, unique identi�ers for instances of entity types, relationship

types and system types such as ROLES, and type names. The edges represent connections taken

from the schema, for example attribute names or system-de�ned connections such as \instance" and

\plays".

4 The Translation System

We express a translation system from relational schemas to ER schemas as the set of transformation

rules

TSRER = ftrp; trwp; trs; trwsg

where the rules e�ectively partition the relations of a relational database schema D into four cate-

gories such that exactly one rule applies to each relation scheme of D. The derived classi�cation is

similar to one described by Batini, Ceri and Navathe [4].

1. trp - Primary Relation Translation Rule:

A relation scheme R(X) of D is a primary relation scheme if there are no foreign keys or,

otherwise, 8fki � FK where fki is the primary key of some relation scheme Ri of D, fki 6�

PK, that is the primary key does not contain the key of any other relation.

9

Figure 3: Example Database

10

The e�ects on the factbase of applying trp to relation scheme R are as follows:

� Add the entity fact R.

� For each attribute A 2 X � (PK [FK), add the attribute fact A.

� For primary key constraint primaryKey(r; PK) where r is an instance of R and PK � X ,

add the composite attribute fact APK containing each attribute A 2 PK and the key

constraint fact APK
1.

� For each unique constraint unique(r; U) where r is an instance of R and U � X , add the

composite attribute fact AU containing each attribute A 2 U and the key constraint fact

AU .

� For each references constraint references(r; ri; fki) where r is an instance of R, ri is an

instance of another relation scheme Ri in D and fki � FK such that fki is primary

key of Ri, that is fki = PKi, add the binary relationship fact R : Ri and the entity-

in-relationship facts R in R : Ri and Ri in R : Ri
2. The cardinality constraints are, by

default (0; 1) and (0; n) for R and Ri, respectively. If notNull(r; fki) is true then the

cardinality constraints are (1; 1) and (0; n) for R and Ri, respectively, and if unique(r; fki)

is also true then the cardinality constraint for Ri is (0; 1).

2. trwp - Weak Primary Relation Translation Rule:

A relation scheme R(X) is a weak primary relation scheme if FK � PK and 9A 2 X � PK,

that is the primary key contains the keys of one or more other relations and the relation

scheme contains nonprime attributes. We use the second condition to di�erentiate between

weak entities and multivalued attributes.

The e�ects on the factbase of applying trwp to relation scheme R are:

� add the weak entity fact R;

� for each attribute A 2 X � PK, add the attribute fact A;

� for primary key constraint primaryKey(r; PK) where r is an instance of R and PK � X ,

add the composite attribute fact APPK to match the partial key of the weak entity where

1
We assume the �rst key constraint in an entity de�nition is always the primary key.

2
We assume the �rst entity-in-relationship fact always represents the relation that contained the relationship.

11

APPK contains each attribute A 2 PK � FK and add the partial key constraint fact

APPK ;

� add the identifying relationship fact R : R1 : R2 : ::: : Rn where each entity Ri, 1 � i � n

has primary key fki such that fki 2 PK and add the entity-in-relationship fact R in

R : R1 : R2 : ::: : Rn.

3. trs - Secondary Relation Translation Rule:

A relation scheme R(X) is a secondary relation scheme if FK = PK, that is the primary key

is formed by a concatenation of primary keys from other relation schemes. Such a relation

scheme describes a relationship among those other relation schemes.

The e�ects on the factbase of applying trs to relation scheme R are:

� add the relationship R;

� for each relation Ri such that its primary key is fki where fki � PK, add the entity-in-

relationship fact Ri in R;

� for each attribute A 2 X � PK, add the relationship attribute fact A.

4. trws - Weak Secondary Relation Translation Rule:

A relation scheme R(X) is a weak secondary relation scheme if PK contains the primary key

fki of exactly one other relation scheme Ri(X) and X = PK, that is the R(X) corresponds

to a multivalued attribute of entity Ri.

The e�ects on the factbase of applying trws to relation scheme R are:

� if jX � PKj > 1 add multivalued attribute fact M for entity Ri and add multivalued

attribute component fact for each attribute A 2 X � PK, otherwise add multivalued

attribute fact A for entity Ri.

5 Properties of the Translation System

An important consideration in developing a practical translation system from one data model to

another is the potential for loss of information. Are there patterns in the source schemas that

cannot be adequately represented in the target schema? We may evaluate the correctness of a

12

translation system based on the relative information capacities of the source and target schemas,

that is, do the source and target schemas model the same real world information?

An analysis of the correctness of a translation system should also consider the operational goals

of the schema translation. For example, if a multidatabase system must support querying of the

source database through the target schema, then a correct translation system should ensure that

all data in the source database maps to a representation under the target schema. If, however, the

multidatabase system must also support updates of the source database through the target schema,

a correct translation system must ensure that data maps to representations in both directions.

A strength of our approach is that the correctness of translation systems expressed as a set

of syntactic rewrite rules may be evaluated in a rigorous manner. We present an analysis of the

Relational-to-ER system TSRER as an example. We �rst give a set of de�nitions to establish

our notion of correctness based on information capacity. We next provide a collection of lemmas

which, in combination, prove the main result of the section, namely that the translation system

TSRER is information capacity preserving and hence correct. The proofs of the lemmas are given

in Appendix C.

The information capacity of a database schema D1 determines the set of valid instances I(D1) of

that schema [21]. Intuitively, we say that a database schema D2 has a greater information capacity

than a schema D1 if every instance i 2 I(D1) can be mapped to some instance j 2 I(D2) without

loss of information, that is we can recover the original instance from its image under the mapping.

We de�ne these concepts more precisely below.

De�nition 8 An information capacity preserving mapping between the instances of two database

schemas D1 and D2 is a total, injective function f : I(D1)! I(D2).

De�nition 9 If D1 and D2 are two database schemas such that f : I(D1)! I(D2) is an information

capacity preserving mapping, then D2 dominates D1 via f , denoted D1 � D2.

De�nition 10 Let D1 and D2 be sets of schemas speci�ed in the di�erent data models M1 and

M2, respectively. A translation system T S from D1 to D2 induces the total function F :D1 !D2.

T S is information capacity preserving if for all D 2D1, D � F (D).

De�nition 11 A translation system T S is correct if it is information capacity preserving and if

the operational goal of the system is that the entire database stored under the source schema may be

13

viewed and queried through the target schema.

In our approach to schema translation, a translation system is expressed as a set of independent

syntactic rewrite rules rather than as an algorithm as in most other approaches. The rules are

functions in the mathematical sense, that is they do not produce side-e�ects, and they produce the

same result independent of the order in which they are applied [17]. Thus the proof that a translation

system is information capacity preserving can be reduced to proving that each individual rule is an

information capacity preserving translation, and that the set of rules in the translation system

partition the relation schemes in the source schema so that each relation scheme is translated by

exactly one transformation rule. We assume that good design practices are followed in creating

the source relational database schemas and do not consider poorly designed relation schemes in our

analysis.

Lemma 1 Given relational database schema D =< R;C >, the classi�cation imposed on R by the

translation system TSRER is a partition.

Lemma 2 Given relational database schema D =< R;C >, the syntactic rewrite rule trp is an

information capacity preserving translation on its partition of R.

Lemma 3 Given relational database schema D =< R;C >, the syntactic rewrite rule trwp is an

information capacity preserving translation on its partition of R.

Lemma 4 Given relational database schema D =< R;C >, the syntactic rewrite rule trs is an

information capacity preserving translation on its partition of R.

Lemma 5 Given relational database schema D =< R;C >, the syntactic rewrite rule trws is an

information capacity preserving translation on its partition of R.

Claim 1 The Relational-to-ER translation system TSRER is an information capacity preserving

schema translation.

PROOF: The proof of the claim that the Relational-to-ER translation system TSRER is an infor-

mation capacity preserving schema translation based on the results shown in Lemmas 1 - 5. Lemma

1 ensures that exactly one rule in TSRER applies to every relation scheme Ri in a relational database

schema D. Lemmas 2 - 5 show that each rule in TSRER is information capacity preserving over its

14

subset of the relation schemes in D. Therefore the total translation system is information capacity

preserving.

6 Implementation of the Translation System

Our translation system has been implemented using the TXL transformation system [9]. TXL is a

structural source transformer, which means that

1. both the input and output of the transformation must be in source text form, and

2. the meaning of the source text must somehow be encoded in its syntactic structure.

In practice these two restrictions simply mean that the input and output must be in some formal

(machine processable) language.

TXL is well suited to transformations of the structure of the input rather than just its text.

For example, the transformation between a cascade of nested if statements and an equivalent case

statement is straightforward in TXL, whereas it can be very complex using text-based tools such

as sed and awk. TXL achieves this simplicity of structural transformation by parsing the input and

output into abstract syntax trees, and implementing the transformations on the trees rather than

the source text itself (Figure 4).

TXL transformations are programmed using sets of rules, each of which speci�es a pattern and a

replacement. The pattern captures the components of the input structure we would like to transform,

and the replacement shows how to rearrange those components into the output. Both are speci�ed

by example, which is to say, in source text form, but are implemented as manipulations of the

corresponding syntax trees as shown in Figure 4.

The TXL implementation of our translation system represents relational schemas by the source

text of their SQL DDL speci�cations, and entity-relationship schemas by the source text of a Prolog

factbase for their ER diagram. The translation system itself is expressed as a set of TXL rules that

transform the syntactic structures of the input DDL to the syntactic structures of the output DDL.

Each of the four main rules in the set has a pattern that syntactically matches the structure of

one of the four kinds of table de�nitions corresponding to primary relations, weak primary relations,

secondary relations or weak secondary relations as described in section 4, and a replacement that

syntactically generates the corresponding Prolog facts (Figure 5).

15

Input Source
Text

Input Parse
Tree

Output Parse
Tree

Output Source
Text

TXL
Transformation

Rules

Tree
Transformation

Rules

Tree
Transformations

Figure 4: The TXL Transformation Process. Both source text of the input to be transformed and
the transformation rules are parsed into tree form. The rules are then successively applied to the
parsed input tree to create the tree form of the desired output. Finally, the transformed output tree
is deparsed to form the �nal output text.

16

TXL's ability to directly encode the structural patterns on which our translations are based makes

the implementation of new translation systems, once they are designed, relatively straightforward.

7 Summary

Schema translation is important for providing integration and interoperability in multidatabase

systems. Two shortcomings of many of the existing approaches to the problem are that they are not

easily automated and that they lack a formal basis for evaluating the correctness of the resulting

translations. We have discussed an approach based on structural transformation that overcomes

both of these problems.

Structural transformation is a technique for recognizing structures in a source language and

translating them into structures in a target language. The structural transformations are imple-

mented as source-to-source syntactic transformations. As we show in the paper, the technique can

be successfully applied to the problem of schema translation.

Our approach expresses a translation system as a set of independent transformation rules. We

indicate in the paper how one can prove the correctness of a system by showing that the rules

preserve information capacity. We also describe how a translation system can be automated using

the structural transformation language TXL.

We have developed translation systems to transform schema descriptions in representative re-

lational, hierarchical, network, and object-oriented DDLs into an ER factbase representation, and

vice versa. We can compose the translation systems to translate among the various data models.

We plan to continue to study the problem of schema translation and to apply our approach to

automatic query translation. We are also incorporating the TXL implementations of the translation

systems into a suite of tools to support database integration in a prototype multidatabase system [20].

References

[1] R. Abu-hamdeh, J. Cordy, and P. Martin. Schema translation using structural transformation.
In Proc. of CASCON'94, IBM Centre for Advanced Studies 1994 Conference, pages 202{215,
Toronto, November 1994.

[2] G. Attaluri, D. Bradshaw, N. Coburn, P.-�A. Larson, P. Martin, A. Silbershatz, J. Slonim, and
Q. Zhu. The CORDS multidatabase project. IBM Systems Journal, 34(1):39{62, January 1995.

17

rule ProcessPrimaryRelations
% If none of the foreign keys is contained in the primary key,
% then the table is a primary relation

replace [tableDefinition_or_predicateSequence]
CREATE TABLE EntityName [id]

(AttributeDefinitions [list attributeDefinition])
UniqueStatements [repeat uniqueConstraint]
PRIMARY KEY (PrimaryKey [attributelist])
ForeignKeyStatements [repeat foreignKeyDefinition]

% Get all the foreign keys
construct ForeignKeys [repeat attributelist]

_ [^ ForeignKeyStatements]

% Check the primary key does not contain any foreign key
where not

PrimaryKey [contains each ForeignKeys]

% Get the foreign key attribute set
construct ForeignKeyAttributes [repeat attribute]

_ [^ ForeignKeys]

% Get the primary key attribute set
construct PrimaryKeyAttributes [repeat attribute]

_ [^ PrimaryKey]

% Compute (foreign key attribute set) - (primary key attribute set)
construct ReducedForeignKeyAttributes [repeat attribute]

ForeignKeyAttributes [removeAttribute each PrimaryKeyAttributes]

% Compute (defined attribute set) - (reduced foreign key attribute set)
construct ReducedAttributeDefinitions [repeat attributeDefinition]

_ [. each AttributeDefinitions]
 [removeAttributeDefinition each ReducedForeignKeyAttributes]

% Now construct the output predicates
construct EntityPredicate [repeat predicate]

entity (EntityName)

construct EntityAttributePredicates [repeat predicate]
_ [addEntityAttributePredicate EntityName

each ReducedAttributeDefinitions]

construct PrimaryKeyPredicates [repeat predicate]
_ [addPrimaryKeyPredicates_Atomic EntityName PrimaryKey]
 [addPrimaryKeyPredicates_Composite EntityName PrimaryKey]

construct UniquePredicates [repeat predicate]
_ [addUniquePredicate_Atomic EntityName ForeignKeyAttributes

each UniqueStatements]
 [addUniquePredicate_Composite EntityName ForeignKeyAttributes

each UniqueStatements]

construct BinaryRelationPredicates [repeat predicate]
_ [addBinaryRelationPredicates EntityName AttributeDefinitions

UniqueStatements each ForeignKeyStatements]
by

EntityPredicate
[. EntityAttributePredicates]
[. PrimaryKeyPredicates]
[. UniquePredicates]
[. BinaryRelationPredicates]

end rule

Figure 5: TXL Encoding of the Main Rule for Translating Primary Relations. The pattern of
the TXL rule (the part following the keyword 'replace') recognizes the syntactic form of a table
corresponding to a primary relation. The next few clauses (those beginning with the keywords 'de-
construct' and 'where') check additional non-syntactic constraints on primary relations. Subsequent
clauses (those beginning with the keyword 'construct') syntactically build the corresponding Prolog
facts using other TXL rules not shown here. Finally, the replacement of the rule (the part following
the keyword 'by') assembles these various facts into the �nal ER output for the table.

18

[3] P. Atzeni and V. De Antonellis. Relational Database Theory. The Benjamin/Cummings Pub-
lishing Company, Inc., 1993.

[4] C. Batini, S. Ceri, and S. Navathe. Conceptual Database Design: An Entity-Relationship Ap-

proach. The Benjamin/Cummings Publishing Company, Inc., 1992.

[5] C. Batini, M. Lenzerini, and S.B Navathe. A comparative analysis of methodologies for database
schema integration. ACM Computing Surveys, 18(4):323{364, 1986.

[6] H. Biller. On the equivalence of data base schemas { a semantic approach to data translation.
Inf. Syst., 4:35{47, 1979.

[7] M. Castellanos and F. Saltor. Semantic enrichment of database schemas: An object oriented ap-
proach. In Proc. of First International Workshop on Interoperability in Multidatabase Systems,
pages 71{78, 1991.

[8] P.P. Chen. The entity-relationship model: Towards a uni�ed view of data. ACM Trans. Database

Syst., 1(1), 1970.

[9] J.R. Cordy, C.D. Halpern-Hamu, and E.M. Promislow. TXL: A rapid prototyping system for
programming language dialects. Computer Languages, 16(1):97{107, 1991.

[10] K. Davis and A. Arora. Converting a relational database model into an entity-relationship
model. In S. T. March, editor, Entity-Relationship Approach, pages 271{285, Amsterdam,
1988. North-Holland.

[11] P. Drew. On database technology for information system migration and evolution. In Proc.

of the Workshop on Interoperability of Database Systems and Database Applications, pages
121{131, Fribourg, 1993.

[12] S. Dumpala and S. Arora. Schema translation using the entity-relationship approach. In P. P.
Chen, editor, Entity-Relationship Approach to Information Modeling and Analysis, pages 337{
356, Amsterdam, 1983. North-Holland.

[13] R. Frost. Introduction to Knowledge Base Systems. Macmillan Publishing Co., 1986.

[14] D. Hsiao. Tutorial on federated databases and systems (part I). The VLDB Journal, 1(1):127{
179, 1992.

[15] J. Iossiphidis. A translator to convert the DDL of ERM to the DDL of system 2000. In P. P.

Chen, editor, Entity-Relationship Approach to Systems Analysis and Design, pages 477{504,
Amsterdam, 1980. North-Holland.

[16] P. Johannesson. A method for transforming relational schemas into conceptual schemas. In
Proc. of the International Conference on Data Engineering, pages 190{201, Houston, 1994.

[17] A. Malton. The denotational semantics of a functional tree-manipulation language. Computer

Languages, 19(3):157{168, 1993.

[18] V. Markowitz and J. Makowsky. Identifying extended entity-relationship object structures in
relational schemas. IEEE Trans. on Software Engineering, 16(8):777{790, 1990.

[19] P. Martin, J. Cordy, and R. Abu-hamdeh. A general approach to schema translation using
structural transformation. in preparation.

[20] P. Martin and W. Powley. Database integration using multidatabase views. In Proc. of CAS-

CON'93, IBM Centre for Advanced Studies 1993 Conference, pages 779{788, Toronto, 1993.

19

[21] R.J. Miller, Y.E. Ioannidis, and R. Ramakrishnan. The use of information capacity in schema
integration and translation. In Proc. of the International Conference on Very Large Data Bases,
pages 120{133, Dublin, Ireland, 1993.

[22] H. Sakai. A uni�ed approach to the logical design of a hierarchical model. In P. P. Chen, editor,
Entity-Relationship Approach to Systems Analysis and Design, pages 61{74, Amsterdam, 1980.
North-Holland.

[23] C. Zaniolo. Design of relational views over network schemas. Proc. ACM SIGMOD, pages
179{190, 1979.

A Sample Source Relational Schema

CREATE TABLE CONSULTANT (
Fname CHARACTER (20) NOT NULL,
Lname CHARACTER (20) NOT NULL,
Address CHARACTER (40))

PRIMARY KEY (Fname, Lname)

CREATE TABLE EMPLOYEE (
SIN INTEGER NOT NULL,
Fname CHARACTER (20),
Lname CHARACTER (20),
Address CHARACTER (40),
Department Number INTEGER NOT NULL)

PRIMARY KEY (SIN)
FOREIGN KEY (Department Number)

REFERENCES DEPARTMENT

CREATE TABLE DEPARTMENT (
Number INTEGER NOT NULL,
Name CHARACTER (40) NOT NULL,
Manager SIN INTEGER NOT NULL)

UNIQUE (Name)
UNIQUE (Manager SIN)
PRIMARY KEY (Number)
FOREIGN KEY (Manager SIN)

REFERENCES EMPLOYEE

CREATE TABLE PROJECT (
Name CHARACTER (40) NOT NULL,
Controlling dept Number INTEGER NOT NULL)

PRIMARY KEY (Name)
FOREIGN KEY (Controlling dept Number)

REFERENCES DEPARTMENT

CREATE TABLE SUPPLIER (
Name CHARACTER (40) NOT NULL)

20

PRIMARY KEY (Name)

CREATE TABLE PART (
Number INTEGER NOT NULL)

PRIMARY KEY (Number)

CREATE TABLE DEPENDENT (
Relationship CHARACTER (40),
Name CHARACTER (40) NOT NULL,
Employee SIN INTEGER NOT NULL)

PRIMARY KEY (Name, Employee SIN)
FOREIGN KEY (Employee SIN)

REFERENCES EMPLOYEE

CREATE TABLE WORKS ON (
Hours INTEGER,
Worker SIN INTEGER NOT NULL,
Project Name CHARACTER (40) NOT NULL)

PRIMARY KEY (Worker SIN, Project Name)
FOREIGN KEY (Worker SIN)

REFERENCES EMPLOYEE
FOREIGN KEY (Project Name)

REFERENCES PROJECT

CREATE TABLE SUPPLY (
Quantity INTEGER,
Project Name CHARACTER (40) NOT NULL,
Supplier Name CHARACTER (40) NOT NULL,
Part Number INTEGER NOT NULL)

PRIMARY KEY (Project Name, Supplier Name, Part Number)
FOREIGN KEY (Project Name)

REFERENCES PROJECT
FOREIGN KEY (Supplier Name)

REFERENCES SUPPLIER
FOREIGN KEY (Part Number)

REFERENCES PART

CREATE TABLE DEPARTMENT Locations (
DEPARTMENT Number INTEGER NOT NULL,
Locations CHARACTER (40))

PRIMARY KEY (DEPARTMENT Number, Locations)
FOREIGN KEY (DEPARTMENT Number)

REFERENCES DEPARTMENT

CREATE TABLE PROJECT Locations (
PROJECT Name CHARACTER (40) NOT NULL,
Building CHARACTER (40),
Room CHARACTER (10))

PRIMARY KEY (PROJECT Name, Building, Room)
FOREIGN KEY (PROJECT Name)

REFERENCES PROJECT

21

B Sample Target ER Schema

entity (CONSULTANT)
entityAttribute (CONSULTANT, Fname, CHARACTER (20))
entityAttribute (CONSULTANT, Lname, CHARACTER (20))
entityAttribute (CONSULTANT, Address, CHARACTER (40))
key (CONSULTANT, PrimaryKey)
entityAttribute (CONSULTANT, PrimaryKey, COMPOSITE, Fname, Lname)

entity (EMPLOYEE)
entityAttribute (EMPLOYEE, SIN, INTEGER)
entityAttribute (EMPLOYEE, Fname, CHARACTER (20))
entityAttribute (EMPLOYEE, Lname, CHARACTER (20))
entityAttribute (EMPLOYEE, Address, CHARACTER (40))
key (EMPLOYEE, SIN)

relationship (EMPLOYEE DEPARTMENT Rel1, Binary)
entityInRelationship (EMPLOYEE DEPARTMENT Rel1, EMPLOYEE, (1, 1), EMPLOYEE)
entityInRelationship (EMPLOYEE DEPARTMENT Rel1, DEPARTMENT, (0, n), DEPARTMENT)

entity (DEPARTMENT)
entityAttribute (DEPARTMENT, Number, INTEGER)
entityAttribute (DEPARTMENT, Name, CHARACTER (40))
key (DEPARTMENT, Number)
key (DEPARTMENT, Name)

relationship (DEPARTMENT EMPLOYEE Rel1, Binary)
entityInRelationship (DEPARTMENT EMPLOYEE Rel1, DEPARTMENT, (1, 1), DEPARTMENT)
entityInRelationship (DEPARTMENT EMPLOYEE Rel1, EMPLOYEE, (0, 1), EMPLOYEE)

entity (PROJECT)
entityAttribute (PROJECT, Name, CHARACTER (40))
key (PROJECT, Name)

relationship (PROJECT DEPARTMENT Rel1, Binary)
entityInRelationship (PROJECT DEPARTMENT Rel1, PROJECT, (1, 1), PROJECT)
entityInRelationship (PROJECT DEPARTMENT Rel1, DEPARTMENT, (0, n), DEPARTMENT)

entity (SUPPLIER)
entityAttribute (SUPPLIER, Name, CHARACTER (40))
key (SUPPLIER, Name)

entity (PART)
entityAttribute (PART, Number, INTEGER)
key (PART, Number)

weakEntity (DEPENDENT, DEPENDENT IdentRel)
entityAttribute (DEPENDENT, Relationship, CHARACTER (40))
entityAttribute (DEPENDENT, Name, CHARACTER (40))

22

partialKey (DEPENDENT, Name)

identifyingRelationship (DEPENDENT IdentRel, Binary)
entityInRelationship (DEPENDENT IdentRel, DEPENDENT, (1, 1), DEPENDENT)
entityInRelationship (DEPENDENT IdentRel, EMPLOYEE, (0, n), EMPLOYEE)

relationship (WORKS ON, Binary)
relationshipAttribute (WORKS ON, Hours, INTEGER)
entityInRelationship (WORKS ON, EMPLOYEE, (0, n), EMPLOYEE)
entityInRelationship (WORKS ON, PROJECT, (0, n), PROJECT)

relationship (SUPPLY, n ary)
relationshipAttribute (SUPPLY, Quantity, INTEGER)
entityInRelationship (SUPPLY, PROJECT, (0, n), PROJECT)
entityInRelationship (SUPPLY, SUPPLIER, (0, n), SUPPLIER)
entityInRelationship (SUPPLY, PART, (0, n), PART)

multivaluedAttribute (DEPARTMENT, Locations, CHARACTER (40))

multivaluedAttribute (PROJECT, PROJECT Locations, COMPOSITE)
multivaluedAttrComponent (PROJECT, MultiValuedAttribute, Building, CHARACTER (40))
multivaluedAttrComponent (PROJECT, MultiValuedAttribute, Room, CHARACTER (10))

C Proofs

Due to space limitations, complete proofs are not provided for Lemmas 2 { 5. Detailed proofs may

be found in [19].

C.1 Lemma 1

Given relational database schema D =< R;C >, the classi�cation imposed on R by the translation

system TSRER is a partition.

PROOF: To prove that TSRER induces a partition of the relation schemes in R we must show

that each relation scheme falls into exactly one category. We provide a proof by contradiction by

considering the two cases which violate the condition, namely that a relation scheme falls into more

than one category and a relation scheme does not fall into any category.

Case 1: Relation scheme Ri 2 R falls into more than one of the categories induced by TSRER.

If Ri is a primary relation scheme then PKi \ FKi = �) Ri is not in any other category since in

all other categories FKi � PKi.

If Ri is a secondary relation scheme then PKi = FKi) Ri is not a weak primary or weak secondary

23

relation scheme since in both cases FKi � PKi.

If Ri is a weak primary relation then jXi � PKij > 0) Ri is not a weak secondary relation since

in that case Xi = PKi.

Therefore there is a contradiction for case 1.

Case 2: Relation scheme Ri 2 R is not in any of the categories induced by TSRER.

Thus Ri is not a primary relation and its primary key must contain a foreign key. In other words,

9fk1 : : : fkj , j � 1 where fkk is the primary key of relation scheme Rk 2 R (1 � k � j) such that

fk1 [: : : [fkj � FKi and fk1 [: : : [fkj � PKi.

if PKi does not contain any other attributes, that is PKi � (fk1 [: : : [fkj) = �, then Ri is a

secondary relation scheme.

Otherwise, if PKi contains other attributes and there are also nonprime attributes, that is Xi �

PKi 6= �, then Ri is a weak primary relation scheme.

Otherwise, the primary key must contain all the attributes, including the foreign keys, and Ri is a

weak secondary relation scheme.

Therefore Ri is in one of the categories induced by TSRER and so there is a contradiction for case

2.

Therefore the classi�cation imposed on a set of relation schemes by the translation system TSRER

is a partition.

C.2 Lemma 2

Given relational database schema D =< R;C >, the syntactic rewrite rule trp is an information

capacity preserving translation on its partition of R.

PROOF: Suppose that the function on the sets of instances induced by the rule is

fp : I(Rp)! I(TER)

where Rp is the set of primary relations from the source relational schema D and TER is the target

ER schema. fp maps tuples from a primary relation into entities in an entity type of the same name

as the relation. Attribute values of the tuple are mapped to values of corresponding attributes of

the entity, which are established by the rules which create the attributes, unique and primaryKey

24

constraints on the tuple are re
ected as key constraints on the entity and references constraints on

the tuple are represented as relationships involving the entity.

The function fp is total since every tuple in I(Rp) can be mapped to a corresponding entity in

I(TER). It is also an injection since its inverse, f�1p , is guaranteed to map an entity back to its

original source tuple because all attribute values, and constraint information, are maintained by the

mappings. In other words, for all i 2 I(Rp)

i = f�1p � fp(i)

Since the translation rule induces a function on the sets of instances that is both total and

injective, we conclude that the rule is an information capacity preserving translation.

C.3 Lemma 3

Given relational database schema D =< R;C >, the syntactic rewrite rule trwp is an information

capacity preserving translation on its partition of R.

PROOF: Similar argument to the proof of Lemma 2.

C.4 Lemma 4

Given relational database schema D =< R;C >, the syntactic rewrite rule trs is an information

capacity preserving translation on its partition of R.

PROOF: Similar argument to the proof of Lemma 2.

C.5 Lemma 5

Given relational database schema D =< R;C >, the syntactic rewrite rule trws is an information

capacity preserving translation on its partition of R.

PROOF: Similar argument to the proof of Lemma 2.

25

