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Abstract

There exists a gap between the design and implementation of hard real-time

systems. During the design stage, few assumptions are made about the un-

derlying execution environment; during the implementation stage, intimate

knowledge of the underlying execution environment is required. To narrow

this gap, we propose a phased approach to the design and implementation of

hard real-time systems based on Timed CSP. During the �rst phase, logical

design, we make no assumptions about the execution environment. Later, in

the second phase, we construct a model of the target execution environment

in Timed CSP. The logical design, from the �rst phase, is then transformed to

conform to the model of the target execution environment.



1 Introduction

Hard real-time systems have stringent timing constraints which must be satis-

�ed under all circumstances. Typically, the timing requirements are dealt with

at later stages of the implementation. The main justi�cation for this delay is

that timing constraints are primarily due to the physical limitations of the

underlying execution environment. To reason about the timing characteristics

of a system, one needs intimate knowledge of the underlying computer system.

In recent years, formal methods have been used as a means to increase

the reliability of real-time systems [6]. New languages have been speci�cally

designed for specifying and reasoning about timing characteristics of real-time

systems. However, despite their success, there still remains a gap between the

design and implementation of real-time systems. Most formal methods ignore

the underlying execution environment. Typically, during the design stage few

assumptions are made about the underlying execution environment, whereas

during the implementation, intimate knowledge of the underlying execution

environment is needed. As a result, to increase the level of con�dence in hard

real-time systems, we must make explicit assumptions about the underlying

execution environment [9].

This paper demonstrates a mechanism to narrow the gap between the de-

sign and implementation of hard real-time systems. To be able to formally

reason about the behavior of a hard real-time system, we must include the

main characteristics of the target execution environment into our formal nota-

tion. In our approach, we construct a formal model of the execution of a pro-

gram as a parallel composition of two Timed CSP processes; one representing

the application program and the other representing the underlying processor.

Using the model of the underlying execution environment, we can divide the

task of designing a real-time system into three phases: logical design, physical

design, and implementation [5]. During the logical design phase, the designer

assumes an ideal execution environment and constructs a set of Timed CSP

processes that satis�es the speci�cations of the system. (This is according to

the approach proposed by Davies, Jackson, and Schneider [3, 4, 8].) In the

physical design phase, the processes de�ned in the logical design are trans-

formed to processes which conform to the model of the underlying execution

environment, scheduling processes are constructed, and execution time of tasks

are measured or estimated. In the �nal stage, the physical design processes

are transformed to program segments which can be executed on the system.

This approach separates the initial design from the implementation in a

systematic way. After the initial design we can iterate between the inter-

mediate stage and the implementation until a solution can be shown to be

consistent with the speci�cation. If the behavior speci�cation of the system is

represented as F , a set of predicates on the observations of the system, and

the system as a set of Timed CSP processes Q, the proof obligation of the
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logical design phase is to show

Q sat F

During the physical design stage, the proof obligation is to show that the

model of the execution environment, including the application processes, R,

re�nes the logical model of the system Q:

R w Q

This approach enables the designer to have more con�dence in the �nal imple-

mentation. Further, depending on the level of formality required, the model

of the underlying execution environment can have more detail. Re�nement of

speci�cations to implementations is well known; what is novel about our ap-

proach is the explicit introduction of a formal representation of the execution

environment.

In section 2 we introduce our approach to modeling the underlying execu-

tion environment by constructing an ideal processor. In section 3 we construct

a model of a simple processor and identify the key assumptions of the ideal

execution environment. We then show how to construct a simple model of an

example execution environment, RNet [1], and show how a watchdog timer

can be implemented for this environment. Other execution environments can

similarly be modeled using the approach presented in this paper.

We assume the reader is familiar with the basic concepts of Timed CSP [2].

The de�nition of the operators used in this paper are included in Appendix A.

2 Modeling An Ideal Processor

The computational model of Timed CSP [2] assumes that each process exe-

cutes on its own processor. Further, the execution of each event takes zero

time. In this section we begin introducing our modeling approach by making

the computational model of Timed CSP explicit. That is, every Timed CSP

process executes on its own ideal processor. The ideal processor, as we will see,

is the identity process, hence the semantics of Timed CSP remains unchanged.

Consider a simple processor P which can repeatedly perform one of the

three operations a; b; or c. We can model this processor as a Timed CSP

process described by:

P = (a! P ) 2 (b ! P ) 2 (c! P )

Informally, our simple processor P o�ers its environment (the program) the

choice among the events (operations) a; b and c. Next, consider a simple pro-

gram Q which speci�es the execution of operation a, followed by the operation

2



b and successful termination. This program can be described by the Timed

CSP process

Q = a! b! SKIP

We de�ne the execution of program Q on processor P as the lockstep synchro-

nization of the respective processes, i.e., Q jj P . The parallel composition is

consistent with our view of program execution because Q k P = Q. The func-

tional behavior of the processor is identical to that speci�ed by the program.

If the program speci�es an operation that the processor cannot perform, the

outcome will be deadlock. In other words, our notion of executability can be

de�ned as follows: a program Q is executable on the processor P if and only if

the set of events in its description is a subset of those events in the description

of the processor P . Formally, if �P is the set of events in the description

of P and �Q is the set of events in the description of Q, Q is executable on

processor P if and only if �Q � �P .

We generalize our simple processor P to a processor which can perform

any operation x drawn from the set A

GP = (x : A! GP)

Further, an ideal processor IP can be described by extending the set A to the

universal alphabet of events. If � is the universal alphabet of events, then the

ideal processor IP can be described as

IP = (x : �! IP)

The ideal processor can perform any event x, drawn from the universal alpha-

bet, on behalf of the program in zero time.

The computational model of Timed CSP can now be rephrased as: each

process executes on its own ideal processor. This statement is justi�ed since

the ideal processor is in fact the process RUN, as described by Hoare [7], and

is the identity process for parallel composition:

Q jj IP = Q

During the initial design we can assume an ideal execution environment

where each process executes on its own processor and execution times are

zero. In e�ect, during the initial design we can ignore the underlying execution

environment.

3 Modeling A Simple Processor

The ideal processor described in the previous section was modeled according

the computational model of Timed CSP. The computational model assumes
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that (1) each process executes on its own processor and (2) each operation

takes zero time to execute. In this section we �rst remove the second as-

sumption of the computational model of Timed CSP by modifying the ideal

processor such that each operation takes a �nite non-zero time. Next we de-

scribe how the �rst assumption of the computational model of Timed CSP can

be removed. In the next section we construct a simple model of a particular

execution environment, namely RNet, and show how the �rst assumption can

be removed.

Our simple timed processor TP is willing to perform any operation accord-

ing to its program except each event takes non-zero time units. Formally, if ti
is the time associated with an operation xi drawn from the universal alphabet,

our simple processor can be described by

TP = (xi : �
ti! TP)

The di�erence between processors TP and IP is that processor TP, after per-

forming an operation xi, will not be ready to perform another operation until

ti time units has elapsed. On the other hand, the processor IP will immedi-

ately be ready to perform another operation. For example, the execution of

process Q, described in the previous section, on the processor TP may result

in a timed trace

h(a; 0); (b; ta); (
p
; ta + tb)i

where ta and tb are the delays associated with the execution of the operation

a and b respectively. Thus, we observe the occurrence of a at time 0, b at time

ta, and successful termination at time ta + tb.

The �rst assumption of the computational model of Timed CSP concerns

the number of processors in the system: each process executes on its own

processor. In real life situations this assumption is generally inaccurate; two

or more processes may execute on the same processor. In this paper, we ignore

the possibility of asynchronous communication among processes. We do not

allow communication between two processes that are executing on the same

processor. Two processes that need to communicate with one another must

be assigned to di�erent processors. Note that this assumption can be removed

by modeling the asynchronous communication mechanism provided by the

execution environment.

For example, consider two simple processes Q1 and Q2 which must execute

on the same processor:

Q1 = a! b! Q1

Q2 = c! d! Q2

The interleaved execution of these two processes on processor TP can be de-

scribed by

(Q1 jjj Q2) jj TP
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The pattern of execution, in this case, is a sequence of events drawn from the

set fa; b; c; dg and the order of events is nondeterministic.

As Xu and Parnas [10] argue, to guarantee that a hard real-time system

satis�es its timing constraints, static scheduling must be used. In other words,

the execution pattern of processes must be predetermined. Assuming static

scheduling for our processor, we can determine an exact pattern of execution.

For example, we may specify that the pattern of execution of the processes Q1

and Q2 to be

hacdbcdacdb � � �i
To be able to model such execution pattern, we must resolve the interleaved

execution of processes. Therefore, we need to introduce a notion of scheduling.

We model a process, namely the scheduler, which forces the execution pattern

of concurrent processes to follow the predetermined pattern. In the next sec-

tion, we construct a simple model of RNet and show how the scheduling can

be resolved.

4 A Model of RNet

RNet [1] is a distributed real-time system consisting of �ve homogeneous pro-

cessors, called nodes, which are interconnected by a local area network . Each

node has its own copy of the kernel which provides scheduling and message

passing facilities to the application processes assigned to that node. RNet uses

static scheduling and hence the execution time of all \tasks" must be known

in advance or worst case estimation of the execution time must be provided.

A real-time program in RNet consists of a set of concurrent processes which

communicate among each other by message passing. Each process is structured

as a sequence of one or more tasks. A task is an execution stream with a

deadline and an estimated execution time. The period of a process is the

period of all of its tasks. Tasks are scheduled based on their deadlines (i.e.

earliest-deadline-�rst). Upon completion, each task must send a message to

the scheduler and report the completion of its execution.

4.1 A Model of an RNet Node

In RNet, tasks are schedulable units and each process is divided into one or

more tasks. As mentioned previously, tasks must voluntarily release the pro-

cessor by sending a message to the scheduler. Following the RNet de�nitions,

we divide processes, those representing the application programs, into tasks.

Each task can be considered a sequential process, in particular, one that suc-

cessfully terminates. For example, we can divide our processes Q1 and Q2 (as

described in section 3) into tasks as follows:

Q0

1
= T11;T12;Q

0

1
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Q0

2
= T21;Q

0

2

where tasks Tij's are sequential processes de�ned as

T11 = dispatch1 ! a! trap1 ! SKIP

T12 = dispatch1 ! b! trap1 ! SKIP

T21 = dispatch2 ! c! d! trap2 ! SKIP

The event trapi corresponds to sending a message to the scheduler signaling

the completion of the task, and the event dispatchi represents the start of

the execution of a task. A scheduling process for our processor can now be

described as

S = dispatch
1
! trap

1
! dispatch

2
! trap

2
! S

The execution of processes Q1 and Q2 on the processor TP must proceed under

the control of the scheduling process S. This execution can be described by

S j[S]j ((Q0

1
jjj Q0

2
) jj TP)

where S = fdispatch1; dispatch2; trap1; trap2g is the set of scheduling events.

Thus, processes Q0

1
and Q0

2
execute concurrently on processor TP and the

execution proceeds under the control of the scheduling process S.

The last feature that we model for RNet is the inter-node message-passing

facility. RNet has two message passing primitives: SEND and RECEIVE. The

primitive SEND is always non-blocking, whereas RECEIVE can be blocking or

non-blocking. The blocking receive has a timeout value associated with it.

When a process requests a blocking receive, its execution is paused until a

message arrives or it times out, in which case the process continues execution

following the receive primitive.

To model the time out feature of blocking receive, we need to provide

an interrupt mechanism. In RNet, the scheduler uses a timer to generate

interrupt. Our interruptible model of the processor can be described as

ITP b= TP4 (i! ITP)

where event i represents the special event interrupt. If the processor is execut-

ing a blocking Receive, the occurrence of the event i will cause the processor

to restart. In other words, the processor ITP behaves like the processor TP

until the event i becomes available, which causes the processor to behave like

(i ! ITP). To avoid unnecessary complexity by modeling a timer process,

our model allows the scheduler to generate interrupts. Further, we modify the

description of processes which have a blocking receive such that they can be
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interrupted by the scheduling process. For example, consider the process Q3

described as
Q3 = a! b! c! Q3

t1

>

d! Q3

This process engages in the event a and then event b; if the event b does not

occur within t1, the control is passed to the process d ! Q3. Let us assume

that event b is a blocking Receive. We model the execution of this process as

follows: we convert Q3 to a process with one task, substitute the event b by

an interruptible process (b4 i), and remove the timeout value. The timeout

value is used in the description of the scheduler. Formally, this is described by

Q0

3
= dispatch1 ! a! b! c! trap1 ! Q0

3

4
i! d! trap1 ! Q0

3

S = dispatch
1
! (trap

1

t1

> i! trap
1
);S

The execution of process Q3 can now be modeled by

S j[S]j (Q0

3
jj ITP)

where S = fdispatch
1
; trap

1
; ig is the set of scheduling events.

To summarize, a node of RNet can execute one or more (application) pro-

cesses which do not communicate among each other. The application processes

must be divided into schedulable units or tasks. All timing requirements must

be removed from the description of the process, timeout constructs must be re-

placed by interruptible processes, and a scheduler process must be constructed

according to the timing information.

More formally, an application process can be described as a sequential

composition of one or more tasks:

Q = T1;T2; � � � ;Tn;Q

where each task Tj contains the events trap and dispatch

Tj = dispatch
j
! R ! trap

j
! SKIP

and R is a Timed CSP sequential process, in which all timing information

is removed. All application processes executing on a node of RNet can be

described by interleaving their respective processes:

Applications =jjjk Qk k 2 N
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The scheduling process repeatedly dispatches the application processes and

waits for their completion or until the application processes time out. The

scheduler has the form

S = dispatch
1
! (trap

1

t1

> i! trap
1
);

...

dispatch
m
! (trap

m

tm

> i! trap
m
);S

where tl 2 R
+ . A node with all of its application processes can be modeled as

RNet-Node b= (S j[S]j (Applications jj ITP)) n S

In other words, the execution of application processes proceeds under the

control of the scheduler.

4.2 A Simple Model of RNet

As noted earlier, RNet consists of �ve homogeneous processors which are inter-

connected by a local area network. To complete our model of RNet, we need

to model the network connecting these processors. This can be accomplished

by modeling the network as a Timed CSP process. However, for purposes of

this paper, we model the connection between two nodes by the communicat-

ing parallel composition of the nodes. Let I be the set of events representing

communication between two nodes of RNet, R1 and R2. We can described the

model of RNet by

RNet = R1 j[I]j R2

Each node executes its own application processes and communicates with the

other node through the set I. Alternatively, we could model the communica-

tion of two nodes by using Timed CSP communication channels. In this case,

we would also have to include the channel operations in the de�nition of the

processor ITP. In the next section we show how this model of RNet can be

used to design a watchdog timer.

5 An Example: A Watchdog Timer

To demonstrate the RNet model, we model the watchdog timer example de-

scribed by Davies and Schneider [4]. A watchdog timer is a simple device for

monitoring the activity of a component. Periodically, the component sends

a signal to the timer to con�rm that normal activity is taking place. If the

component does not send the signal, indicating normal activity, within time

t, the timer sound the alarm. The monitored component sends a signal on
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the channel reset and alarm is sounded on the channel alarm. The watch dog

timer [4] can be described by

Timer = reset
�1! Timer

t

>

alarm
�2! STOP

The collator process accepts input from the watchdog timer on the alarm

channel. If the timer sounds the alarm, the collator stops the system. The

collator process can be described by

Collator = alarm
�2! sound-alarm

�3! STOP

The Watchdog process is the communicating parallel composition of the colla-

tor and timer processes as described by

Watchdog = Timer j[alarm]j Collator

The description of Watchdog given by Davies and Schneider assumes ideal

execution environment. Suppose we want to execute this system on RNet. In

other words, our task is the second phase or physical design. We transform the

given description of the distributed watchdog timer according the the RNet

model described in section 4. We assign each of the processes Timer and

Collator to one node of RNet. Each process is constructed as one task. We

remove timing information in the description of Timer and replace the timeout

construct by the interrupt mechanism. The description of the process Timer

according to RNet, called T , can be described by

T = dispatch1 ! reset! trap1 ! T

4
i1 ! alarm! trap1 ! STOP

The scheduling process for node 1, where process T executes, is represented as

S1 = dispatch1 ! (trap1
t

> i! trap1);S1

The model of the processor for each node can be described by

ITPk = TPk 4 (ik ! ITPk)

TPk = reset
�1! ITPk

2 sound-alarm
�3! ITPk

2 alarm
�2! ITPk

2 dispatch
k
! ITPk

2 trap
k
! ITPk
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where �j is the time associated with execution of each operation and k = 1; 2.

The model of node 1, R1, can be described by

R1 = (S1 j[S1]j (T jj ITP1)) n S1
where S1 = fdispatch1; trap1; i1g is the set of scheduling events.

Similarly the RNet de�nition of the Collator process can be described by

a single task process C

C = dispatch
2
! alarm! sound-alarm! trap

2
! STOP

The corresponding scheduling process S2 can be constructed as

S2 = dispatch
2
! trap

2
! STOP

The model of node 2 of RNet, R2, can be described by

R2 = (S2 j[S2]j (T jj ITP2)) n S2
S2 = fdispatch

2
; trap

2
; i2g

The RNet model of the Watchdog can be now be described by combining

the two nodes via a communicating parallel composition:

RNet = R1 j[alarm]j R2

The next step is to show that the RNet model of the Watchdog, RNet

re�nes the model of the ideal execution environment. Therefore, we must

show that RNet w Watchdog.

Further, we can repeat the physical design stage and make the model the of

execution environment more detailed, measure the exact timing of the tasks,

estimate the worst case execution times, and so forth. As a result, the design

process becomes iterative where at each stage we bring more implementation

detail to our model and demonstrate that the current model re�nes the previ-

ous one.

6 Discussion

To raise the level of con�dence in hard real-time systems, the characteristics

of the underlying execution environment must be included in the design stage

as early as possible. However, most formal methods used for real-time systems

ignore the underlying execution environment. As a result, there remains a gap

between the design and implementation of hard real-time systems. During

the design stage few assumptions are made about the execution environment,

whereas during the implementation intimate knowledge of the execution envi-

ronment is required.

In this paper we presented an approach based on Timed CSP [2] to bridge

this gap.
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6.1 Contribution

We showed how program execution can be modeled as parallel composition of

two Timed CSP processes representing the program and its underlying proces-

sor. Further, we demonstrated the feasibility of this approach by constructing

a simple model of a particular execution environment, RNet, using this ap-

proach. Lastly, we demonstrated how the watchdog timer example can be

re�ned to be in conformance with RNet.

Our design approach has three phases. During the �rst phase, logical de-

sign, we assume an ideal execution environment. For the second phase, physi-

cal design, we need to construct a model of the target execution environment

in Timed CSP and transform the solution of the logical design to conform to

the model of the target execution environment. In the third phase, implemen-

tation, we convert the physical design to program modules executable on the

target environment. Each stage has its own proof obligations [5].

6.2 Future Work

As any approach to design and implementation of software systems, further use

of our approach requires an initial investment. We need to construct models

of the execution environments that are going to be used as a target for hard

real-time systems. In particular, embedded systems where the development

environment is usually di�erent from the execution environment can bene�t

from this approach. The initial investment is to construct a model of the

development environment but the model can be reused for di�erent projects.

Large-scale use of the approach requires tools that can automate some of

the tasks involved in the design and implementation of the system. For exam-

ple, in the RNet model, the construction of scheduling processes is currently

semi-automated. The RNet timing analyzer tries to �nd a static scheduling

that satis�es all timing requirements, if successful, the result can be used to

de�ne scheduling processes. The transformation of logical design processes to

those complying to the model of the underlying execution environment is still

not automated. This requires a more rigorous and formal de�nition of tasks

and how a process, according to its speci�cation, can be divided into tasks.

Lastly, the use of model checkers and semi-automated theorem provers can

ease the proof obligations of each stage.
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A Timed CSP Operators

The description of Timed CSP operators used in this paper is given below.

For a more comprehensive discussion of Timed CSP, see [2, 4].
� Universal set of eventsp

Event marking the successful termination

�P Set of events in the description of P

SKIP Successful termination

STOP Deadlock process

P n A A process that behaves as P except that events from the

set A are no longer visible to the environment.

a! P A process that engages in a then behaving as P

P2 Q (External) choice between P and Q

x : A! P Choice between events in the set A

P ;Q Sequential composition of P and Q

P jj Q Parallel composition; P and Q must synchronize on

events in �P \ �Q

P jjj Q Interleave concurrency; P and Q evolve independently

P j[A]j Q Processes P and Q evolve independently but must coop-

erate on events from the set A

P
t

> Q A process initially prepared to behave as P but if no event

has occurred within t time units, the process behaves as

Q instead.

P 4 Q A process that behaves as P , but may be interrupted at

any time by the initial event of Q.
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