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Abstract

The Management of Distributed Applications and Systems (MANDpA®)ject addresses
problems arising ithe management of distributed applicatio®gecifically, weare studying the

areas of configuration management, fault management, performance management, and application
metrics and modeling. Ware alsoinvestigatingthe tools,techniques and services needed to
support the above management applications. The MANDA®anagement Information
Repository(MIR) provides databassupport for themanagement applications asdpportstheir
integration into a single management environment.

In this paper weexaminethe problem of distributed applications managemenéxeaact
the requirements for a MIR. Based on the requirements, we presarfomation model for
distributed applications management and outlipatotype MIR developed for thelANDAS
project.
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1. Introduction

Distributed computing systentgpically consist of large numbers btiketerogeneous computing
devices connected by communicatimegtworks, various operatirgystemresources andervices,

and user applicationsunning on them. Theseesources andapplications are becoming
indispensable to mamgnterprises, but as distributegistems become larger and more complex,
more things can gowrong, potentially interrupting or crippling criticabperations. Thus
managemensupport is often cited bgnd users as the single most important aspect of a
distributed system. Management issuethatnetwork andystems levels have receivedj@at

deal of attention but the same thing cannot be said for the application level.

The objective othe Management of Distributefpplications and Systems (MANDAS)
project is to addresproblems arising inthe management of distributed applications. Yd&e
management to include configuration management, fault management, performance management
and application metrics and modelinylore specifically, we include within applications

management the following [12]:

1. The software tools antéchniques that designers of distributed applications system
administrators usecalled management applicationdo ensure the ongoing areffective

design and operation of the systems and applications.

2. The dataand informationabout theapplications and systems required thg management

applications, and the means of collecting, storing and maintaining them.
3. The tools, techniques and services needed to support the above.

In order to integrate theanagement applications and mantge datathey require, we
see alogically centralized databasevhich we callthe Management Information Repository
(MIR), at the heart of theystem. The development of a MIRtie focus ofour part of the
MANDAS project and the subject of the paper.
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The remainder othe paper is structured as follows. Sectiodistusseshe MANDAS
project and itsview of distributed applications managemesgction 3 outlineslatamanagement
requirements for distributed applications management. Section 4 desbdl@&@srmation model
used by the MIR and Sectiondgscribes grototype MIR developed for tiHdANDAS project.

Section 6 discusses related work and Section 7 summarizes the paper.

2. Distributed Applications Management

MANDAS considers distributed applications that rely onghpport ofmiddleware, such as DCE

[8] and CORBA [7], forcommunication betweesoftware components. Midwasnvironments
make it easier to buildlistributed applications by providing a bridge between heterogeneous
systems irthe form of common interface description techniques and communication paradigms.
The midware camide many otthe complexities of distributed systertisrough features such as
location transparency andlata format translationApplication software thatrelies on
transparencies is more robwgith respect toevolving environments. Transparenciaswever,

can make it more difficult to understandhy distributed applications and their systems behave the

way they do. Midware also poses performance costs that need to be understood.

Our approach towardsharacterizing application behaviour startstla midware and
continues upwards into trepplication domain. When it sppropriate application behaviour is
then correlated witlother information such as operating system and communica@work
resource consumptiorFor example, Rolia [11] describehe information that needs to be
collected or deduced tsupport theperformance characterization anaaweling of distributed
applications. The services provided by each applicgitoness must be characterized separately
according to properties such as the average @WRé& needed by process to completespecific
operation and the operation’'s averagember of requests forservice fromother servers’
operations. Monitoringsystemsfor midware environments should collect this information and
make it available tanore general system monitors. ¢ur architecture [1] thesystemlevel
monitor interacts directly with management applications and theghMIR. SNMP and CMIP

[13] have been chosen to support our system level monitoring infrastructure.



Figure 1 shows thenanagement architecture we haagopted to suppomdistributed
applications management [1]. Tiheanagement applicationsccess thevailable management
servicesthrough acommonmanagement service interfac€éhe management services turn
interact with themanagement agentirough variougprotocols, forexampleSNMP or CMIP.

Each managemeagent igesponsibldor some collection omanaged objectsThe Management
Information Repository provides services to the three component subsystems as well as providing

a common interface to the set of management agents.

3. Data Requirements

To provide databasesupport for distributed applications management it is necessary to
understand the requirements of thanagement applications atite management servicdbat

will use the database. Werive these requirements frahe properties of the types of data used
in distributed applications managemeimgcluding its physical properties and itssemantic
properties, and the characteristics of the types of accessesdatah&Vedistinguishthree types

of data: observation datmanagementlataand controldata. Haritsaet. al. [3] provide asimilar
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Management Management Management Modelling
Management Service
Management Services

Interface
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Figure 1: MANDAS Management Architecture




classification for network management data.

3.1 Observation Data

The observation data is the ramformation that is received frotthe monitoring processes and
includes a variety of variables whidepend upon thmanaged objecEor example, application
level variables includ@rocess ugime andthe number and type of eackquestmade from one
process to anothemidware variables includserver queue lengths, RPC invocations and RPC

response times, and resource-level variables include memory and CPU usage.

Observatiordata provides therimary inputfor the performancenanagement, modeling
and fault managemetdsks. It represents the current state ofagplication in terms afesource
usage anduality of service provided tasers. During normal execution, observatiataarrives
from a monitoringprocess at a reguldrequencybut underfault conditionsdata may be
generated at higherratethan normal. Another possible situation is whebservation datanly

arrives when an extraordinary event occurs or when it is requested by a management task.

Two distinctgroups of transactions, “updates” and “reads”, access the obsemyatéon
The updates are performed by the monitoring proce$keyg.aretypical database updates in that
the newvalue is independent dhe currentvalue, but atypical in that they W happen in real-
time. The real-time characteristic gpdatesneans thathe overhead incurred by an updatast

be minimized.

Communication overhead and contentior MIR resources can beninimized by
physically dstributing the observation data so thabnitoring processes write to localpssibly
heterogeneous, databaselsich are under thaimbrella ofthe MIR. This distributed database

approach also enhances the scalability of the MIR.

Transaction management overhead can alsonimémized. Since arupdate typially
accessesnly one portion of the database and wondt interfere withany other updateexplicit
concurrency control among updatesn@ required .Similarly, if observation data istored in
versions then read transactions can acttesslatahey want withoutonflicting with anyupdate

transactions.



3.2 Management Data

Managementlata is composed of “stati@fiformation such as an application’s configuration and

the network topology. This data provides the primary input for the configuraaoagement and

is used by othemanagement applications in locating, requesting and interpreting observation
data. Managemendata can be both read and written by tbperator(s) or by MIR control
processes. Fagxample, changinghe configuration of amapplication is usually initiated by an
operator but system migration of a process would trigger an update by control processes. Most of
the data is stored a&lystem initialization time and changed amaderate rateonsistent with
classicalDBMS applications. Since it is possible thatltiple transactionsnay access thesame

data at the same time, standard database transaction management would be used.

Managementdata must represent the structurasd relationships of a variety of
management entities adncepts. Descriptions of resouttegel entities, such as those provided
by the SNMP and the CMIP SMI&Structure of Management Information) [13], must be
maintained as well agdescriptions of midware services and applicakwel entities like programs

and processes.

3.3 Control Data

Control data captures the current settingygblication and system tuning parameters such as the
maximumnumber ofrequests to a server. The processduaanging an existinget of control
settings is either initiated byhe operator or triggeredutomatically as a function of the
information contained ithe sensor data. In either case, no more than one psicadd beable

to update a set of contreariables abnetime otherwisecontrol setting would be at theercy of

the transaction processirgder. Thereforeconcurrency control isot explicitly required for
control data. It is requirennplicitly, however, as part efnsuringthe atomicity ofupdates to set

of related controvariables. As with observatiatata, itmay benecessary to maintain a history of
the control data however theseanges W occur at a moderate ratelative tothe observation

data.



4. Information Modeling

4.1 Modeling Concepts

An important aspect of anformation modefor the MIR is theability to repesent, and to relate,
the different types otlata objectselevant to distributed applications managemEeat.example,
some relationships exist because collecting observd&itamnabout objects at tla@plicationlevel
(e.g. processeshvolves collectingdata at the resourdevel (e.g. CPU) of thesystem.That is
observations aboutigher levelobjects arederived fromobservations of lowelayer objects.
Distributed applications management mulserefore, to some degree, encompasstesys

management and network management concepts.

The information model must alsapture the structure of tmeanagement model, that is,
it should describe managers, management agents and managed objects. The managed objects
consist of theapplication components anmésources used by those componektanagement
agents provideiews of managed objects tbe managers. Managers provide ititerface to the

management applications.

Objectsmay undergo changes during operation, éxample an applicatioprocess may
be moved fronone site to another. Performamoanagement requires that a history of an object
be maintained so th#te effectiveness ofhe changes can be evaluatéhis requirement im@s

that versions must be part of the model.

We describe a distributed application in terms ofe& of conceptsvhich include the
engineeringstructures of th&eference Model for Open Distributed Processing (RM-ODP) [10].
This allows us to modehe application in terms of iténdividual components such as objects,
operating systenprocesses and nodes. Téteucture provides enough abstraction to represent

applications built using midware such as DCE or OMG’s CORBA.
The engineering structures of the RM-ODP are defined as follows:

* Basic Engineering Objects(BEOs) are théuilding blocks of the applicationfhey contain

the procedures anethodghat perform the processing of the system.



» Clusters are groupings of related objecthey are an abstraction used reconfiguring an

application.
» Capsulesare the operating system processes required by the application.
* Nodesare the stations in a distributed environment.
The relationships among these structures are shown in Figure 2.
In addition, we also define the following concepts:

» Applications are the entities to be managdthey are described by thget ofrequests or

transactions, processed by the application and by the set of component clusters.
» Application Instancesare run-time instances of applications.

» Configurations define an assignment of capsules to nodes for an application instance.
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Figure 2: Engineering Structures of RM-ODP

4.2 Modeling Constructs

We use a structurally object-oriented model, based on the l[aaljpsage[6], to define the

structures of our information model. We chose an object-oriented model for two main reasons:

1.

2.

the entities to be modeled may have complex structures and relationships;

there Wl be alarge number o$imilar entities, forexampleprocessesyhich may begrouped

into classes.
The model uses the following constructs:

object An object is andentifiable collection ofttributevalues whiclrepresents an entity or
component such as a procesgnagementagent or resourceEvery object has a unique

object identifier (OID) or name.

class A class is a collection of objects that share comproperties. An object is created as

aninstance oh particular class. Classes are related vigstheelationship.



« attribute An attribute is a particular property of an object. Each attribateatype which
may beprimitive type,such as string, integer or real, or a user-defined class. In the latter case,
the value for the attribute israferenceto an instance of that class. Attributeay besingle-
valuedor multi-valued The attributeslefinedfor aclassare grouped intcategorieswhere a
category is related to a particular aspect of an olff@ectexample, management objebts/e
onewhich describethe management interface tife object and one categompich describes
the state of the object. lour Telos implementationattribute categories arnenplemented

through metaclasses.

The current class hierarchy for the information model is shown in Figlifee3.oot of the
hierarchy ishe classMIObject The main subtrees correspond ManagedObjectsvith subtrees
for the two types of objects Resourcesand ApplicationComponentdManagementAgentand
applicationsource code object&EObject The clasd/ersionedMIObjectmplements versions in

its subclasses.
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We present severaxample class definitions to illustraiee features of the model. The

classMIObjectis defined as

classMIObject
with
State
name: String;
description: String
end

It contains the single attribute categ@tateanddefinesthetwo propertiesnameanddescription

which are inherited by all objects. The cld4snagedObjectdefined as

- MIObject

ManagementAgent
VersionedMIObject

S O T

Configuration Application ‘

O e & A ™™
ApplicationComponent

Method ‘ Request
Resource
BasicEngineeringObject
Node

Capsule Applinstance

Figure 3: Information Model Class Hierarchy
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classManagedObject

isa MIObject

with
ObservationData

end

is a specialization oMIObject and the ancestarlassfor all instances of managed objects. It

introduces the attribute categddpservationDatawhich isused byall subclasses to define the

observation data related to a managed object. TheAygdisationComponentefined as
classApplicationComponent

isa ManagedObject
end

groups the collection of managed objects that are components of a distributed application.

There aresubclasses afpplicationComponentnamelyApplinstanceand Capsule We
view an application agomposed of a set dhteracting processes or capsules g@odsibly
instances of another applicatiofor example, a financiahpplicationmay use an independent
database application. We assumeniow thatapplications daot wish to managebjects beyond

the level of detail of capsules. The definition of @epsuleclass is as follows:

classCapsule (* process *)

isa ApplicationComponent

with

State

caplD: Integer; (* process id *)
portID: Integer; (* port number for appl communication *)
upTime: Integer; (* time process was started *)
operStatus: String; (* operational status of process *)
residentHost: Node; (* current process location *)

components: {Cluster};
exposedMethods: {Method};

ObservationData
cpuUsage: DataFile; (* data for CPU use (system and user) *)
memoryUsage: DataFile; (* data for memory use *)
disklO: DataFile (Yata for disk use *)
end
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Properties in th&tateof a capsule define relationships with sevethertypes of objects:
theNodeon which the capsule is runnirthe set ofClustersthat make uphe capsule and the set
of Methodsexposed at thimterface tothe capsule (i.eavailable toothercapsules). Relationships
are represented as links or references in an object-oriented modeelikre used her€apsules
also contairlinks to the observation data that is collected alibatn bythe management agents.
The three pieces of infomtion, cpuUsage memoryUsageand disklO, are collected and
maintained indatafiles outside of the MIR. Each of the ddikes is described in the MIR and

represented as an object of clBRsdaFile.

5. MIR Prototype Design

The structure of the MIR prototype is shownFigure 4. It is a basic client-server system. The
MIR Serverhastwo components: th&elos Repositorand theMIR Server InterfaceThe Telos
Repository [2] provides the back-end database for the MIR. The MIR Server Interface accepts
requestsfrom MIR Clients and translates them intequests to the Telos Repository.

Communication betweethe Telos Repository and the MIR Server Interfacgiasthe Telos

MIR Clients

<

|
|
:
|
| |
' | Telos MIR | — |
. |Repository Server ‘ |
l Interface ‘ |
|
|
|
|
|

|
RN
TMB DCE Q l
| | E— |
MIR Server | |

C||ent App's
Library

Figure 4: MIR Prototype

13



Message Bus (TMB)Communication betweethe MIR Clients andhe MIR Server Interface is
via DCE RPCs.

The Telos Repository hdsnited query capabilities. Since management applications are
likely to need to search for objects based on attribataes as well as bgrowsing links, we
provide a sophisticatefiltering mechanism irthe MIR Server Interface. Dataay beretrieved
from Telos and then filtered according to client-specified conditions beforedtuisied to the
client. The Telos Repository also handles requestsarial mannefThe MIR Server Interface is
implemented wittDCE threads and interacts with hiple clients atone time. Concurrerdlient

requests are buffered in the MIR Server Interface and passed serially to the Telos Repository.

A MIR Client has two components: theMIR Client Library and a Management
Application.The MIR Client Library is a collection of functions to allow interaction with the MIR
Server. It presentsianagement applications with a viewtbé MIR which isconsistent with the

MANDAS Information Model. It provides functions to perform the following:
» connect to, and disconnect from, the MIR;
» create, modify and retrieve MIR schema class definitions;
» create, modify and retrieve MIR objects;
» define query filters and issue queries.

Observatiordata is not stored in thdIR for performance reasons. The MIR is used to
store themanagementlata, the control datand descriptions of the observatiolata. A
management application which needsaateess observation ddtest accessethe MIR toobtain
information onthe observation datauch as its location, how it stored (e.gfile, relational
database) and how it &ructured. Theclient then interacts directly witthe observation data

source.

6. Related Work

While there hasot been previousvork on distributed applications managemetiite role of
databases in network amglstems management has been studied. Hagitsal. describe

MANDATE (ManagingNetworksusing Database Technology), aoposed MIB (Management
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Information Base) tosupport networkmanagement [3]. Theiapproach is tchave operators
interact solely with the MIB - the databas®mbodieshe network for the operatdsimilar to our
work, the MIB, like the MIR, is théocal pointfor integration of thananagement applications.
MANDATE also proposes an object-orientewdel tosupportmanagement. Implementation in
MANDATE is client-server with sophisticated client cachinbile our implementation is based

on distributed databases.

The work of Wolfson et. al. [14] has a different focus than eitheur work or
MANDATE. They propose amodel of network management actions akata manipulation
operations and provide an SQL-like languagesfmcifyingnetworkmanagement function$hey
also discusshe use of database triggers amechanisnfor automatically initiating management

events.

Finally, Hong et. al. [5] investigatehe use of an X.500 directosystem as a repository
for systems management information. Th&00 system hashe advantages that it is a distributed
database and it is widely availablestandard. However, X.500 iatended as a white pages
system anahot as ageneral DBMS. Therare questions aboits general modelingapabilities

and its performance.

7. Summary

Distributed systems management is crucialht® success of future distributegstems and is an
interesting application area for databagstems research. We have introdutdeel MANDAS
project in distributedpplications management and explaitieg roleplayed bythe Management
Information Repository in the integration asupport of acollection of management applications.
We outlined the requirements for the MIR, based ocam view of distributed applications

management, and discussed an information model and prototype implementation of the MIR.

We are currently integrating the MIR with components providedther MANDAS
groups including a system for generating and assigning managagess [9] and a performance
modeling management application [4]. We also plan to explore a number of extensions to the

MIR. We will examine how to incorporateversions and triggers intthe model and the
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implementation. We will also studize relationships amonthe MANDAS information model and

management models such as SNMP and CMIP [13] from network and system management.
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