
The Performance of SQL Queries to an X.500 Directory

System
�

November 1995

External Technical Report

ISSN 0836-0227-394

David Barrowman and Patrick Martin

Dept. of Computing and Information Science

Queen's University at Kingston

Kingston, Ontario

CANADA K7L 3N6

email: fbarrowma, marting@qucis.queensu.ca

November 30, 1995

Abstract

The X.500 standard speci�es a distributed directory service designed to store information

about people and objects associated with computer networks. Its API is geared toward retrieving

information based on this application domain. Recently, a number of projects have used the

directory in non-traditional ways. Such applications, however, are constrained by the X.500

information model and the limited functionality of its API. We describe a prototype system

that allows users to view the information in a directory as relations, and to query the view using

SQL. An analysis of the performance of the system is presented and possible optimizations are

discussed.

1 Introduction

The X.500 Directory Service was designed to act as a distributed white pages service to store

information about telecommunications entities. Increasingly, however, X.500 directories are being

used to store more general types of data, for example multidatabase catalog information [2] and

systems management information [7]. While applications such as these enjoy the bene�ts of the

�The authors thank IBM Canada Ltd. and NSERC for their support of the research.

1

distributed nature of the Directory Service, they are constrained by its information model and API,

which were designed with traditional X.500 applications in mind. Particularly limiting, in this

respect, are the inability of the X.500 information model to represent the arbitrary relationships

that may exist between the objects being modelled, and the consequential inability of the X.500

API to query those relationships.

Relational database management systems are currently the most popular form of general database

system. The relational model is capable of representing most types of business data and all relational

systems provide applications with the ability to query the database using SQL, the accepted standard

database query language. SQL allows ad hoc queries which combine information from multiple

tables to be described unambiguously. A relational model interface to X.500 could provide new

applications which use the Directory in non-traditional ways with the bene�ts of both the power

and
exibility o�ered by SQL and the transparent distribution o�ered by X.500. Furthermore, such

an interface would allow traditional X.500 directories to be accessed through a well known database

query language.

This paper describes a prototype relational query processor for an X.500 directory system. We

analyze the performance of a set of relational queries to the directory and suggest a number of

query optimization techniques based on the analysis. The remainder of the paper is organized as

follows. Section 2 sets the research into context and provides background information. Section 3

presents the mapping, from X.500 to the relational model, that was chosen as the basis for our

SQL interface and brie
y describes the query processing algorithm implemented in the prototype.

Section 4 presents a performance analysis of our query processor. This includes a description of

the benchmark databases and queries, and a discussion of the results obtained. Section 5 discusses

some of the techniques which were examined in an e�ort to optimize the system. Finally, Section 6

presents our conclusions.

2 Background

We set the context for the research discussed in the paper by brie
y examining three topics. First,

we describe the X.500 Directory Service. Second, we discuss two previous attempts at linking X.500

and relational query languages and �nally, we present an application of the X.500 Directory Service

2

which motivates the research.

2.1 X.500 Standard

X.500 [8] is an International Telecommunications Union (ITU) standard which speci�es a Directory

Service for managing information related to communication entities. The most noticeable feature of

an X.500 Directory is that while its clients are presented with a single, logically centralized view of

the information, that information can actually be physically distributed and replicated. Results of

this property are improved availability of the Directory Service within a distributed environment,

but reduced performance (as compared to that of a single, centralized repository service), due to

the required increase in network tra�c.

2.1.1 The Directory Information Base

The Directory Information Base (DIB) is the set of information stored in the Directory. The DIB

contains entries which describe objects in terms of their attributes. (An attribute consists of a type

and one or more values.) These objects are organized as nodes in a tree-structured hierarchical name

space, termed the Directory Information Tree (DIT). The placement of the objects in the DIT is

based on the real-world organizational relationships that exist between the objects they represent.

Each object has an attribute, or set of attributes, termed its Relative Distinguished Name (RDN),

which di�erentiates it from all other objects with the same parent object in the DIT. Thus, an object

is uniquely identi�ed in the DIB by its Distinguished Name, which is simply the concatenation of all

RDNs that are found along the path from the root of the DIT to the particular object's entry. X.500

also allows aliases to be de�ned, so that a single object may be associated with multiple parent

nodes in the DIT.

Each X.500 object has an object class. This is used to identify what type of real-world entity

the object represents, and determines which attributes are present in its Directory entry. A number

of basic object classes, all of which pertain to communication entities, are de�ned in the X.500

Standard. However, the Standard also allows for user de�ned classes, which promotes extensibility,

and permits the directory to be used in non-traditional ways.

The information in the Directory is physically distributed across a number of Directory System

Agents (DSAs). When a user process wishes to access the Directory, it interacts with a Directory

3

User Agent (DUA). From the user's point of view, it appears that the DUA simply accesses the

information from a centralized directory. However, in order to satisfy the client's request, the

DUA interacts with individual DSAs, which, in turn, collaborate to �nd and return the necessary

information. This process allows the bene�ts of distribution to be realized, while maintaining the

transparency of that distribution.

2.1.2 Searching The Directory

The Directory Access Protocol (DAP), which is used by DUAs to communicate with the Directory,

provides the functionality required to search for, retrieve, and modify the information stored in

the Directory. Included in the current DAP speci�cation are the Read, Compare, Search, List, and

Abandon functions used to interrogate the DIB, and the Add, Remove, Modify Entry, and Modify

RDN functions used to alter the contents of the DIB.

The Search function allows a user to query an X.500 database. Among the arguments that it

takes are a �lter, a base object, and a subset parameter. The �lter speci�es attribute values that an

object must have in order to qualify as a result of the search. A variety of types of attribute value

comparisons, such as equality and substring matching, are permitted in the �lter. The base object

parameter speci�es the object at which the search should start, thereby restricting the search to a

subtree of the DIT. The search can also be narrowed through the use of the subset parameter, which

allows the user to limit the search to the base object, to the immediate children of the base object,

or to the entire subtree of the DIT rooted at the base object. The bene�t of focussing the search

of the DIT by supplying a base object and a subset value is that only relevant portions of the DIT

are searched, thereby reducing the number of objects that must be examined to satisfy a query; the

drawback is that the user must have a knowledge of the structure and contents of the DIT.

A number of working implementations of the X.500 Directory Service Standard exist; the imple-

mentation used in this project is QUIPU 7.0 [11]. QUIPU o�ers a procedural API and a number of

end user interfaces, such as the Directory Shell (DISH).

2.2 Previous Work

As opposed to the X.500 DAP and its Search function, SQL and its familiar Select-From-Where

construct is highly
exible. Especially important is its ability to join information from multiple

4

relations in a database, thus promoting querying of the relationships that exist between the objects

being modelled. AID [1] and Nomenclator [10] are two previous attempts to integrate X.500 with

relational query languages.

AID implements an SQL-like interface to QUIPU. Its queries have the Select-From-Where form,

but the From clause may only specify a single table. Each node in a DIT is considered to be a

table; the tuples belonging to a table are composed of the attribute values of the objects at and

below its corresponding node. This introduces the problem of tables with `varying columns' - since

a single relation may contain information from di�erent classes of X.500 objects, each tuple may

have a di�erent set of attribute types. Although AID does achieve its goal of presenting a more

user friendly interface to X.500, it fails to faithfully represent the relational model and SQL, and

o�ers no greater functionality than the X.500 Search. Notably absent from AID is the ability to

express joins of information from multiple relations. Finally, since AID does not hide the underlying

DIT structure, it fails to present a new layer of abstraction, and forces the user to be aware of that

structure.

Nomenclator is a QUEL-based interface to X.500. Nomenclator solves the problem of `varying

columns' by allowing an administrator to specify which attributes are to belong to a relation. This

information, along with other metadata, is stored in a catalog, which the Nomenclator system uses

to achieve impressive performance results, while abstracting away from X.500. Like AID, however,

Nomenclator allows only a single relation to be involved in each query.

A shortcoming, in our view, of both AID and Nomenclator is their lack of support for queries

involving joins. Join queries allow information from multiple relations to be combined, and therefore

promote the querying of the relationships that may exist between the modelled objects. We consider

join queries to be an important aspect of an SQL interface.

2.3 Motivation for the Work - Multidatabase Systems

Our interest in providing an SQL interface to the X.500 Directory Service is the result of research

into catalog management for a multidatabase system. Multidatabase systems (MDBSs) provide

applications with integrated access to a collection of heterogeneous, autonomous and distributed

databases. MDBSs, like conventional database management systems (DBMSs) require that catalog

information be maintained in order to provide their services. This information must be stored in a

5

separate repository since component databases are assumed to be independent of the MDBS.

The CORDS MDBS [2] stores its catalog information in a repository based on an X.500 Directory

Service. We found that the Directory Service has a number of properties which make it a viable

basis for such a repository [4]:

� The Directory Service uses an object-based model which can represent the entities and rela-

tionships present in the catalog information.

� The Directory Service supports a variety of attribute types and supports user-de�ned attribute

types.

� The Directory Service provides name resolution for the objects in the MDBS.

� The Directory Service protocols provide a basis for querying and browsing the catalog infor-

mation.

� The Directory Service provides support for distributed and replicated data.

Two concerns with this approach, however, are the limitations of the query facilities, which

are considered here, and the performance and scalability of the Directory Service for this kind of

application [9].

3 SQL Interface to X.500

The structure of the SQL Interface software is shown in Figure 1. SQL queries to the directory

service are parsed and transformed into conventional query trees where the internal nodes of the

tree correspond to relational algebra operators (select, project and join are currently supported)

and the leaves correspond to \relations" in the DIT. The metadata used by the Query Processor to

generate the query tree and to map between relations and DIT entries is maintained in the Interface

Catalog. The Query Processor issues requests to a DUA to retrieve data from the directory and

performs the relational operations on the data to produce the result.

3.1 Mapping from X.500 Model to Relational Model

The basis for our SQL interface to X.500 is the mapping from the X.500 information model to the

relational model. This mapping, which allows data stored in X.500 to be viewed as sets of relations

6

SQL
Query

Query
Tree

Directory
Search

Results

MetadataResults

Parser
Query
Processor DUA

Interface
Catalog

Figure 1: Structure of the SQL Interface

composed of tuples containing attributes, employs the following rules:

� X.500 attributes are mapped to relational attributes. Multivalued X.500 attributes require

special treatment, as described below.

� X.500 objects are mapped to relational tuples. We term such objects, tuple objects.

� X.500 object classes are mapped to relations. The object class that corresponds to a particular

relation is called the Relation Object Class (ROC) of that relation. In addition to its ROC,

a base object in the DIT is required to uniquely identify a relation. Each relation has such a

base object, termed its Relation Base Object (RBO). Figure 2 illustrates these concepts.

� The portion of the DN of a tuple object below the RBO is termed its E�ective Distinguished

Name (EDN). Unless otherwise speci�ed and enforced, the attributes that form the EDN of a

class of tuple object are selected as the primary key of the corresponding tuples.

First Normal Form in the relational model requires that all attributes have a single, atomic value.

X.500, on the other hand, allows multivalued attributes. Aliases even allow a single object to have

multiple values for its RDN. In mapping from X.500 to the relational model, there seems to be no

7

country=Canada

organization=Acme Products

Objects of class
employeeObject

Objects of class
employeeObject

organization=XYZ Corp.

Figure 2: Depiction of an ROC and two di�erent RBOs: In a relation in which the ROC was
employeeObject and the RBO was `country=Canada', all objects of class employeeObject in this
diagram would qualify for the relation. In this case, the EDNs would include the `organization'
attribute. If, however, the RBO was `country=Canada@organization=XYZCorp.', only the circled
objects would qualify, and their EDNs would be composed of only their RDNs.

reasonable way to preserve First Normal Form. The standard method of creating a new relation

for each multivalued attribute would be highly ine�cient, since all attributes are allowed to have

multiple values (and would therefore require separate relations). Furthermore, there is no obvious

way to preserve the relationship between two RDNs that identify a common object.

The solution chosen is to relax the de�nition of the relational model. Multivalued attributes are

allowed in our implementation; multiple values for a single attribute are represented by a comma

separated list of values surrounded by braces.1 Making this change to the traditional relational

model, however, introduces a new problem: querying multivalued attributes. For the sake of sim-

plicity, unless otherwise speci�ed, an equality comparison upon an attribute will be interpreted in

the multivalued case as an inclusion comparison (i.e. if any of the values of an attribute are equal to

the value speci�ed in a query, the given tuple is accepted). Additionally, a strict equality comparison

may also be implemented.

1This method of dealing with multivalued attributes applies equally to both previously existing X.500 directories

and new directories designed speci�cally for use with this interface. However, it is strongly recommended that any

databases belonging to the latter group avoid allowing attributes with multiple values.

8

3.2 Query Processing

A two-phase algorithm is used to process the query trees. The �rst phase performs a post-order,

depth-�rst search of the tree to perform the necessary X.500 accesses and to expose each operation

node to the formats of the tuples upon which it will operate. The second phase of the algorithm

involves a series of tree traversals which take the results of the X.500 searches and pass them up the

tree.

When a table node is visited during the the �rst phase an X.500 DAP search is executed to

retrieve the tuple-objects from the directory which correspond to the table. The RBO and ROC for

the table are obtained from the Interface Catalog and the X.500 search retrieves objects of the class

ROC in the DIT subtree below the RBO. A �lter to restrict the result is constructed from select

and project nodes which immediately precede the table node, if they exist.

The result of a search is an array of strings. The array is converted into a collection of tuples:

attribute values are placed in the tuple structures, missing attributes in the X.500 objects are con-

verted to the relational NULL value, and multiple values for an attribute are left as a string and

placed within braces. The result is stored in main memory as a list which is accessed each time

the associated table node is revisited during the second phase of the algorithm. Simple implemen-

tations of the select, project and join operations are provided. Details of the algorithm are given in

Barrowman [3].

4 Performance Analysis

The two objectives of the performance analysis are to gain insights into the feasibility of an SQL

interface to X.500 and to point out the most bene�cial areas for optimizations. Two test databases

are used: a previously existing, \traditional" X.500 directory, and a custom built, \synthetic" rela-

tional database. The �rst two subsections describe the contents and structure of these databases, the

queries used to analyze the performance of our X.500 interface, and the results of this analysis. The

third subsection compares the performance of the X.500 directory service with a relational DBMS

for the \synthetic" database.

All experiments were run on a lightly-loaded system set up as follows:

� The SQL Interface was located on an IBM RS/6000 Model 220 running AIX.

9

organization=Queen’s University

organizationalUnitName=French
organizationalUnitName=Art

commonName=David GedgecommonName=Joe Smith

Objects of class
organizationalUnit

Objects of class
organizationalPerson

c=CA

Figure 3: University White Pages DIT

� The QUIPU X.500 Directory Service was con�gured with a single DSA running on a second

RS/6000 Model 220.

� All indexing and caching was turned o� in the Directory Service.

� The performance of the system is presented in terms of the mean time required to complete

a query and the mean time required search the directory and to retrieve the necessary data.

The time for the X.500 search includes processing times at the DUA and DSA and the com-

munication time. Each query was run a su�cient number of times such that the mean times

could be stated with an accuracy of +/- 5% and a con�dence level of 95%.

4.1 University White Pages Directory

The Queen's University White Pages stores information about the people and departments associ-

ated with the university. The structure of the University DIT is illustrated in Figure 3. The root

of the university DIT is the `c=CA@organization=Queen's University' object. Below the root, each

member department is represented by an organizationalUnit object. Below each organization-

alUnit object is the collection of organizationalPerson objects representing the members of that

department. Aliases are used to relate a single person to multiple departments.

10

Objects of class organizationalUnit have a single attribute, organizationalUnitName, which

is, by necessity, their RDN. Each of these objects in the White Pages DIT has two values for this

attribute: a numeric identi�cation number and the name of the corresponding university department.

Objects of class organizationalPerson have the attributes commonName (which is the RDN

for these objects), surname, mail, telephoneNumber, and roomNumber. Additionally, each

organizationalPerson object inherits the value(s) of the organizationalUnitName attribute(s)

of the organizationalUnit(s) with which it is associated. We map the X.500 schema to a relational

schema with two relations:

� Departments with the multivalued attribute organizationalUnitName and

� People with attributes commonName, surname,mail, telephoneNumber, roomNum-

ber, and organizationalUnitName.

The set of queries used in the experiments are shown in Appendix A and represent the \typical

use" of the directory. The queries were derived from data available in a set of log �les from the

Queen's University public X.500 server. We found that users commonly search for information about

a person using attributes such as the surname or common name and perhaps the organizational unit,

that is, the department. Thus the set of typical SQL queries only involve selections.

White Pages Queries 1 through 5 are translated into single X.500 search operations which select

the �nal results directly from the directory. Since we wished to verify the assumption that queries

which push down the selection criteria into the X.500 search are more e�cient than those which

include the selection higher up in the query tree, we restated White Pages Queries 1 and 3, labelled

1-NF and 3-NF2 respectively, so that they were implemented by retrieving the entire relation from

the directory and then �ltering out the unwanted tuples.

Table 1 presents the performance results obtained for the White Pages Queries. For each query,

the size of the result relation, the mean time required to process the query, and the percentage of

time spent performing the X.500 search is given. We observe the following about the results:

� Queries 1-NF and 3-NF exhibit very poor performance compared to Queries 1 and 3:

- they take approximately 50 and 27 times longer, respectively, to perform the X.500 search;

2`NF' stands for \No Filter" to indicate that no �lter is applied during the X.500 search.

11

Size of Result Total Time X.500 Search % Time in
Query (tuples) (s) (s) X.500 Search

1 1 1.56 1.50 96.3
2 1.54 1.54 1.48 96.2
3 35.78 3.01 2.54 84.4
4 1 1.56 1.51 96.3
5 1.05 1.62 1.56 96.5

1-NF 1 80.61 67.84 84.2
3-NF 35.78 82.08 69.71 84.9

Table 1: Performance of White Pages Queries

- they take approximately 8 and 27 times longer, respectively, to perform the processing after

the search;

- they require more memory, since all of the tuples in the People relation must be brought

into memory.

This con�rms our assumption that, for optimal performance, any selection operations in the

query tree should take place during, rather than after, the X.500 searches.

� Queries 1, 2, 4, and 5 all require approximately the same amount of time to be processed

(between 1.54 and 1.61 seconds), despite the fact that Queries 4 and 5 include the organi-

zationalUnitName (part of the EDN of the tuple-objects) in their selection criteria. Ad-

ditionally, each of these queries requires approximately the same amount of time to perform

the necessary X.500 search. This implies that the Directory Service is not taking advantage

of the extra information in the query when performing the searches for Queries 4 and 5. It is

assumed that the same holds true for Query 3.

� The majority (between 84 and 97 percent) of the total time required to process each of these

queries is spent performing the X.500 search operation.

4.2 Synthetic Database

Bitton, et al.[5] argue that in order to e�ectively benchmark a database system, the testbed database

must be large, well structured, and composed of uniformly distributed, random \synthetic" data

which facilitates the design of queries which retrieve speci�c amounts of data. The bene�ts of

12

c=CA

relationName=tableC
relationName=tableA

uniqueA=999uniqueA=0

Objects of class
testTuple

relationName=tableC

Figure 4: Structure of the Synthetic Relational DIT

structuring the test database in this fashion are that queries are easy to design and understand, and

the results of the queries can be precisely controlled.

Our Synthetic Database, which is based on the Wisconsin Benchmark Database, is composed

of three relations: tableA, tableB, and tableC. The �rst two tables contain one thousand tuples

and the third contains �ve hundred tuples.3 Each of these relations has the same set of attributes:

uniqueA, uniqueB, hundred, ten, four, and two. Attributes uniqueA and uniqueB take on

unique values for each tuple in the relation and, in general, for a given tuple, uniqueA 6= uniqueB.

The remaining attributes are named to indicate the size of the domain from which they take their

values. For example, the domain of the attribute ten is [0, 9]. The attribute values for each tuple

are generated using a pseudo random number generator and are uniformly distributed across the

corresponding domain.

The relations belonging to the Synthetic Database are stored in an X.500 DIT as shown in

Figure 4. The DIT is rooted at the object \c=CA" which has children of class relation that have a

single attribute, relationName. Our DIT has three objects of this class which serve as the RBOs

of the three relations in the database. Since each of these relations has the same attributes, tuple

objects under the relation objects all have the same ROC, that is object class testTuple. The

attribute uniqueA is the RDN and the EDN of the tuple objects and the primary key of the tuples

in each relation.

3Table sizes were restricted by system limitations.

13

Size of Result Total Time X.500 Search % Time in
Query (tuples) (s) (s) X.500 Search

1 1 0.52 0.48 91.0
2 100 5.45 4.90 89.8
3 10 0.98 0.91 92.2
4 2.5 1.0659560 0.99 93.2

Table 2: Performance of Select Queries

Size of Result Total Time X.500 Search % Time in
Query (tuples) (s) (s) X.500 Search

1 100 25.00 20.38 81.5
2 10 24.47 20.63 84.3
3 1000 25.38 20.10 79.2
4 1000 50.20 44.65 89.0

Table 3: Performance of Project Queries

The SQL and relational algebra query tree formulations of the queries chosen for the Synthetic

Database are presented in Appendix B. We stress queries involving selections on ranges of attribute

values, projections of attributes, and joins of information from multiple relations, since queries of

these types are typical of relational systems, and atypical of traditional X.500 systems. Join queries

are of the greatest interest, because that is the relational operation which is least supported by the

X.500 information model and DAP, and has not been implemented by other high level X.500 query

interfaces.

Tables 2, 3, and 4 present the performance results for our benchmark queries. A number of

observations regarding these results can be made:

� For each benchmark query, the system spends the majority of its time performing the necessary

Size of Result Total Time X.500 Search % Time in
Query (tuples) (s) (s) X.500 Search

1 1000 110.45 89.04 80.6
2 100 55.72 50.59 90.8
3 100 37.23 34.15 91.7
4 100 10.80 9.58 88.7

Table 4: Performance of Join Queries

14

X.500 searches.

� Queries that perform a greater amount of �ltering during, rather than following, the X.500

search phase demonstrate better performance. This is illustrated by the processing times of

the Join Queries 1, 2 and 4. Selections are added to one and then both branches of Join Query

1 in queries 2 and 4, respectively. The processing times drop signi�cantly each time a selection

is added.

� The performance of Project Queries 1, 2 and 3 are approximately the same because in each

case 1000 single attribute tuples are retrieved from the directory. Duplicate elimination is

performed by the query processor. The increase in time required for Project Query 4 is due

to the increase in the number of attributes returned per tuple. The extra time is spent in the

X.500 system.

� Queries involving join or project operations exhibit particularly poor performance results, since

they require entire relations to be retrieved from the directory.

4.3 Comparison with Relational DBMS

The above experiments indicate the absolute performance of the X.500 directory system for the

given sets of SQL queries. We repeated the Synthetic Database experiments using the Empress4

relational DBMS in order to judge the relative performance of the X.500 implementation.

The experiments were run on a lightly-loaded system set up as follows:

� The SQL Interface and the DBMS were located on a single IBM RS/6000 Model 220 running

AIX.

� The database was queried using SQL through an Open Database Connectivity (ODBC) inter-

face.

� Each of the relations was indexed on the uniqueA attribute.

A comparison of the X.500 and DBMS processing times is presented in Table 5. The X.500-

based system, as one would expect, does considerably worse than the DBMS for the project and join

4Empress is a trademark of Empress Software Inc.

15

Empress System X.500 System
Query Processing Time (s) Processing Time(s)

Select 1 2.24 0.52
Select 2 2.73 5.45
Select 3 6.28 0.98
Select 4 6.48 1.07
Project 1 7.24 25.00
Project 2 6.66 24.47
Project 3 9.43 25.38
Project 4 10.54 50.20
Join 1 21.17 110.45
Join 2 16.37 55.71
Join 3 7.70 37.23
Join 4 5.35 10.80

Table 5: X.500 versus Relational DBMS

queries. While some of the di�erence may be accounted for by the fact that the X.500-based system

must go across the network, the main reason is that the X.500 directory service is not designed to

handle project or join internally. The data must be moved out of the directory and the operation

performed by the SQL interface. The X.500-based system does, however, perform better than the

DBMS on three of the four select queries.

5 Query Optimizations

Our observations indicate that the query processing performance of our system is based to a large

extent on the performance of the directory service. An obvious direction, therefore, for optimizing

queries is to improve the performance of the directory service. Two possible ways to do this for a

given query are to reduce the amount of data retrieved from the directory and to reduce the size of

the portion of the DIT searched.

5.1 Query Rewriting

One approach to reducing the amount of data retrieved for a given query is to rewrite the query

tree, so that, while its result relation is unchanged, its directory accesses call for less data. One

optimization of this type, which was discussed earlier is to push all select and project operations,

where possible, down to the X.500 search. The extreme case of this optimization is illustrated by

16

table1 table2

σ A = x

B = C

table1 table2

σ A = x

B = C

σ C=b1 OR C=b2 OR ... OR C=bn

(a) (b)

Figure 5: Optimizing a join by introducing a new select operation when the join attribute is not the
same as the previously present select attribute: (a) the original query tree; and (b) the optimized
query tree.

Selectivity Time to Retrieve All Time to Process Percentage
(%) Tuples in tableA (s) Select Query 5 (s) Improvement (%)

0.1 53.17 0.51 99.0
1 53.17 1.19 97.8
10 53.17 8.20 84.6
20 53.17 16.03 69.9
30 53.17 24.94 53.1

Table 6: Performance of Select Query 5 for Di�erent Selectivity Factors

the results of White Pages Queries 1 and 3 versus their `-NF' counterparts (as shown in Table 1).

A second type of query rewrite applies to join queries. If one branch of the query tree below the

join includes a selection operation, a join index [6] may be established. This technique should be

applied to the less restrictive branch of the query tree. Metadata describing the size of relations may

be required to determine which branch is more restrictive. In the speci�c case where the selection

condition in the more restrictive branch is of the form `A�x' (where � is a comparison operator) and

the join condition is of the form `A=B', it su�ces to simply insert a selection with the condition

`B�x' into the other branch. Join Query 4 uses this technique to optimize Join Query 2, and a

comparison of the results of these queries in Table 4 illustrates the bene�ts of the optimization.

In the more general case, as shown in Figure 5 (a), where the selection condition is of the form

`A�x' and the join condition is of the form `C=B', a join index must be created dynamically. Thus,

when the tuple objects that satisfy the selection `A�x' are retrieved from the directory, the values

for attribute C are examined. These values are placed in a set �, which is then used to create a

selection condition of the form `B=b1 OR B=b2 OR ... OR B=bn', which is inserted into the less

restrictive branch of the query tree, as shown in Figure 5 (b).

17

Query SQL Formulation Relational Algebra Query Tree

Select
Query 5

SELECT *
FROM tableA
WHERE uniqueB = b1

 OR uniqueB = b2
OR ...
OR uniqueB = bn tableA

π *

σ uniqueB = b1 OR ...
 OR uniqueB = bn

Figure 6: SQL and Query Tree Representations of Select Query 5

The e�ects of this type of optimization are shown by reformulating Select Query 5 for the

Synthetic Database as shown in Figure 6. The results of executing the reformulated query for

varying selectivity (that is, with a varying number of elements in �) are presented in Table 6. The

query simulates the branch of the query tree below the join which is being optimized. As we can

see, this optimization is extremely bene�cial for � containing up to 300 elements, or 30% selectivity.

Unfortunately, due to system limitations, the technique could not be tested for � containing greater

than 312 elements. However, if the almost linear trend continues, the use of a join index would be

advantageous even for � as large as 600 elements.

5.2 Pruning The DIT

We observed during analysis that, when querying the White Pages Database, the system was unable

to take advantage of the structure of the DIT. This was illustrated by the fact that White Pages

Queries 1, 2, 4, and 5 all took approximately the same amount of time to process. We now examine

how DIT pruning in
uences the performance of the system when accessing each of the test databases.

5.2.1 Pruning the White Pages DIT

As shown in Figure 3, the level of child nodes directly below the RBO of the White Pages DIT par-

titions the tuple objects into subtrees based on organizationalUnitName. In e�ect, these nodes

act as an \index level" in the DIT, since they can be used to navigate directly to groups of objects

which all have the same organizationalUnitName. The system should be able to use this fact to

achieve improved performance for queries which select tuples with a speci�c organizationalUnit-

Name value.

18

With No With Subtree Percentage
Query Optimization (s) pruning (s) Improvement (%)

3 3.01 1.45 51.7
4 1.56 0.34 78.1
5 1.62 0.36 77.5

Table 7: Performance of White Pages Queries 3, 4, and 5 with Subtree Pruning

The system may restrict its search of the DIT by augmenting the RBO passed to the X.500

search with the additional information regarding the organizationalUnit to which all result tuples

of the query must belong. This allows the search to focus on the only subtree of the DIT which

may possibly contain valid result tuple objects, thereby minimizing the number of objects examined.

When a query is submitted to the system, the select �lter being passed to X.500 may be examined.

If it contains a reference to a speci�c value of the index attribute, the DIT may be pruned.

Table 7 compares the performance of White Pages Queries 3, 4, and 5 when no optimization is

used and when the DIT pruning technique is used. It is clear that the optimization is bene�cial -

performance is improved by more than 50 % for Query 3 and by more than 75 % for Queries 4 and

5.

5.2.2 Pruning the Synthetic DIT

The simple structure originally chosen for our Synthetic DIT does not allow for any form of DIT

pruning, beyond the relation level. In order to take advantage of pruning, a new level of \index

objects" must be introduced which sits between the RBO and the tuple objects of each relation,

as shown in Figure 7. The index level is composed of objects of class indexObject, which have

a single attribute, hundred. For each value of the hundred attribute, there is a corresponding

instance of indexObject below which all tuple objects with that value reside.

As with the White Pages Database, using DIT pruning with the Synthetic Database involves

examining a query for a reference to the hundred attribute in its selection condition. If such a

reference exists (as it does, for example, in Select Queries 3 and 4), the relevant indexObject,

rather than the RBO of the relation, is chosen as the base object for the X.500 directory search.

This allows the system to focus on a much smaller subset of tuple objects (in our case, 100 times

smaller, on average). However, for queries which cannot take advantage of the index objects, the DIT

19

c=CA

relationName=tableC
relationName=tableA

hundred=99hundred=0
Objects of class

indexObject

uniqueA=904uniqueA=79

Objects of class
testTuple

with hundred = 0

Objects of class
testTuple

with hundred = 99

relationName=tableC

Figure 7: The Synthetic DIT with objects of class indexObject introduced for optimization purposes.

20

With No With Subtree Percentage
Query Optimization (s) pruning (s) Improvement (%)

1 0.52 0.63 -21.0
2 5.45 6.21 -13.9
3 0.98 0.92 5.9
4 0.83 0.59 28.7

Table 8: Performance of Select Queries with Subtree Pruning

is actually larger and more complex than before, due to the additional level of objects. These facts

are re
ected by the results presented in Table 8. Select Queries 3 and 4, which can take advantage

of pruning demonstrate improved performance, while Select Queries 1 and 2 exhibit an increase in

response time.

A variation of DIT pruning, which we call DIT pruning with aliases, allows pruning to be im-

plemented without reducing the performance of queries that do not use it. For each relation, the

original DIT subtree is left unchanged and a second subtree is created which has at its root an

\index RBO" for the relation. The children of this object are the indexObjects described above.

The children of these objects are X.500 aliases to the tuple objects. Thus queries which cannot use

the index objects follow the original DIT and queries which can use the pruning method select the

appropriate indexObject as the base object for the search, and then follow aliases to the tuple

objects.

Unfortunately, experiments demonstrated that while the performance of queries which do not use

the pruning was una�ected, as predicted, the performance of queries using pruning was signi�cantly

worse than with plain DIT pruning. It appears that the additional time required to resolve aliases

in our DIT is considerably greater than the time required to simply examine each subtree below the

index level.

Our results therefore indicate a rule-of-thumb for implementing DIT pruning:

If an index level class already exists (as it does in the White Pages DIT), pruning

should always be bene�cial.

If, however, we are free to choose the structure of the DIT (as is the case for our

Synthetic Database), an index level class should only be included if it is known that

queries which take advantage of pruning will dominate those that do not.

21

6 Conclusions

The X.500 Directory Service, while initially intended as a white pages service for communication

entities in a distributed system, has properties which make it a candidate for storing other types

of data needed in a distributed system. Foremost of these properties is the directory's ability to

handle replicated and distributed data. Two potential problems with using the directory service

as a general database system are its limited interface and its questionable performance in this role.

The work presented here addresses the �rst of the problems by describing an SQL interface to an

X.500 Directory Service.

Two aspects of the SQL interface are described: the mapping between the relational model and

the X.500 information model, and the query processing strategy. The mapping gives a faithful repre-

sentation of the relational model,which can be applied both to previously existing X.500 directories

and to DITs developed speci�cally for use with this interface. It allows a single DIT to contain

multiple relations which can be referenced unambiguously, thus permitting queries involving joins to

be expressed. Furthermore, it presents a new layer of abstraction on top of the X.500 information

model, allowing the underlying DIT structure to be hidden. Our use of the interface with a Univer-

sity White Pages directory demonstrates that SQL provides a convenient mechanism for formulating

queries to the directory service.

A performance analysis of two sets of SQL queries is presented. One set of queries is for a

traditional White Pages Database and the other is for a relational-style Synthetic Database derived

from the Wisconsin Benchmark Database. Performance of select queries is acceptable and, in some

cases, better than that of a commercial relational DBMS. Performance of project and join queries

using the X.500 Directory Service is worse than with the DBMS in all cases. This de�ciency can be

attributed to the fact that project and join are not \natural" queries for a directory service.

An examination of the performance of the queries indicated that most of the time processing

a query was spent in the X.500 Directory Service which suggested that the focus of optimization

should be on reducing that time. We proposed and evaluated two optimization techniques. The �rst

optimization technique is intended for join queries. It is based on the notion of a join index and it

rewrites the query to include an exhaustive select of tuples from one branch based on values obtained

in the other branch. This resulted in improvements in the time to process the one branch from 50 %

to 99 % depending upon the selectivity of the join index. The second optimization technique, DIT

22

pruning, reduces the amount of the DIT that must be searched for a query by exploiting knowledge

of values in a parent node of the DIT. This technique can not be used in all cases but, applicable

queries showed improvements from 5 % to 77 %.

Further analysis of the performance and scalability of the X.500 Directory Service must be

performed before we can conclude whether or not the Directory Service is a viable candidate for a

general database in a distributed environment. The results presented here are encouraging and the

Directory Service may be prove to be a reasonable approach for certain types of data.

Acknowledgements

The authors would like to thank Wendy Powley and Lu Li for their help in this project.

References

[1] S. Abrutyn. AID: SQL Interface to QUIPU. Technical Report 90-5, Center for Information
Technology Integration, University of Michigan, 1990.

[2] G. Attaluri, D. Bradshaw, N. Coburn, P.-�A. Larson, P. Martin, A. Silbershatz, J. Slonim, and
Q. Zhu. The CORDS multidatabase project. IBM Systems Journal, 34(1):39{62, January 1995.

[3] D. Barrowman. An sql-based interface to x.500. Master's thesis, Department of Computing
and Information Science, Queen's University at Kingston, March 1995.

[4] M. Bauer, N. Coburn, P.-�A. Larson, and P. Martin. Managing global information in the CORDS
multidatabase system. In Proc. of Second International Conference on Cooperative Information

Systems (CoopIS'94), pages 23{34, Toronto, May 1994.

[5] D. Bitton, D. J. DeWitt, and C. Turby�ll. Benchmarking Database Systems - a Systematic
Approach. Technical Report 526, University of Wisconsin - Madison, 1983.

[6] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Benjamin Cummings,
Redwood City, CA, 1989.

[7] J. Hong, M. Bauer, and J. Bennett. Integration of the directory service in distributed systems
management. In Proceedings of the 1992 International Conference on Parallel and Distributed

Systems, pages 142{149, 1992.

[8] S. Kille. The Design of QUIPU. Technical report, Department of Computer Science, University
College, London, 1988.

[9] P. Martin and W. Powley. Storing MDBS Catalog Information in an X.500 Directory Service.
In Proceedings of the 1994 CAS Conference, pages 216{226, 1994.

[10] J. J. Ordille and B. P. Miller. Nomenclator Descriptive Query Optimization for Large X.500
environments. In Proceedings of the 1991 SIGCOMM Conference, 1991.

23

[11] C. J. Robbins and S. E. Kille. The ISO Development Environment: User's Manual - Volume

5: QUIPU, 1994.

24

A SQL Queries for University White Pages Database

25

B SQL Queries for Synthetic Database

26

C

27

D

28

