
1

A Management Information Repository for Distributed

Applications Management 1

November 1995

External Technical Report

ISSN 0836-227-95-393

Patrick Martin
Dept. of Computing and Information Science

Queen’s University at Kingston
Kingston, Ontario
Canada K7L 3N6

office: (613) 545-6063
fax: (613) 545-6513

(martin@qucis.queensu.ca)

Abstract

The Management of Distributed Applications and Systems (MANDAS) project addresses
problems arising in the management of distributed applications. Specifically, we are studying the
areas of configuration management, fault management, performance management, and application
metrics and modeling. We are also investigating the tools, techniques and services needed to
support the above management applications. The MANDAS Management Information
Repository (MIR) provides database support for the management applications and supports their
integration into a single management environment.

In this paper we examine the problem of distributed applications management to extract
the requirements for a MIR. Based on the requirements, we present an information model for
distributed applications management and outline a prototype MIR developed for the MANDAS
project.

Keywords: distributed applications management, information modeling, repositories.

1 The author thanks IBM Canada Ltd. and NSERC for their support of this research.

2

1. Introduction

Distributed computing systems typically consist of large numbers of heterogeneous computing

devices connected by communication networks, various operating system resources and services,

and user applications running on them. These resources and applications are becoming

indispensable to many enterprises, but as distributed systems become larger and more complex,

more things can go wrong, potentially interrupting or crippling critical operations. Thus

management support is often cited by end users as the single most important aspect of a

distributed system. Management issues at the network and systems levels have received a great

deal of attention but the same thing cannot be said for the application level.

The objective of the Management of Distributed Applications and Systems (MANDAS)

project is to address problems arising in the management of distributed applications. We take

management to include configuration management, fault management, performance management

and application metrics and modeling. More specifically, we include within applications

management the following [12]:

1. The software tools and techniques that designers of distributed applications and system

administrators use, called management applications, to ensure the ongoing and effective

design and operation of the systems and applications.

2. The data and information about the applications and systems required by the management

applications, and the means of collecting, storing and maintaining them.

3. The tools, techniques and services needed to support the above.

In order to integrate the management applications and manage the data they require, we

see a logically centralized database, which we call the Management Information Repository

(MIR), at the heart of the system. The development of a MIR is the focus of our part of the

MANDAS project and the subject of the paper.

3

The remainder of the paper is structured as follows. Section 2 discusses the MANDAS

project and its view of distributed applications management. Section 3 outlines data management

requirements for distributed applications management. Section 4 describes the information model

used by the MIR and Section 5 describes a prototype MIR developed for the MANDAS project.

Section 6 discusses related work and Section 7 summarizes the paper.

2. Distributed Applications Management

MANDAS considers distributed applications that rely on the support of middleware, such as DCE

[8] and CORBA [7], for communication between software components. Midware environments

make it easier to build distributed applications by providing a bridge between heterogeneous

systems in the form of common interface description techniques and communication paradigms.

The midware can hide many of the complexities of distributed systems through features such as

location transparency and data format translation. Application software that relies on

transparencies is more robust with respect to evolving environments. Transparencies, however,

can make it more difficult to understand why distributed applications and their systems behave the

way they do. Midware also poses performance costs that need to be understood.

Our approach towards characterizing application behaviour starts at the midware and

continues upwards into the application domain. When it is appropriate, application behaviour is

then correlated with other information such as operating system and communication network

resource consumption. For example, Rolia [11] describes the information that needs to be

collected or deduced to support the performance characterization and modeling of distributed

applications. The services provided by each application process must be characterized separately

according to properties such as the average CPU time needed by a process to complete a specific

operation and the operation’s average number of requests for service from other servers’

operations. Monitoring systems for midware environments should collect this information and

make it available to more general system monitors. In our architecture [1] the system level

monitor interacts directly with management applications and with the MIR. SNMP and CMIP

[13] have been chosen to support our system level monitoring infrastructure.

4

Figure 1 shows the management architecture we have adopted to support distributed

applications management [1]. The management applications access the available management

services through a common management service interface. The management services in turn

interact with the management agents through various protocols, for example SNMP or CMIP.

Each management agent is responsible for some collection of managed objects. The Management

Information Repository provides services to the three component subsystems as well as providing

a common interface to the set of management agents.

3. Data Requirements

To provide database support for distributed applications management it is necessary to

understand the requirements of the management applications and the management services that

will use the database. We derive these requirements from the properties of the types of data used

in distributed applications management, including its physical properties and its semantic

properties, and the characteristics of the types of accesses to the data. We distinguish three types

of data: observation data, management data and control data. Haritsa et. al. [3] provide a similar

Management Applications

Management Services

Managed Objects

Management Agent

Configuration
Management

Performance
Management

Fault
Management Modelling

Configuration
Subsystem

Control
Subsystem

Monitoring
Subsystem

Management Information Repository

Management Service
Interface

Figure 1: MANDAS Management Architecture

5

classification for network management data.

3.1 Observation Data

The observation data is the raw information that is received from the monitoring processes and

includes a variety of variables which depend upon the managed object. For example, application

level variables include process up time and the number and type of each request made from one

process to another; midware variables include server queue lengths, RPC invocations and RPC

response times, and resource-level variables include memory and CPU usage.

Observation data provides the primary input for the performance management, modeling

and fault management tasks. It represents the current state of an application in terms of resource

usage and quality of service provided to users. During normal execution, observation data arrives

from a monitoring process at a regular frequency but under fault conditions data may be

generated at a higher rate than normal. Another possible situation is where observation data only

arrives when an extraordinary event occurs or when it is requested by a management task.

Two distinct groups of transactions, “updates” and “reads”, access the observation data.

The updates are performed by the monitoring processes. They are typical database updates in that

the new value is independent of the current value, but atypical in that they will happen in real-

time. The real-time characteristic of updates means that the overhead incurred by an update must

be minimized.

Communication overhead and contention for MIR resources can be minimized by

physically distributing the observation data so that monitoring processes write to local, possibly

heterogeneous, databases which are under the umbrella of the MIR. This distributed database

approach also enhances the scalability of the MIR.

Transaction management overhead can also be minimized. Since an update typically

accesses only one portion of the database and would not interfere with any other update explicit

concurrency control among updates is not required . Similarly, if observation data is stored in

versions then read transactions can access the data they want without conflicting with any update

transactions.

6

3.2 Management Data

Management data is composed of “static” information such as an application’s configuration and

the network topology. This data provides the primary input for the configuration management and

is used by other management applications in locating, requesting and interpreting observation

data. Management data can be both read and written by the operator(s) or by MIR control

processes. For example, changing the configuration of an application is usually initiated by an

operator but system migration of a process would trigger an update by control processes. Most of

the data is stored at system initialization time and changed at a moderate rate consistent with

classical DBMS applications. Since it is possible that multiple transactions may access the same

data at the same time, standard database transaction management would be used.

Management data must represent the structures and relationships of a variety of

management entities and concepts. Descriptions of resource level entities, such as those provided

by the SNMP and the CMIP SMIs (Structure of Management Information) [13], must be

maintained as well as descriptions of midware services and application level entities like programs

and processes.

3.3 Control Data

Control data captures the current setting of application and system tuning parameters such as the

maximum number of requests to a server. The process for changing an existing set of control

settings is either initiated by the operator or triggered automatically as a function of the

information contained in the sensor data. In either case, no more than one process should be able

to update a set of control variables at one time otherwise control setting would be at the mercy of

the transaction processing order. Therefore, concurrency control is not explicitly required for

control data. It is required implicitly, however, as part of ensuring the atomicity of updates to set

of related control variables. As with observation data, it may be necessary to maintain a history of

the control data however these changes will occur at a moderate rate relative to the observation

data.

7

4. Information Modeling

4.1 Modeling Concepts

An important aspect of an information model for the MIR is the ability to represent, and to relate,

the different types of data objects relevant to distributed applications management. For example,

some relationships exist because collecting observation data about objects at the application level

(e.g. processes) involves collecting data at the resource level (e.g. CPU) of the system. That is

observations about higher level objects are derived from observations of lower layer objects.

Distributed applications management must therefore, to some degree, encompass systems

management and network management concepts.

The information model must also capture the structure of the management model, that is,

it should describe managers, management agents and managed objects. The managed objects

consist of the application components and resources used by those components. Management

agents provide views of managed objects to the managers. Managers provide the interface to the

management applications.

Objects may undergo changes during operation, for example an application process may

be moved from one site to another. Performance management requires that a history of an object

be maintained so that the effectiveness of the changes can be evaluated. This requirement implies

that versions must be part of the model.

We describe a distributed application in terms of a set of concepts which include the

engineering structures of the Reference Model for Open Distributed Processing (RM-ODP) [10].

This allows us to model the application in terms of its individual components such as objects,

operating system processes and nodes. The structure provides enough abstraction to represent

applications built using midware such as DCE or OMG’s CORBA.

The engineering structures of the RM-ODP are defined as follows:

• Basic Engineering Objects (BEOs) are the building blocks of the application. They contain

the procedures or methods that perform the processing of the system.

8

• Clusters are groupings of related objects. They are an abstraction used in reconfiguring an

application.

• Capsules are the operating system processes required by the application.

• Nodes are the stations in a distributed environment.

The relationships among these structures are shown in Figure 2.

In addition, we also define the following concepts:

• Applications are the entities to be managed. They are described by the set of requests, or

transactions, processed by the application and by the set of component clusters.

• Application Instances are run-time instances of applications.

• Configurations define an assignment of capsules to nodes for an application instance.

9

4.2 Modeling Constructs

We use a structurally object-oriented model, based on the Telos language[6], to define the

structures of our information model. We chose an object-oriented model for two main reasons:

1. the entities to be modeled may have complex structures and relationships;

2. there will be a large number of similar entities, for example processes, which may be grouped

into classes.

The model uses the following constructs:

• object: An object is an identifiable collection of attribute values which represents an entity or

component such as a process, management agent or resource. Every object has a unique

object identifier (OID) or name.

• class: A class is a collection of objects that share common properties. An object is created as

an instance of a particular class. Classes are related via the is-a relationship.

BEO

BEO

More
BEO’s

Cluster

Capsule

More
Clusters

More
Capsules

Node

Figure 2: Engineering Structures of RM-ODP

10

• attribute: An attribute is a particular property of an object. Each attribute has a type which

may be primitive type, such as string, integer or real, or a user-defined class. In the latter case,

the value for the attribute is a reference to an instance of that class. Attributes may be single-

valued or multi-valued. The attributes defined for a class are grouped into categories where a

category is related to a particular aspect of an object. For example, management objects have

one which describes the management interface of the object and one category which describes

the state of the object. In our Telos implementation, attribute categories are implemented

through metaclasses.

The current class hierarchy for the information model is shown in Figure 3. The root of the

hierarchy is the class MIObject. The main subtrees correspond to ManagedObjects with subtrees

for the two types of objects - Resources and ApplicationComponents, ManagementAgents and

application source code objects (ASObject). The class VersionedMIObject implements versions in

its subclasses.

11

We present several example class definitions to illustrate the features of the model. The

class MIObject is defined as

class MIObject
with

State
name: String;
description: String

 end

It contains the single attribute category State and defines the two properties name and description

which are inherited by all objects. The class ManagedObject, defined as

MIObject

Cluster

Configuration

BasicEngineeringObject

Method

Capsule

ManagedObject

ManagementAgent

Node

Resource
ApplicationComponent Request

Application

ASObject

VersionedMIObject

ApplInstance

Figure 3: Information Model Class Hierarchy

12

class ManagedObject
isa MIObject
with

ObservationData
 end

is a specialization of MIObject and the ancestor class for all instances of managed objects. It

introduces the attribute category ObservationData which is used by all subclasses to define the

observation data related to a managed object. The class ApplicationComponent, defined as

class ApplicationComponent
isa ManagedObject
end

groups the collection of managed objects that are components of a distributed application.

There are subclasses of ApplicationComponent, namely ApplInstance and Capsule. We

view an application as composed of a set of interacting processes or capsules and possibly

instances of another application. For example, a financial application may use an independent

database application. We assume for now that applications do not wish to manage objects beyond

the level of detail of capsules. The definition of the Capsule class is as follows:

class Capsule (* process *)
isa ApplicationComponent
 with

State
capID: Integer; (* process id *)
portID: Integer; (* port number for appl communication *)
upTime: Integer; (* time process was started *)
operStatus: String; (* operational status of process *)
residentHost: Node; (* current process location *)
components: {Cluster};
exposedMethods: {Method};

ObservationData
cpuUsage: DataFile; (* data for CPU use (system and user) *)
memoryUsage: DataFile; (* data for memory use *)
diskIO: DataFile (* data for disk use *)

end

13

Properties in the State of a capsule define relationships with several other types of objects:

the Node on which the capsule is running, the set of Clusters that make up the capsule and the set

of Methods exposed at the interface to the capsule (i.e. available to other capsules). Relationships

are represented as links or references in an object-oriented model like the one used here. Capsules

also contain links to the observation data that is collected about them by the management agents.

The three pieces of information, cpuUsage, memoryUsage and diskIO, are collected and

maintained in data files outside of the MIR. Each of the data files is described in the MIR and

represented as an object of class DataFile.

5. MIR Prototype Design

The structure of the MIR prototype is shown in Figure 4. It is a basic client-server system. The

MIR Server has two components: the Telos Repository and the MIR Server Interface. The Telos

Repository [2] provides the back-end database for the MIR. The MIR Server Interface accepts

requests from MIR Clients and translates them into requests to the Telos Repository.

Communication between the Telos Repository and the MIR Server Interface is via the Telos

Telos
Repository

TMB DCE

MIR
Server
Interface

MIR Server

Mgmt
Appls

MIR
Client
Library

MIR Clients

Figure 4: MIR Prototype

14

Message Bus (TMB). Communication between the MIR Clients and the MIR Server Interface is

via DCE RPCs.

The Telos Repository has limited query capabilities. Since management applications are

likely to need to search for objects based on attribute values as well as by browsing links, we

provide a sophisticated filtering mechanism in the MIR Server Interface. Data may be retrieved

from Telos and then filtered according to client-specified conditions before it is returned to the

client. The Telos Repository also handles requests in a serial manner. The MIR Server Interface is

implemented with DCE threads and interacts with multiple clients at one time. Concurrent client

requests are buffered in the MIR Server Interface and passed serially to the Telos Repository.

A MIR Client has two components: the MIR Client Library and a Management

Application. The MIR Client Library is a collection of functions to allow interaction with the MIR

Server. It presents management applications with a view of the MIR which is consistent with the

MANDAS Information Model. It provides functions to perform the following:

• connect to, and disconnect from, the MIR;

• create, modify and retrieve MIR schema class definitions;

• create, modify and retrieve MIR objects;

• define query filters and issue queries.

Observation data is not stored in the MIR for performance reasons. The MIR is used to

store the management data, the control data and descriptions of the observation data. A

management application which needs to access observation data first accesses the MIR to obtain

information on the observation data such as its location, how it is stored (e.g. file, relational

database) and how it is structured. The client then interacts directly with the observation data

source.

6. Related Work

While there has not been previous work on distributed applications management, the role of

databases in network and systems management has been studied. Haritsa et. al. describe

MANDATE (Managing Networks using Database Technology), a proposed MIB (Management

15

Information Base) to support network management [3]. Their approach is to have operators

interact solely with the MIB - the database embodies the network for the operator. Similar to our

work, the MIB, like the MIR, is the focal point for integration of the management applications.

MANDATE also proposes an object-oriented model to support management. Implementation in

MANDATE is client-server with sophisticated client caching while our implementation is based

on distributed databases.

The work of Wolfson et. al. [14] has a different focus than either our work or

MANDATE. They propose a model of network management actions as data manipulation

operations and provide an SQL-like language for specifying network management functions. They

also discuss the use of database triggers as a mechanism for automatically initiating management

events.

Finally, Hong et. al. [5] investigate the use of an X.500 directory system as a repository

for systems management information. The X.500 system has the advantages that it is a distributed

database and it is a widely available standard. However, X.500 is intended as a white pages

system and not as a general DBMS. There are questions about its general modeling capabilities

and its performance.

7. Summary

Distributed systems management is crucial to the success of future distributed systems and is an

interesting application area for database systems research. We have introduced the MANDAS

project in distributed applications management and explained the role played by the Management

Information Repository in the integration and support of a collection of management applications.

We outlined the requirements for the MIR, based on our view of distributed applications

management, and discussed an information model and prototype implementation of the MIR.

We are currently integrating the MIR with components provided by other MANDAS

groups including a system for generating and assigning management agents [9] and a performance

modeling management application [4]. We also plan to explore a number of extensions to the

MIR. We will examine how to incorporate versions and triggers into the model and the

16

implementation. We will also study the relationships among the MANDAS information model and

management models such as SNMP and CMIP [13] from network and system management.

Acknowledgements

The author would like to thank the members of the Database Systems Group at Queen’s

University who contributed to the development of the MIR: Wendy Powley, Dave Barrowman,

Peter Zion, Yichun Ding, Daniel Boudreault and J.P. LeBlanc.

References

[1] M. Bauer, P. Finnigan, J. Hong, J. Rolia, T. Teory and G. Winters. Reference Architecture for
Integrated Distributed Sysyems Management. IBM Systems Journal 33(3), pp. 426-444,
1994.

[2] E. Buss, R. De Mori, M. Gentleman, J. Henshaw, H. Johnson, K. Kontogiannis, E. Merlo, H.
Muller, J. Mylopoulos, S. Paul, A. Prakash, M. Stanley, S. Tilley, J. Troster and K. Wong.
Investigating Reverse Engineering Technolgies for the CAS Program Understanding Project.
IBM Systems Journal 33(3) , pp. 477-500, 1994.

[3] J. Haritsa, M. Ball, N. Roussopoulos, A. Datta and J. Baras. MANDATE: Managing
Networks Using DAtabase TEchnology. IEEE Journal on Selected Areas of Communication
11(9) , pp. 1360-1372, Dec. 1993.

[4] G. Hills, J. Rolia and G. Serazzi. Performance Engineering of Distributed Software Process
Architectures. To appear in Proc of International Conference on Performance Tools’95,
Heidelburg, Sept. 1995.

[5] J. Hong, M. Bauer and J. Benett, Integration of the Directory Service in Distributed Systems
Management. Proc. of 1992 International Conference on Parallel and Distributed Systems,
Hsin Chu, Taiwan, pp. 142 - 149, Dec. 1992.

[6] J. Mylopoulos, A. Borgida, M. Jarke and K. Koubarakis. Telos: A Language for Representing
Knowledge about Information Systems (revised). Technical Report KRR-TR-89-1,
Department of Computer Science, University of Toronto, August 1990.

[7] OMG. The Common Object Request Broker: Architecture and Specification. Object
Management Group, Framingham MA, 1993.

[8] OSF. The OSF Distributed Computing Environment Rationale. Open Software Foundation,
Cambridge MA, 1991.

[9] G. Perrow, J. Hong, H. Lutfiyya and M. Bauer. The Abstraction and Modelling of
Management Agents. To appear in Proc. of the 4th IFIP/IEEE International Symposium on
Integrated Network Management, 1995.

[10] K. Raymond. Reference Model of Open Distributed Processing: a Tutorial. Open Distribted
Processing II (C-20), J. De Meer, B. Mahr and S. Storp (Editors), Elsevier Science B.V.
(North-Holland) , pp. 3 - 14, 1994.

17

[11] J. Rolia. Distributed Application Performance, Metrics and Management. Open Distribted
Processing II (C-20), J. De Meer, B. Mahr and S. Storp (Editors), Elsevier Science B.V.
(North-Holland) , pp. 235-246, 1994.

[12] J. Rolia, C. Woodside, V. Vetland, R. Bunt, D. Eager, M. Bauer, J. Hong, H. Lutfiyya, J.
Black, T. Kunz, D. Taylor, P. Martin, T. Teory and P. Finnigan. Distributed Application
Management, The MANDAS Project. To appear in Proc. of the 6th IFIP/IEEE International
Workshop on Distributed Systems: Operation and Management, October 1995.

[13] M. Sloman. Network and Distributed Systems Management, Addison-Wesley Publishing Co.,
Wokingham England, 1994.

[14] O. Wolfson, S. Sengupta and Y. Yemini. Managing Communication Networks by
Monitoring Databases. IEEE Trans. on Software Engineering 17(9), Sept. 1991.

