
The Semantics of Viewcharts

Ayaz Isazadeh David A. Lamb Glenn H. MacEwen

December 1995

External Technical Report

ISSN-0836-0227-

95-395

Department of Computing and Information Science

Queen's University

Kingston, Ontario K7L 3N6

Version 1.1

Document prepared December 21, 1995

Copyright c1995 Ayaz Isazadeh

Abstract

This paper presents the semantics of Viewcharts. Viewcharts is a formal-

ism designed for specifying the behavioral requirements of large-scale complex

systems independent of implementation. The formalism is based on Harel's

Statecharts. Therefore, we establish the semantic basis of Viewcharts via

translation to Statecharts.

Keywords: Formal Methods, Statecharts, Speci�cation Languages

Contents

1 Introduction 1

2 Overview of Viewcharts 1

2.1 Ownership of Elements : 2

2.2 Ownership and Triggering : 3

2.3 Composing Behavioral Views : : : : : : : : : : : : : : : : : : 4

2.3.1 Separate Composition of Views : : : : : : : : : : : : 4

2.3.2 Or Composition of Views : : : : : : : : : : : : : : : : 5

2.3.3 And Composition of Views : : : : : : : : : : : : : : : 5

2.3.4 Hierarchical Composition of Views : : : : : : : : : 6

2.4 E�ect on Transitions : 6

2.5 History Transitions : 7

2.6 Timing Issues : 7

3 Semantics 8

3.1 Proof of the Correctness : 12

4 Conclusion and Future Work 13

i

List of Figures

1 Visual representation of separate compositions. : : : : : : : 5

2 Composition of views in a viewchart. : : : : : : : : : : : : : : 6

3 A Statecharts translation of the viewchart shown in Figure 2. : 9

4 An algorithm translating a viewchart to an equivalent statechart. 11

ii

1 Introduction

Large-scale software systems, distributed or otherwise, can be complex to de-

scribe, construct, manage, understand, and maintain. Current research ap-

proaches to reducing this complexity separate software structural and behav-

ioral descriptions [1, 11, 15, 16]. It is, therefore, important to study and

analyze the behavioral as well as structural aspects of software systems. Much

research has been done on software structures and their patterns, character-

izations, and classi�cations [4, 5, 6]. Special languages, called con�guration

languages, supported by con�guration management systems,1 are designed for

describing the structure of a software system [12]. Current research on the

behavioral aspect of software systems includes using formal notations (e.g.,

Statecharts [7, 8, 10], ESTEREL [2], Z [3, 18], VDM [14], etc.) for specify-

ing software behaviors and possibly re�ning the speci�cations to design and

implementation. Large formal speci�cations can be di�cult to create and to

understand; more research is needed into methods for assisting software re-

quirements engineers in reducing these di�culties.

Elsewhere, we have introduced the idea of structuring a requirements spec-

i�cation around software behavioral views. We have introduced a notation,

called Viewcharts [13], which is based on David Harel's Statecharts. View-

charts extends Statecharts to include behavioral views and their compositions,

limits the scope of broadcast communications and, consequently, reduces the

complexity of scale that Statecharts faces in behavioral speci�cations of large

systems. In this paper we provide an overview of the Viewcharts notation and

present its semantics.

2 Overview of Viewcharts

This section provides a brief overview of the Viewcharts formalism; a separate

paper [13] describes it in more detail. A (behavioral) view of a software system

is the behavior of the system observable from a speci�c point of view. A client's

view of a server, for example, is the behavior that the client expects from the

server. This behavior, of course, may di�er from the behavior that the server

exhibits to another client. A server, therefore, may have several behavioral

views. The caller view of a telephone set and the telephone set's view of a

switching system are also examples of behavioral views.

The Viewcharts notation is based on Statecharts [7, 10]. Statecharts, how-

ever, has no concept of behavioral views. Viewcharts extends Statecharts to

1The term con�guration management systems, in this context, refers to software inter-

connection systems which are used in con�gurable distributed systems to integrate software

components using con�guration languages; it should not be mistaken for software version

control and management systems.

1

include views and their compositions.

A viewchart consists of a hierarchical composition of views. The leaves of

the hierarchy, described by independent statecharts, represent the behavioral

views of the system or its components. The higher levels of the hierarchy

are composed of the lower level views. Views are represented just like states,

except that the arc-boxes representing views have thicker borders than those

of states.

Note that the statecharts describing the views at the leaves of a viewchart

hierarchy are independent. In other words, the scope of broadcast commu-

nications of Statecharts is limited to the views and does not cover the entire

viewchart. (Section 2.3 discusses extended scopes.)

2.1 Ownership of Elements

The Viewcharts notation limits the scope of broadcast communications. In

other words, the scope of an element (event, action, or variable) in a given

view is limited to the view. On the other hand, composition of views may

require communication between the composed views; the scope of an event in

one view, for example, may be extended to cover other views. In a given view,

therefore, Viewcharts must distinguish two di�erent types of events:

� Events that belong to (or are owned by) the view: These are the events

that the view can \trigger". (Section 2.2 discusses the triggering con-

cept.) They must be declared by the view.

� Events that do not belong to the view: The view cannot trigger these

events. An event of this type can occur only if it is triggered elsewhere

and if the view is covered by the scope of the event.

An event may have multiple owners; in other words an event can be trig-

gered by more than one view. An event may also have no owner, in which case

the event can never occur. The Viewcharts notation allows this case, because

of the possibility of further composition of the viewchart with additional views,

which may a�ect the event. This is exactly analogous to the notion of free

variables in program fragments, which can be be bound in a larger context.

The notion of ownership for events is a natural consequence of composing

views, while the scopes of events are limited. This notion also applies for

actions. However, actions are implicitly declared: an action belongs to the

view (or views) that generates (or generate) the action. There is no need,

therefore, for explicit declaration of actions. However, an action may also be

owned as an event by some other views, in which case it must be declared

accordingly.

Similarly, a variable belongs to the view that declares it. The scope of a

variable declared by a view is the view and all its subviews. If a variable x is

2

declared by a view V and redeclared by another view V1 within the scope of

x, then Viewcharts recognizes two di�erent variables which can be referenced

by their quali�ed names, V.x and V1.x. In a view that is covered by the scopes

of both variables, the base name x refers to V1.x. In the case of events, on the

other hand, there is no need to specify them by their quali�ed names; View-

charts determines the e�ect of each event occurrence based on the ownership

and scoping rules. However, an event occurrence may still be speci�ed by its

quali�ed name, if it does not violate these rules.

Consequently, unlike events and actions, variables cannot have multiple

owners. On the other hand, if a variable is used in a view, but not declared

by the view or any of its superviews (i.e., it has no owner), then the variable,

by default, belongs to the top view of the corresponding viewchart.

Syntactically, elements owned by a view can be declared by listing them

following the name of the view either in the viewchart, as in Figure 2, or out

of it as a separate text. In referencing a view by its name, however, it should

be noted that the view must be uniquely identi�ed. It may be necessary to

identify a view by its fully or partially quali�ed name, which consists of the

base name pre�xed by the names of its ancestors in the hierarchy separated

by dots.

In a viewchart, if the triggering view of an element is obvious and there is

no ambiguity in the ownership of the element, then there is no need for explicit

declaration of the element.

2.2 Ownership and Triggering

In a statechart, which describes the behavior of a system, the events generated

by the system are called internal events; all other events (generated by the

environment) are external. This is also true for Viewcharts. Since a view

is considered as a stand-alone system, an event that a�ects a view is either

internal or external to the view. An event may not a�ect a view at all, being

neither internal nor external; the view is independent of such an event.

An internal event of a view (i.e., an event generated by the view) is owned

by the view. An event can be internal with respect to more than one view

(i.e., it can be generated by more than one view); therefore, it can be owned

by more than one view.

An external event of a view (i.e., an event, generated by the environment

or other views, that a�ects the view) may or may not be owned by the view:

� If the event is generated by other views, then it is not owned by the

view; it is, in fact, an internal event of the views that generate it and,

therefore, owned by them.

� If the event is generated by the environment and a�ects the view through

3

a composition and a consequent extended scope, then it is not owned by

the view. (Section 2.3 discusses compositions and extended scopes.)

� If the event is generated by the environment and a�ects the view directly,

independent of any composition, then it is owned by the view.

An event, generated by the environment, can have direct a�ect on more than

one view; therefore, it can be owned by more than one view.

In a statechart, when an event occurs, it is sensed throughout the statechart

and, therefore, all occurrences of the event within the statechart are a�ected.

In a viewchart, however, when an event occurs it is sensed only in some views

and, therefore, only some occurrences of the event are a�ected. To determine

the scope of the event (i.e., to determine which occurrences of the event are

a�ected) we must know which view triggers the event. The scope of the event

then is the view that triggers the event (and possibly some other views as

described in Section 2.3).

In Viewcharts, therefore, an event does not just occur, it is triggered by

a view. The view that triggers the event must be clearly speci�ed if it is not

obvious. For example, we may specify that \V:e occurs", where V is the name

of the view that triggers the event e; to state that \e occurs" is ambiguous.

2.3 Composing Behavioral Views

Views can be composed in four ways: separate, or, and, and hierarchi-

cal compositions. Except for the a�ect of ownership and scoping restrictions,

the or, and, and hierarchical compositions of views, in Viewcharts, are

similar to the or, and, and hierarchical compositions of states, in State-

charts, respectively. The separate composition of views, however, is speci�c

to Viewcharts.

2.3.1 Separate Composition of Views

In a separate composition of views, all the views are active; (A view is active

whenever the system is in a state of the view.) no transition between the views

is allowed; the scopes of all the elements are una�ected; and any subview or

state in one view is hidden from (i.e., cannot be referenced by) the other views.

No view is, in fact, aware of any other view in the composition. Visually, the

views involved in a separate composition are drawn on the top of each other,

as shown in Figure 1, giving the impression that they are located on di�erent

planes and, consequently, are hidden from each other.

The representation (a), in this �gure, speci�es a separate composition

of the view V with a �nite number of other views; (b) speci�es a separate

composition of V, U, and W; and (c) speci�es a separate composition of

�ve views V4; : : : ;V9. In all these cases, the behavior of the �rst view, the

4

V4; : : : ;V9V, U, W

V

(a) (b) (c)

Figure 1: Visual representation of separate compositions.

one located on the top, can be speci�ed. By default all the other views are

identical to the �rst one. Exceptions are represented by specifying the others

separately and referencing them in the composition by their names using the

representations (b) or (c). If only a small number of views are involved in

the composition, then it may be practical to give them enough space to show

their behaviors. An example of this representation is given in Figure 2, which

includes a separate composition of views V5 and V6.

2.3.2 Or Composition of Views

The or and separate compositions are similar, except that in an or compo-

sition, only one view can be active and there can be transitions between the

views. Like the separate composition, any subview or state in one view is

hidden from (i.e., cannot be referenced by) the other views. In Figure 2, for

example, the view V consists of an or composition of V1 and V2.

Notice that a transition from a source view to a destination view interrupts

the source view, i.e., takes the system out of any state(s) of the source view;

it is, therefore, called an interrupt transition. In case of a conict between

the interrupt transition and one internal to the source view, the interrupt

transition has higher priority.

2.3.3 And Composition of Views

In an and composition of views, all the views are active; the scopes of all

the elements owned by each view are extended to the other views. All the

subviews and states in one view are visible to (i.e., can be referenced by) the

other views; variables, however, must be referenced by their quali�ed names.

The view V7 of Figure 2, for example, is anded with a separate composition

of V5 and V6.

5

B
a

A

b

V2

V1
c

c

A

B

a
A B

b
C

b

C

Ba
A

c

V3, V4

V5 : b

V7 : a

V : c

V6 : b

c

Figure 2: Composition of views in a viewchart.

2.3.4 Hierarchical Composition of Views

In a hierarchical composition of views, some views form a superview; all

the subviews and states in a superview are visible to the superview; and the

scopes of the elements owned by a superview covers all its subviews.

The viewchart of Figure 2, for example, is composed of a separate compo-

sition of V5 and V6, which in turn is anded with V7 forming V3. A separate

composition of two identical views V3 and V4 forms V2. The full view V is an

or composition of V1 and V2.

2.4 E�ect on Transitions

The following examples demonstrate the way in which the compositions a�ect

transitions with the same label. A possible con�guration of the system de-

scribed in Figure 2 is fV3:V5:A;V3:V6:B;V3:V7:B;V4:V5:B;V4:V6:C;V4:V7:Ag.

Recall (Section 2.1) that a view can trigger the events it owns. Assuming

that the system is in sub-con�guration fV3:V5:B;V3:V6:A;V3:V7:Ag,

� if the view V3.V7 triggers a, then the sub-con�guration will change to

fV3:V5:A;V3:V6:B;V3:V7:Bg;

6

� if the view V triggers c, nondeterministically, then the entire system

con�guration will change to either fV1:Ag or fV1:Bg;

� no other event can change the sub-con�guration.

Assuming that the system is in sub-con�guration

fV3:V5:A;V3:V6:B;V3:V7:Bg,

� if the view V3.V5 triggers b, then the sub-con�guration will change to

fV3:V5:B;V3:V6:B;V3:V7:Cg;

� if the view V3.V6 triggers b, then the sub-con�guration will change to

fV3:V5:A;V3:V6:C;V3:V7:Cg;

� if the view V triggers c, nondeterministically, then the entire system

con�guration will change to either fV1:Ag or fV1:Bg;

� no other event can change the sub-con�guration.

Assuming that the system is in sub-con�guration fV3:V6:Cg,

� if the view V triggers c, nondeterministically, then the sub-con�guration

will change to fV3:V6:Ag or the entire system con�guration will change

to either fV1:Ag or fV1:Bg;

� no other event can change the sub-con�guration.

2.5 History Transitions

Considering that the leaves of a viewchart hierarchy are stand-alone state-

charts, history (H) as well as deep history (H*) transitions can occur within

the leaves; and Viewcharts handles them in exactly the same way as State-

charts does. Viewcharts also allows these transitions to occur in the higher level

views of a viewchart hierarchy as long as they do not cross view boundaries. A

history transition that crosses view boundaries does not a�ect the semantics

of Viewcharts. In other words, a viewchart that contains such transitions is

still legal and can be translated to a legal statechart (See Section 3). However,

allowing the transitions to cross view boundaries violates the independence of

views.

2.6 Timing Issues

Viewcharts adopts Harel's synchrony hypothesis that events are instantaneous.

Speci�cally, events, actions, and checking the value of a condition expression

ideally take no time; therefore, transitions are also instantaneous. A time

consuming task is considered an activity and is performed in a state. However,

7

a point in time when an activity starts or ends can be marked by the occurrence

of an event. For example, we may de�ne retrieved(db:prec(pid)) as an event

that occurs at a point in time when the activity of retrieving a record from a

database is completed.

Statecharts allows speci�cation of concurrent events; a ^ b, for example,

can be considered as an event that occurs when the two events a and b oc-

cur simultaneously. Harel, however, describes that while a and b occur at

one step, they occur at di�erent micro-steps within the step [9]. Therefore,

there is an order of occurrence between them. Another approach to specifying

concurrent events is based on the single-event hypothesis, where the events

occur in a nondeterministic order at consecutive steps. Viewcharts allows ei-

ther approach provided that it is supported by the semantics chosen for the

underlying Statecharts.

Viewcharts also allows the timeout and scheduled transitions of State-

charts.

3 Semantics

We now establish a semantic basis for Viewcharts via translation to State-

charts. Recall that the leaves of a viewchart hierarchy are independent state-

charts. The Viewcharts formalism, therefore, can be viewed as a high-level no-

tation that uses (but does not change) the Statecharts notation. Statecharts,

however, has a variety of di�erent semantics, each of which makes certain as-

sumptions or imposes certain restrictions on the notation, resulting in some

variations in Statecharts [9, 17]. The Viewcharts notation encapsulates these

variations (within the leaves of Viewcharts hierarchies) and, therefore, is not

restricted to a particular variation of Statecharts. The encapsulation, further-

more, allows Viewcharts to bene�t from di�erent variations of Statecharts and

their semantics, available tools, and further extensions and evolutions.

To provide a semantic basis for Viewcharts, therefore, we need to show:

Given a viewchart, there is a statechart that describes the same

behavior as the viewchart does.

An examples of such translations is shown in Figure 3, which is the Statecharts

translation of the viewchart shown in Figure 2.

Views, in Viewcharts, are similar to states; and states, in Statecharts,

are uniquely identi�ed by their full paths. Therefore, transforming views to

states and separate composition of views to and composition of states, in

a viewchart, transforms the viewchart to a statechart. The resulting state-

chart, however, may not preserve the behavior described by the corresponding

viewchart (because the viewchart limits the scopes of its elements, while the

statechart does not.) To ensure that the transformation does not change the

8

V

A

B

V1

V:c

V2

V:c

V:c

V3

V4

V5 V6

A
V3:V7:a

B

V3:V5:b

A
B

C

V3:V7:a

V3:V6:b
V:c

V7

A C
V3:V5:b _ V3:V6:b

B

V4:V5:b _ V4:V6:b

V3.V7.a

V5

A
V4.V7.a

B

V4.V5.b

V6

A
B

C

V4.V7.a

V4.V6.b
V.c

V7

A
V4.V7.a

B C

Figure 3: A Statecharts translation of the viewchart shown in Figure 2.

behavior description, the elements must be renamed, before making the trans-

formation, such that a given element does not occur beyond its scope. The

translation, therefore, can be summarized as follows:

� Rename the elements that occur in each view, such that they can be

uniquely identi�ed within the viewchart, while the behavior described

by the viewchart is preserved.

� Transform the separate compositions of views, which do not exist in

statecharts, to and composition of states.

� Transform views to states.

In general, the resulting statechart is more complex than the original view-

chart.

Formally, a given viewchart can be translated to its equivalent statechart

as follows:

Let w denote the given viewchart;

U denote the set of all the views in w, where a view is

9

uniquely identi�ed by a fully or partially quali�ed name;

V denote the set of all the variables in w;

E denote the set of all the events and actions in w;

sup(x; y) denote \x is a direct or indirect superview of y", where

x 2 U ^ y 2 U ;

and(x; y) denote \x is anded with y", where x 2 U ^ y 2 U ;

own(x; y) denote \x owns y", where x 2 U ^ y 2 E [V ;

bas(x) denote \x is a base name", where x 2 E [V ;

occ(x; y) denote \x occurs in y", where x 2 E [V ^ y 2 U ;

S 0
u = fxjsup(x; u)g,

the set of all superviews of u;

Su = fug [S 0
u

Au = fxj9y 2 Su � and(x; y)g,

views that are anded with u or with any superview of u;

Oe = fxjown(x; e) ^ e 2 Eg,
views that own e;

Te;u = Oe \ (Su [Au),

views that can trigger e in u;

O00
v = fxjown(x; v) ^ v 2 V g,

views that declare v;

O0
v;u = O00

v \ Su

Ov;u = fxjx 2 O0
v;u ^ 8y 2 O0

v;u n fxg � sup(y; x)g,

this set is either empty or has only one element, namely

the owner of v that occurs in u;

Eu = fxjocc(x; u) ^ bas(x) ^ x 2 Eg,
not yet pre�xed events and actions that occur in u;

Vu = fxjocc(x; u) ^ bas(x) ^ x 2 V g,

not yet pre�xed variables that occur in u.

Figure 4 then presents a simple algorithm for the translation. The �rst

loop, line 1{5, makes sure that each occurrence of all the state and view names

in the viewchart is speci�ed by a uniquely identi�able partial or full name.

The state and view names can occur in a condition expression; also recall

(Section 2.1) that an element can be speci�ed by a fully or partially quali�ed

name. A quali�ed name for an element is of the form viewname.elementname,

where viewname uniquely identi�es a view that owns the element. A partially

10

1 For each occurrence x of all state and view names in w do

2 if x is ambiguous then

3 \Error: x is ambiguous!"; stop.

4 else Expand x to uniquely identify x in w

5 done

6 For all u in U do

7 For all e in Eu do

8 if Te;u 6= ; then

9 Replace e by
W

8x2Te;u

x:e

10 else \Warning: e has no owner; it cannot occur!"

11 done

12 For all v in Vu do

13 if Ov;u 6= ; then
14 Replace v by x:v, where x 2 Ov;u

15 else Replace v by w:v

16 \Warning: v has no owner; assumed global!"

17 done

18 done

19 Replace separate compositions by and compositions.

20 Replace views by states.

Figure 4: An algorithm translating a viewchart to an equivalent statechart.

quali�ed name may uniquely identify a view in a viewchart (considering the

scoping restrictions); however, it may no longer be unique in the global envi-

ronment of an equivalent statechart. This loop, therefore, makes sure that if

a view or state is speci�ed by a partially quali�ed name, it is not ambiguous;

it also expands the name to make it unique within the entire viewchart.

The second loop, line 6{18, renames the events, actions, and variables.

Line 7{11 handles the events and actions. An event, in a viewchart, can have

multiple owners; i.e., it can be triggered by multiple views. However, when

a view that owns an event triggers the event only some (not necessarily all)

occurrences of the event, in accordance with the ownership and scoping rules,

take place. Furthermore, more than one view may trigger an event with the

same e�ect on some occurrences of the event. We want to distinguish di�erent

occurrences of an event that can take place independent of each other and give

them di�erent and unique names. We also want this renaming not to change

the behavior speci�ed by the viewchart; i.e., a renamed occurrence of an event

to be triggered if and only if the original occurrence of the event is triggered.

This is accomplished by line 9 (as discussed in Section 3.1). Notice that x

11

in line 9 is a uniquely identi�able partially or fully quali�ed name of a view

that owns e and e is a base name. The events that are speci�ed by a quali�ed

name are checked and possibly expanded by the �rst loop (line 1{5) and left

unchanged.

Line 12{17 renames the variables. Unlike events, variables cannot have

multiple owners. However, like events, di�erent occurrences of a variable can

also be independent of each other. Recall (Section 2.1) that if a variable is

declared by a view and redeclared by a subview of the view then the two decla-

rations de�ne two independent variables. Therefore, the owner of a variable v

that occur in a view u is the �rst view in the bottom-up hierarchical sequence

of u and its superviews that declares the variable. This is represented by the

set Ov;u, which is either empty or has only one element, the owner. As in the

case of events and actions, x in line 14 is a uniquely identi�able partially or

fully quali�ed name of a view that owns v and v is a base name. The variables

that are speci�ed by a quali�ed name are checked and possibly expanded by

the �rst loop (line 1{5) and left unchanged. The algorithm now should be self

explanatory.

3.1 Proof of the Correctness

To prove that the algorithm is correct, we have to show that

(a) the translation results in a statechart,

(b) the resulting statechart describes the same behavior as the original view-

chart, and

(c) the algorithm terminates.

For part (a), notice that the algorithm replaces the separate compositions

by and compositions (line 19) and the views by states (line 20); as all other

elements of Viewcharts are identical to those in Statecharts, the result is a

statechart.

For part (b), an analysis of line 9 shows that the algorithm does preserve

the behavior described by the viewchart; the rest of the algorithm is obvious in

regard to preserving the behavior. Consider the sets Su, Au, and Oe, as de�ned

above; based on the ownership and scoping rules (described in Sections 2.1 and

2.3), then, a subset of Oe, Te;u, contains the views that can trigger e with the

same a�ect on all occurrences of e in the view u. Therefore, we replace all

occurrences of e in u by
W

8x2Te;u

x:e. Consequently, the transitions labeled e

in the view u take place if and only if the corresponding transitions in the

resulting statechart take place.

12

Notice that the translation does not a�ect transitions (including interrupt

and history transitions). The transition labels may change; however, the tran-

sitions are preserved as they are.

For part (c), notice that all the sets and loops in the algorithm are �-

nite; therefore, the algorithm terminates with w transformed to an equivalent

statechart.

4 Conclusion and Future Work

We have provided a semantic basis for the Viewcharts formalism via transla-

tion to Statecharts. Our semantics is based on the semantics of the underlying

Statecharts notation. This allows allows Viewcharts to bene�t from di�er-

ent variations of Statecharts and their semantics, available tools, and further

extensions and evolutions.

The following is a list of further extensions that would make Viewcharts

richer and more expressive:

� Transition between separate views: A separate composition of views,

in a viewchart, is transformed to an and composition of states, in the

equivalent statechart, by the algorithm described in Section 3. Since

Statecharts does not allow transitions between anded states; therefore,

no transition is allowed between the views in a separate composition.

However, it would be interesting to extend the semantic basis of View-

charts to allow such transitions.

� Exporting and importing elements: In a hierarchical composition of

views, the scope of an element owned by a view covers the view and

all its subviews. There are, however, other alternative which should be

explored. It may, for example, better encapsulate the views, in this

composition, to limit the scope of an elements, to the view that owns

the element, but instead introduce the notion of export and import. A

view then can export an element to its immediate superview and thereby

extend the scope of the element to the exported view. Similarly, a view

may import an element from its immediate superview.

� General history transitions: Further research is required to provide more

general history transitions without violating the independence of views.

(See Section 3.)

� Modeling: Finally, modeling viewcharts is another topic of future re-

search. The algorithm provided in Section 3 translates a given view-

chart to its equivalent statechart. It is possible to produce an executable

model of a viewchart using this algorithm and an available Statecharts

13

tool (e.g., statemate). However, it would be more e�cient and prac-

tical to provide a method of producing the executable models directly

from the Viewcharts notation.

References

[1] M. R. Barbacci, C. B. Weinstock, D. L. Doubleday, M. J. Gardner, and

R. W. Lichota. Durra: A structure description language for developing

distributed applications. IEE Software Engineering Journal, 8(2):83{94,

Mar 1993.

[2] G. Berry and L. Cosserat. The ESTEREL synchronous programming

language and its mathematical semantics. In Seminar on Concurrency,

volume 197 of Lecture Notes in Computer Science, pages 389{448, New

York, June 1984. Springer-Verlag.

[3] B. P. Collins, J. E. Nicholls, and I. H. Sorensen. Introducing formal

methods: The CICS experience with Z. Technical Report TR12.260,

IBM Hursley Park, December 1987.

[4] T. R. Dean. Characterizing Software Structure Using Connectivity. PhD

thesis, Queen's University, Department of Computing and Information

Science, 1993.

[5] F. DeRemer and H. Kron. Programming-in-the-large versus

programming-in-the-small. IEEE Transactions on Software Engineering,

2(2):114{121, June 1976.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: El-

ements of Reusable Object-Oriented Software. Addison Wesley, Reading,

Massachusetts, 1994.

[7] D. Harel. Statecharts: A visual formalism for complex systems. Science

of Computer Programming, 8:231{274, 1987.

[8] D. Harel. On visual formalisms. Communications of the ACM, 31(5):514{

530, May 1988.

[9] D. Harel and A. Naamad. The statemate semantics of Statecharts.

Technical report, i-Logix, Inc., 22 Third Avenue, Burlington, Mass. 01803,

USA, November 1995.

[10] D. Harel and A. Pnueli. On the development of reactive systems. In

K. R. Apt, editor, Logics and Models of Concurrent Systems, pages 477{

498. Springer-Verlag, New York, 1985.

14

[11] C. Hofmeister, E. White, and J. Purtilo. Surgeon: A packager for dynam-

ically recon�gurable distributed applications. IEE Software Engineering

Journal, 8(2):95{101, March 1993.

[12] A. Isazadeh. Con�guration languages for distributed software systems.

Ph.D. Depth Paper, Queen's University, Department of Computing and

Information Science, August 1994. Also to appear in IEEE Transactions

on Software Engineering Journal.

[13] A. Isazadeh, D. A. Lamb, and G. H. MacEwen. Viewcharts: A behavioral

speci�cation language for complex systems. External Technical Report

ISSN-0836-0227-95-388, Queen's University, Department of Computing

and Information Science, October 1995.

[14] Cli� B. Jones. Systematic Software Development using VDM. Prentice

Hall International Series in Computer Science. Prentice Hall, 1990.

[15] J. Magee, N. Dulay, and J. Kramer. A constructive development environ-

ment for parallel and distributed programs. In Proceedings of the Second

International Workshop on Con�gurable Distributed Systems, pages 4{14,

Pittsburgh, Pennsylvania, March 1994.

[16] J. Nehmer, D. Haban, F. Mattern, D. Wybraniertz, and D. Rombach.

Key concepts of the INCAS multicomputer project. IEEE Transactions

on Software Engineering, SE1-13(8):913{923, August 1987.

[17] M. von der Beek. A comparison of statechart variants. In Formal Tech-

niques in Real-Time and Fault-Tolarent Systems, volume 863 of Lecture

Notes in Computer Science, pages 128{148, New York, 1994. Springer-

Verlag.

[18] J. B. Wordsworth. Software Development with Z. International Computer

Science Series. Addison-Wesley, 1992.

15

