
Building BSP Programs Using the Re�nement Calculus

D.B. Skillicorn

skill@qucis.queensu.ca

October 1996

External Technical Report

ISSN-0836-0227-

96-400

Department of Computing and Information Science

Queen's University

Kingston, Ontario K7L 3N6

Document prepared October 2, 1996

Copyright c
1996 D.B. Skillicorn

Abstract

We extend the Re�nement Calculus to permit the derivation of programs in the Bulk Synchronous

Parallelism (BSP) style. This provides a mechanism for constructing correct programs in this

portable and e�cient style.

1 Introduction

An important problem in parallel software construction is structure-directed re�nement, that

is the ability to take account of properties of the execution environment during the devel-

opment of a parallel program. There is widespread agreement that general-purpose paral-

lel computation requires an abstraction or model that conceals much of the complexity of

parallel computation. Taking this route requires targeting software development for this

abstraction.

One of the possible choices for a general-purpose model is bulk synchronous parallelism

(BSP). Because it separates computation from communication, it is a particularly clean

and simple approach. This separation allows us to add a handful of laws to the re�nement

calculus and derive BSP programs within it.

2 Bulk Synchronous Parallelism

The bulk synchronous parallelism model [2, 3, 5, 6] is a general-purpose model in which the

properties of architectures are captured by four parameters. These are: the raw speed of

the machine (which can be ignored by expressing the remaining parameters in its units), the

number of processors, p, the time required to synchronise all processors, l, and the ability of

the network to deliver messages under continuous load, g.

Computations are expressed in supersteps which consist of local computations in each

processor, using only local values, and global communication actions, whose results take

e�ect locally only at the end of the superstep. The cost of a superstep is given by

cost = w + hg + l

where w is the maximum local computation in any processor during the step, h is the

maximum number of global communications into or out of any processor during the step,

and l is the cost of a barrier synchronisation to end the step.

Although it imposes a modest structuring discipline on parallel programming, there is

growing evidence that BSP helps with program construction. Because a BSP program's cost

is parameterised by properties of the target architecture, it is possible to decide for which

architectures, that is for which range of the model parameters, a particular parallel program

will perform well. In some cases it has been possible to construct programs that will be

optimal for any target architecture.

The organisation of programs as sequences of supersteps reduces the complexity of arrang-

ing communication and synchronisation, and results in series-parallel computation graphs

for programs. This makes it straightforward to extend techniques for constructing sequential

programs to BSP programs.

1

3 Extending the Re�nement Calculus

The Re�nement Calculus [4] is a methodology for building programs using a set of re�ne-

ment laws. A speci�cation consists of three parts: a frame, the list of variables that the

speci�cation may change; a precondition; and a postcondition.

frame : [precondition; postcondition]

Speci�cations are regarded as programs. Certain speci�cations are called code and may be

directly executed. Non-code speci�cations cannot be directly executed but represent abstract

computations. Starting from a state satisfying the precondition, a speci�cation terminates

in a state satisfying the postcondition. Starting from any other state, the speci�cation's

behaviour is completely arbitrary, including perhaps failing to terminate.

The meaning of a speci�cation is given by weakest precondition semantics so that

wp(f : [pre; post]; otherpred) b= pre & (8f � post) otherpred)

Programs are constructed by re�nement, written

spec1 v spec2

(spec2 re�nes spec1), a relation on programs de�ned by

spec1 v spec2 b= wp(spec1; pred)) wp(spec2; pred) for all predicates pred

The re�nement calculus takes the view that variables are global and hence may be read

anywhere in a computation. Writes to these global variables are controlled by the frame of

a speci�cation, a list of those variables that it is allowed to change. Since we do not wish to

model a global memory, we begin by extending the frame to include those variables readable

by a speci�cation as well. A speci�cation becomes

(readframe;writeframe) : [precondition ; postcondition]

The read frame is de�ned to be those variables readable by the computation being speci�ed,

which we will take to be equivalent to those variables whose values are local to the processor

in which the computation is executing. Thus we are modelling execution on a distributed-

memory architecture. The write frame is de�ned to be those variables that may be written by

the executing processor. Since we are modelling distributed-memory execution it is possible

for the same variable name to appear in the write frame of concurrent speci�cations, but we

will take some care to ensure that at the end of a concurrent speci�cation only one such can

be used in subsequent computations. Note that the write frame need not be a subset of the

read frame.

We now introduce location predicates, which are intended to model information about

which processors hold each value. This could be done by, for example, partitioning frames.

Instead we will use predicates in pre- and postconditions.

2

Syntax Semantics

distribute(rf ; lp(wf)) wp(distribute; pred & lp) = pred

collect(dlp(rf);wf) wp(collect; pred) = pred & dlp

redistribute(dlp1 (rf); lp2 (wf)) wp(redistribute; pred & lp2) = pred & dlp1

k (rf
i
;wf

i
) : [prei ; posti] wp(k (rf

i
;wf

i
) : [prei ; posti]; pred) =

&iwp((rf i ;wf i) : [prei ; posti]; pred)

Figure 1: Semantics of New Code

A location predicate (lp) relative to a read or write frame is a conjunction of simple

predicates of the form pi(x), where pi(x) holds exactly when processor i contains the value

denoted by variable name x. The predicate is written lp(f) when the frame concerned is not

obvious. In other words, a location predicate gives the location(s) of each variable mentioned

in a frame. A disjoint location predicate (dlp) is a location predicate in which each variable

name appears at most once (that is, no value is contained in more than one processor). A

BSP program is one whose derivation does not alter location predicates except using the

new laws given here.

Result 1 All laws of the re�nement calculus continue to hold in this extension.

Proof: Add a read frame containing all variable names in the scope to each speci�cation.

The semantics for read frames given above is the semantics assumed by the re�nement

calculus.

We now introduce new operations to model data movement in a BSP architecture and

new laws for manipulating speci�cations involving location predicates and producing these

operations as code.

We use the operations given in Figure 1. The operations distribute, collect, and re-

distribute move values between processors using the distributions implied by the location

predicates. Parallel composition models the concurrent, independent execution of sequential

code on distinct processors. The BSP cost of each of these new operations is straightforward

to compute.

3

De�nition 2 (Local Knowledge) For any location predicate lp of the form p(x) & p(y) : : :,

(rf ;wf) : [pre; post] � (rf ;wf) : [pre & lp(rf); post]

This follows from the de�nition of a read frame { those values that are local are those that

can be read by the program.

The validity of the remaining laws follows from the semantics given in Figure 1.

Law 3 (Distribute)

(rf ;wf) : [inv ; inv & lp(wf)] v distribute(rf ; lp(wf))

where distribute is code that transmits the values of variables in rf to processors so that lp

holds.

Law 4 (Collect)

(rf ;wf) : [inv & dlp(rf); inv] v collect(dlp(rf);wf)

where collect is code that collects the values of variables whose names appear in wf into

a (conceptually) single location. Note that a disjoint location predicate ensures that each

variable can be given at most a single value.

Law 5 (Redistribute)

(rf ;wf) : [inv & dlp1 ; inv & lp2] v redistribute(dlp1 (rf); lp2 (wf))

where redistribute is code that communicates the values of variables whose locations are

indicated by dlp
1
into locations satisfying lp

2
.

Law 6 (Sequential Composition) For any predicate mid and location predicate lp

(rf ;wf) : [pre; post] v (rf ;wf) : [pre;mid & lp] ; (rf [wf ;wf) : [mid & lp; post]

Only one more law is needed, to allow the sequential speci�cations within each superstep

to be produced.

Law 7 (Parallel Decomposition) Whenever &i posti , post

(rf ;wf) : [pre & lp1 ; post & lp2] v

ki (fx : rf : pi(x) in lp1g; (fx : wf : pi(x) in lp2g) : [pre; posti]

Note that

&iwp((rf i ;wf i) : [prei ; posti]; pred)

� &i(prei & (8wfi � posti) pred))

� pre & (8wf � post) pred)

4

4 Examples

We illustrate the use of these laws with some small examples.

It may happen that the data distribution at some point in the program is inappropriate

for the desired next step. This requires the insertion of a redistribution like this:

(rf ;wf) : [pre & dlp1 ; post] v fsequential compositiong

(rf ;wf) : [pre & dlp1 ; pre & lp2] ; (rf ;wf) : [pre & lp2 ; post]

v fredistributiong

redistribute(dlp1 ; lp2) ; (rf ;wf) : [pre & lp2 ; post]

Now we illustrate the derivation of a complete BSP program. To reduce clutter we will use

Xi for fxi : i : 1 � i � ng, XL for fxi : i : 1 � i � n=2g, andXR for fxj : j : n=2+1 � j � ng.

(Xi; s; s) : [true; s =
nX

i=1

xi]

v fintroduce local variableg

(Xi; s; s1; s2; s; s1; s2) : [true; s =
nX

i=1

xi]

v falgebrag

(Xi; s; s1; s2; s; s1; s2) : [true; s = s
1
+ s

2
& s

1
=

n=2X

i=1

xi & s
2
=

nX

j=n=2�1

xj]

v fsequential compositiong

(Xi; s; s1; s2; s; s1; s2) : [true; s1 =
n=2X

i=1

xi & s
2
=

nX

j=n=2�1

xj] ; (A)

(Xi; s; s1; s2; s; s1; s2) : [s1 =
n=2X

i=1

xi & s
2
=

nX

j=n=2�1

xj; s = s
1
+ s

2
& s

1
=

n=2X

i=1

xi & s
2
=

nX

j=n=2�1

xj](B)

Now using P
1
for p

1
(XL), P2 for p2(XR), and S for

s
1
=

n=2X

i=1

xi & s
2
=

nX

j=n=2�1

xj

we continue:

(A) v fsequential compositiong

(Xi; s; s1; s2; s; s1; s2) : [true; P1 & P
2
] ; (C)

(Xi; s; s1; s2; s; s1; s2) : [P1 & P
2
; P

1
& P

2
& S] ; (D)

(Xi; s; s1; s2; s; s1; s2) : [P1 & P
2
& S; S] ; (E)

5

(C) v distribute(Xi ; s; s1 ; s2 ;P1 & P2)

(D) v fparallel decompositiong

(XL; s1) : [true; s1 =
n=2X

i=1

xi] k (XR; s2) : [true; s2 =
nX

j=n=2�1

xj]

v k
2
code for sequential summation

(E) v fcollectg

collect(p1 (s1) & p2 (s2); s)

(B) v fassignmentg

s := s
1
+ s

2

It is easy to see how such derivations can be extended to partition the list over a larger

number of processors, and how the �nal gather step can be rewritten as a reduction with

addition of the results of the individual processors.

5 Conclusions

We have shown how the re�nement calculus can be extended to derive BSP programs. This

goes some way towards �xing a weakness of the BSP approach, the lack of a formal way

to derive programs and guarantee their correctness. As in all re�nement approaches, the

existence of a calculus does not provide explicit guidance for program construction. Rather

it ensures that the details of an intuitive construction are handled correctly.

The approach taken here allows programs containing nested parallelism to be generated.

The present version of the BSP model does not allow this, but it is a natural extension to

model clustered architectures. In any case nested parallel constructs can be replaced by

sequential ones without altering the semantics provided that distinct locations are provided

for variables held in notionally distinct processors.

It is straightforward to extend the laws provided here to allow for other kinds of structured

communication such as broadcasts and reductions. These are available within the Oxford

BSP Toolset [1].

References

[1] Jonathan M.D. Hill. The Oxford BSP toolset users' guide and reference manual. Oxford

6

Parallel, December 1995.

[2] W. F. McColl. An architecture independent programming model for scalable parallel

computing. In J. Ferrante and A. J. G. Hey, editors, Portability and Performance for

Parallel Processors. Wiley, 1994.

[3] W.F. McColl. General purpose parallel computing. In A.M. Gibbons and P. Spirakis,

editors, Lectures on Parallel Computation, Cambridge International Series on Parallel

Computation, pages 337{391. Cambridge University Press, Cambridge, 1993.

[4] C. Morgan. Programming from Speci�cations. Prentice-Hall International, 2nd edition,

1994.

[5] D.B. Skillicorn, J.M.D. Hill, and W.F. McColl. Questions and answers about BSP.

Technical Report TR-15-96, Oxford University Computing Laboratory, August 1996.

[6] L.G. Valiant. A bridging model for parallel computation. Communications of the ACM,

33(8):103{111, August 1990.

7

