
Applying the Theory-Model Paradigm

David Alex Lamb

Andrew Malton

Xiaobing Zhang

February, 1996

External Technical Report

ISSN-0836-0227-

1996-401

Department of Computing and Information Science

Queen's University

Kingston, Ontario, Canada K7L 3N6

Version 1.1

Document prepared May 9, 1997

Copyright c
1996 David Alex Lamb, Andrew Malton, and Xiaobing Zhang

Contents

1 Introduction 1

1.1 What is the Theory-Model Paradigm? : : : : : : : : : : : : : 1

1.2 Basic Rhetorical Principles : 2

1.3 Original Materials : 4

2 The Formalization Task 4

2.1 Design Categories - Introducing Types : : : : : : : : : : : : : 4

2.1.1 Combining Given Sets : : : : : : : : : : : : : : : : : : 5

2.1.2 Schemas for Design Categories : : : : : : : : : : : : : : 6

2.1.3 In�nite Types but Finite Sets : : : : : : : : : : : : : : 7

2.2 Introducing Schemas : 7

2.3 Relations and Functions : 9

2.4 Names and Naming : 11

2.5 Formalizing Properties of Design Elements : : : : : : : : : : : 13

2.6 Evolving a Formalization : 15

2.6.1 Aggregation : 15

2.6.2 Generalization : 17

2.6.3 Revisions : 18

2.7 Putting the Pieces Together : : : : : : : : : : : : : : : : : : : 18

3 Things People Did Wrong 19

3.1 Distinct Names : 19

3.2 Quantifying Over Set Expressions : : : : : : : : : : : : : : : : 20

3.3 Repeated Predicates : 20

3.4 Eliminating Quanti�ers : 20

3.5 Functions versus Schemas : 21

4 Data Model and Execution 22

4.1 Data Model : 22

4.2 Executable Representation : 23

4.3 Iterative Development : 24

5 Conclusion 25

5.1 Di�culties with Z : 25

5.2 Acknowledgements : 25

List of Figures

1 Example Entity-Relationship Diagram : : : : : : : : : : : : : 22

i

List of Tables

1 Set Operations : 21

ii

1 Introduction

This is a tutorial on applying the Theory-Model paradigm to the speci�cation

of software engineering analysis and design methods. Its primary audience is

students who need to learn to write such descriptions. We expect the primary

readers of this report will be students doing Theory-Model descriptions, and

students in Queen's software engineering courses who wish to understand the

basics of the descriptions that we supply them in the course.

1.1 What is the Theory-Model Paradigm?

The Theory-Model Paradigm is a way of describing and understanding design

methods, designs, and design veri�cation. The ideas originate in the \model

theory" of mathematics. There, a theory is a collection of expressions or state-

ments made in an formal language of uninterpreted operations and symbols.

For example, group theory, having expressions over variables, one constant,

one unary operation, and one binary operation, is a collection of equations

induced by the usual rules of equation and a certain set of �ve axioms. An

interpretation of a theory gives meaning to the uninterpreted symbols of the

theory. For example, an interpretation of group theory might involve letting

variables vary over integers, letting the constant be 0, the unary operation be

negation, and the binary operation be addition. A model of the theory is an

interpretation that satis�es all the axioms. Thus, the integers under addition

are a model of group theory. A di�erent interpretation, might not be a model

of the theory: you may not let the binary operation be multiplication over the

integers.

We apply these ideas to software design in the following way:

� A design method corresponds to a theory: it introduces certain cate-

gories; its design rules and their consequences correspond to theorems

about the categories.

� A design, that is the work produced by a designer, corresponds to an

interpretation: a particular set for each category.

� A design is \correct" if it follows the design rules; correspondingly, an

interpretation is valid (i.e., is a model of the corresponding theory) if it

satis�es all the axioms.

Design veri�cation corresponds to testing whether the design is a model of

the corresponding theory. Since, in general, the sets and design rules we are

dealing with are all �nite, we know that it is theoretically possible to verify

designs, by searching for contradictions to the axioms. We hope it will also

prove feasible.

1

The development of a design theory in enough detail to use in design veri-

�cation proceeds as follows:

1. Develop a formal description of the design method, using mathematical

notation where possible for precision. Lately, we have been using the Z

notation for this step. It is the hardest step of the three, requiring about

80% of the e�ort in developing a validation capability.

2. Develop a data model for the theory. Many of the checks required for

design veri�cation are tedious to do by hand. We thus expect in the

long term to have automated support for design veri�cation, although

in the short term we often work on small examples by hand. A tool for

design validation must be able to represent the design information, and

so it is appropriate to develop a data model for it using typical data

modeling methods. At present we use entity-relationship diagrams for

this purpose. There is usually a close correspondence between some of

the sets described in the mathematical theory and some of the entity sets

of the entity relationship model, but the relationship is not necessarily

direct.

3. Develop an executable form for the checks of whether any axioms are

violated. In the past we have used Prolog for this purpose; in the future

we are considering using Goedel.

There are feedback loops among the steps; while developing the data model,

for example, one might �nd a simpler method of expressing a concept from

the formal description.

Design veri�cation is not the only use for design theory formalizations.

The act of formalization itself is useful, since it forces us to make precise

many aspects of the material that are imprecise in the original sources. By

comparing the formalizations of similar design methods, we can draw exact

and detailed comparisons among the methods.

The present report focuses on the �rst step: preparing a precise mathe-

matical description of the original source material.

1.2 Basic Rhetorical Principles

The Theory-Model paradigm is fundamentally intended to give precise but

readable descriptions of design methods. This means that concerns of rhetoric

(the art of conveying meaning) are at least as important as the associated

technical concerns.

For precision, we use the Z notation[Spiv92] to write mathematical descrip-

tions. There are several reasons for this.

2

� Z has a well-de�ned syntax and semantics, to which we can refer people

who wish to understand the notation that we use. This mitigates the

problem of readers having to learn an idiosyncratic notation for writing

mathematics.

� Available with Z is a type-checker, fuzz, which can help catch many

simple mistakes in drafts of the mathematical expressions.

� Z provides a structuring mechanism, the \schema", which we can use to

organize our speci�cations.

A fundamental rhetorical principle for this work is that the formal descrip-

tion cannot stand on its own. We formalize design methods whose original

authors have already described them informally. Between the original infor-

mal description and our formal description there must be additional material,

in informal but technically precise language. This is called the technical de-

scription.

The correct view to take is that the technical description should be able to

stand on its own, with the formal description to make it absolutely precise. In

principle it should be possible to obtain a sensible (though possibly imprecise)

view of the design theory by omitting the formal description and leaving only

the technical. Beware of the temptation, therefore, of focusing so intently on

recording a formal description that the technical description lapses. This is an

easy trap to fall into after becoming familiar with the formal notation. While

many styles of composition are appropriate, in our view it is best to develop

the technical and formal descriptions concurrently. The technical description

must be written eventually, and each helps make the other clearer as choices

are taken and revised.

The concurrent re�nement of the technical and formal description proceeds

until the point at which the former, while perfectly clear, uses concepts with no

direct formal translation. The formal description at this point is an encoding

of the technical description. At this point, formalization normally stops.

The situation somewhat resembles that of a software requirements docu-

ment and the code that implements it. The requirements correspond to the

informal description; the technical description corresponds to the software de-

sign document and code comments; the formal description corresponds to the

code. Well written design documents and comments can stand alone. Soft-

ware engineers generally accept that they should write design documents and

comments with the implementation.

Since your purpose in formalizing is precise communication, expect to fol-

low the normal rules of style for any essay or technical paper. In particular, a

formalization requires an introduction setting a context, and each new section

of the formalization should have prose describing how that section �ts into the

whole.

3

1.3 Original Materials

The �rst step of formalization is to develop a reasonable understanding of the

original source material. This requires at least one thorough reading of the

original sources, and possibly more. Formalization often requires decisions

about how to represent things precisely which the original material de�ned

imprecisely. In documenting such decisions, you should cite the original sources

carefully, supplying page numbers or page ranges for the discussion of the

imprecise concepts.

Beware of the temptation to improve the original source in some way. Every

lack of precision in the original is an occasion of this temptation, because you

must make some choice about how to �ll in missing details. Of course, this

is a great bene�t of formalization: forcing you to be precise. However, the

value of a formalization is lessened wherever it diverges from the original. If

you make real improvements to the method, as opposed to improvements to

the degree of precision, you should identify them as such, and document them

separately.

2 The Formalization Task

In this section (the main body of this paper), we explain a process for devel-

oping and recording design theories. We use the formalization of Rumbaugh's

Object Modeling Technique (OMT) as our main example[Rumb91], primarily

because it is the material we were working on when the need for this paper

arose.

2.1 Design Categories - Introducing Types

You must decide early what are the basic categories of the design theory. In

our recent work, we have been formalizing software design methods in which

elements of the design have both graphical and textual descriptions. During

the formalization, we must develop representations for each class of graphical

elements. Some elements appear to be able to exist on their own; others can

exist only in the context of some more fundamental element. For example, in

Rumbaugh's OMT, \classes" and \associations" can exist on their own, but

\attributes" only exist with their class or attribute.

For each basic category of the formalization, we introduce a type to corre-

spond to it. The formalization language, Z, is strongly typed: new types can

be introduced as needed. We choose one of three ways of introducing a type

to formalize a category.

� Introducing a \given set".

� Introducing a subset of some previously introduced set.

4

� Introducing a \schema", the variables of which formalize essential prop-

erties of design elements in that category.

On recognizing a basic category, we believe the right formalization to try

�rst is the introduction of a new given set. For example, in formalizing OMT

you might introduce given sets as follows.

[CLASS ;ASSOCIATION]

2.1.1 Combining Given Sets

Since Z is strongly typed, two di�erent given sets have no elements or op-

erations in common. As you progress with the formalization, however, you

sometimes discover that two basic categories, previously identi�ed as distinct,

share similarities. Strong typing prevents you from sharing assertions and op-

erators between these two categories. You are led instead to three alternatives:

� Duplicate Z text for both types. This violates the \separation of con-

cerns" principle.

� Withdraw the disjoint given sets, replacing them with a single given set,

to represent their union. You then de�ne the assertions and operators

once only, and introduce the two originally separate categories as subsets

of the union set. Unfortunately, this reduces the amount of checking

available with fuzz, since it only checks types, and di�erent subsets of

the same given set have the same type.

� Combine the two given sets in a disjoint union, which can be clumsy and

hard to read.

To retain as much type checking as possible, and to avoid duplicate assertions,

we have chosen the third alternative.

In OMT, classes and associations share common features, and so we prefer

to consider them together as entities, and introduce the disjoint union:

ENTITY ::= ClassToEntity�CLASS�

j AssociationToEntity�ASSOCIATION�

This declares a new give set, ENTITY , and two functions, ClassToEntity and

AssociationToEntity , which map classes and associations, respectively, to en-

tities. Each of these functions is a total injection; that is, each CLASS element

maps to a distinct ENTITY element. Moreover, the elements corresponding

to classes and those corresponding to associations partition the set of entities:

each entity corresponds to either a class or an association.

In OMT, \roles", \operations", and \attributes" appear at �rst glance to

be signi�cantly di�erent. It would seem natural to introduce three given sets.

But they have this in common:

5

� Whenever they appear they must be related to their class or association

(that is, to their \entity").

� Any of them can be named, although roles are not necessary named.

Within an entity scope, the names of any role, operation, or attribute

must be unique.

� For classes we will eventually need to represent \inheritance", by which

subclasses inherit attributes and operations from superclasses. This sug-

gests that we will eventually be writing a collection of predicates about

inheritance, which will apply equally to attributes and to operations.

The similarities lead us to consider at least that attributes and operations

should be formalized as subsets of some more general set; and we'll include

roles as well. Roles, attributes, and operations will be known collectively as

features.

[ATTRIBUTE ;ROLE ;OPERATION]

FEATURE ::= AttributeToFeature�ATTRIBUTE�

j RoleToFeature�ROLE�

j OperationToFeature�OPERATION�

2.1.2 Schemas for Design Categories

Schemas (see below) arise in Z speci�cations for collecting together several

pieces of related information. Formally, a Z schema means a subset of a cross

product; it is an \indexed product" because the individual components of

the product have individual names in Z (which are called variables). When

elements of a design category are characterized by certain essentials, it might

well be appropriate to formalize the category as a schema, and so collect

the essential characteristics together as components of the product. There

are, however, three phenomena that prevent or condition using a schema to

formalize a basic category:

� a requirement for unique identity,

� a lack of uniformity, and

� the need for an even presentation style.

Since a schema means an indexed product, instances of a schema type are

distinguished only by the values of their component variables. However, design

methods often allow for two elements of a basic category to be present in a

design with identical attributes. Their unique identity is not characterized

6

by their attributes but by context. For example, in OMT one may introduce

two di�erent classes with exactly the same attributes and exactly the same

operations. The only di�erence, in OMT, is their name. Sometimes this can be

dealt with by adding \name" as an attribute, but this is really not appropriate.

In general, the scope rules for naming (see below) are dependent on context,

not on the identity of the thing named. If names were attributes, local scope

would be di�cult to discuss; comparing di�erent designs be impossible, if the

di�erent designs used the same name for di�erent classes.

Since a schema means an indexed product, every attribute (variable) in the

product must always be present. Optional attributes cannot be introduced as

schema variables, and if a basic category lacks the uniformity of a small set

of required attributes, formalizing it as a schema will probably be di�cult to

understand.

A basic principle of rhetoric is to introduce new information evenly, without

overwhelming the reader with too much at once. In our formalizations we take

care to minimize the amount of new information the reader must absorb in

any one place. Especially in mathematical writing, the average reader requires

a \rest" after absorbing a chunk of symbolic information. We prefer therefore

to introduce new design categories as small schemas, formalizing the essentials

of the design elements as a small collection of schema variables.1 Subordinate

design properties and relationships are formalized later, by introducing new

schemas focussed on the subordinate material.

2.1.3 In�nite Types but Finite Sets

In any software design method there are basic categories; a particular design

is made up of elements of those categories, related to one another according

to the design rules of the method. A design category, viewed as a set of

possible design elements, is usually in�nite, because there are in�nitely many

possible designs. The elements of a particular design, viewed as a subset of

possible design elements, is always �nite, because any given design is a �nite

construction. We use given sets, as above, to formalize the in�nite potential of

a basic category, and below we shall introduce schematic sets to represent their

extents: their �nite subsets that are the elements of particular designs. This

style, of introducing in�nite types �rst, and �nite subsets later, is a frequently

occurring pattern in the Theory-Model paradigm as we practice it.

2.2 Introducing Schemas

We usually use \schemas" to state the required relationships between design

categories. Typically the relationships of interest to us in a particular design

1In Section 5.1 we discuss an alternative approach advocated by Ryman. He considers

that schemas interfere with a clean presentation of design theories.

7

apply not to all possible design elements of the category, but only to those

elements which have actually introduced into our present design. This aspect

may be called the design-time formalization of a theory. We introduce schema

variables to stand for �nite subsets of the design categories, and additional

data describes the properties of the particular design. It is often the �rst

schema we introduce, and can be called the \basic" schema of the design-time

formalization.

Let's apply these ideas to deciding on a representation of the design-time

categories of attributes, operations, and roles in OMT. We have already in-

troduced our basic categories, but a particular design will use a �nite set of

particular instances of them. The notions of \entity" and \feature" will reap-

pear as �nite subsets of the general notions introduced above. They are the

information content of a particular design.

In our OMT formalization, ENTITY is the type of potential design ele-

ments that are classes or associations; a given design will involve particular

classes and associations, formalized as a set variable entity in the basic schema,

having subsets class and association.

OMTentity

entity : �ENTITY

class : �CLASS

association : �ASSOCIATION

classEntity ; associationEntity : �ENTITY

classEntity = ClassToEntity�class�

associationEntity = AssociationToEntity�association�

entity = classEntity [associationEntity

We need �ve sets:

� The three sets of entities, classes, and associations in a design

� The two subsets of entities corresponding to classes and associations.

FEATURE is the type of potential design elements which are roles, at-

tributes, or operations; we treat it similarly to entities:

8

OMTfeature

feature : �FEATURE

role : �ROLE

attribute : �ATTRIBUTE

operation : �OPERATION

roleFeature; attributeFeature; operationFeature : �FEATURE

roleFeature = RoleToFeature�role�

attributeFeature = AttributeToFeature�attribute�

operationFeature = OperationToFeature�operation�

feature = roleFeature [attributeFeature [operationFeature

To collect the rules about basic concepts for future reference, we de�ne a

schema that combines the properties of the previous schemas.

OMTBasic b= OMTentity ^ OMTfeature

This construct, called schema conjunction, essentially means that OMTBasic

includes all the de�nitions and predicates of both OMTentity and OMTfeature.

2.3 Relations and Functions

If essential properties of design elements are formalized by schema variables;

optional or inessential properties are modelled by functions and relations.

In OMT and similar design methods, features never exist independently,

but are always associated with some entity. Given a particular feature in a

valid design, we can discover the particular class or association in which it

was introduced. This is even true in the presence of inheritance, since there is

always an original point of introduction, in some ancestor class, for inherited

attributes and operations. In mathematical English we would say something

like \for every feature, there is a corresponding point of de�nition in some class

or association". Such a \for every ... there is a ..." suggests a formalization as

a function in the mathematical sense. Here, the function de�nedIn has type

FEATURE � ENTITY , because it yields an ENTITY in the design (the

introduction point) for any FEATURE element introduced in the design. It

is a partial function (�) instead of a total one (") because we do not wish

to insist that each FEATURE necessarily have a corresponding ENTITY ; we

wish to make few claims about the set of all possible features and entities,

restricting ourselves to their properties in the context of particular object

models.

Sometimes the relationships called for in a design theory don't suggest a

functional style of formalization, but a more general relational style. However,

it is best to write a relation in a functional style if possible. A functional style

9

lends itself to equations, and equational presentations and reasoning are clearer

and more elegant. It is possible, however, to use an equational style with

relations; and it is possible to write elegant Z without often using equations.

In this tutorial we have tried to use an equational style where possible.

Sometimes, perhaps often, you want to formalize using a relation that is

the inverse of a function: if f 2 A�B then f � 2 B#A. In OMT, one speaks

sometimes of \all the features of a class" or \all the features of a particular

association". One is speaking of a set (of features) which is a function of a

class; this can be viewed as a general relation between classes and features,

which happens to be the relational inverse of the function de�nedIn alluded

to above. Alternatively it can be viewed directly as a set function of a class;

in Z, the relational image notation can be used to refer to the set: \all the

features of class c" is de�nedIn��fcg�.

We have sometimes approached formalization in the past with a \mini-

malist" attitude, in which we attempted to de�ne a single expression of each

idea. However, since our purpose in speci�cation is to communicate clearly

and precisely, the aim is not minimality but readability. It is usually helpful

to introduce by name all the relations and functions that we will be using

regularly later. If we will be writing equations in each direction of a relation,

we give names to each direction. We have mentioned de�nedIn formalizing

the relationship between each feature and its de�ned class; we may also need

featureOf formalizing the inverse relation.

OMTFeature

OMTBasic

de�nedIn : FEATURE � ENTITY

featureOf : ENTITY # FEATURE

de�nedIn 2 feature" entity

featureOf 2 entity# feature

featureOf = de�nedIn�

A recommended style is to follow each schema with a list of natural language

explanations, one per predicate. Thus:

� Every feature has a corresponding entity ; de�nedIn is a (total) function,

according to the" arrow.

� There may be more than one feature for each entity ; featureOf is a

general relation, according to the# arrow.

� featureOf is the relational inverse of de�nedIn.

The beginner �nds the repeated structure of declaration and axiom pe-

culiar. Why should we have to introduce the general type above the line in

10

the \declaration part", and then say it again below the line in the \predicate

part"? It is because Z does not use dependent types. Identi�ers introduced in

the declaration part can only be used in the predicate part. Consequently, be-

cause `entity ' and `feature' are declared in OMTBasic, they cannot be used in

declarations in the schema above. We are reduced to stating the requirements

we really want only in the predicate part, where any declared identi�er can be

used.

2.4 Names and Naming

In this business it is important not to confuse levels of abstraction. We always

�nd ourselves using Z terms where we should be using technical terms from

the formalization, or from the original theory. In particular, Z identi�ers are

completely di�erent from \names" as they may be used in the design theory.

If we introduce example : CLASS in a schema, then example is the Z identi�er

of some member of the set CLASS ; in no way is this to be confused with some

\name" example which might be the name of a class in a particular design.

That would be confusing domains of discourse.

The purpose of CLASS and ENTITY and so forth is to distinguish and

clarify our knowledge of these categories of the design theory. Di�erent mem-

bers of these sets, with their unique identity, correspond to di�erent design

elements. Elements such as class diagrams and associations (represented by

lines or diamonds in a diagram) have a unique identity irrespective of any

name that they have in the design. With a CASE tool, their unique identity

may be re
ected in the positioning of some collection of boxes or lines in a

particular place on the screen. Their names may be re
ected as strings of

characters near the boxes.

When formalizing names, you may perhaps choose strings, but unless you

need to model naming conventions explicitly, it is unnecessary to distinguish

names to this level of detail. Instead, simply introduce a given set of names.

[NAME]

In formalizing names in a design theory you must pay attention to scope

rules that the source material establishes and follows. Typically all names in

some context must be unique: in independent or parallel context names can

be reused. For example, in OMT a class may not have two attributes with

the same name; but two di�erent classes could each have completely unrelated

attributes with the same name. The context is called a scope. A scope rule

establishes the scopes, and then legislates that within a scope, names and

named things must be in one-to-one correspondence. This suggests two sets:

the names used in the scope, and the things named. It also suggests two

functions: the name of a thing (a function of its identity), and reference to a

thing (a function of names).

11

In OMT, the naming of entities is simpler than the naming of features,

because entities have global scope. A named entity is an entity with a name.

An entity name is a name of a named entity. Entity names and named entities

are in one-to-one correspondence (a bijection, given by the� arrow).

OMTEntityNamesBasic

OMTBasic

namedEntity : �ENTITY

nameOfEntity : ENTITY � NAME

entityName : �NAME

theEntity : NAME � ENTITY

namedEntity � entity

namedEntity = domnameOfEntity

entityName = rannameOfEntity

nameOfEntity 2 namedEntity� entityName

theEntity = nameOfEntity�

Note how the sets and functions are introduced in a general way as subsets

and functions over the design categories; and then the precise requirements

are stated as predicates. They are partial functions of the design categories,

because a given design only uses �nitely many of the potential design elements

of the method; they are bijections of the design-time categories, for reasons

explained above.

We have not �nished with OMT entity naming, though. In OMT, classes

must have names, but associations needn't. There is no way in Z to state that

a property is not required; one may only be explicit about such matters in the

technical description.

OMTEntityNames

OMTEntityNamesBasic

classEntity � namedEntity

The naming of features is slightly more complex, because the scope of

feature names is not global. The scope for features is the entity with which

they're associated. We formalize local scope by the same method as the global

scope above, except that each of the sets and functions is parameterized by

the scope itself. The naming operations are thereby given a context, which is

the scope.

Within a given entity (class or association), then, a named feature is a

feature with a name. A feature name is a name of a named feature. Feature

names and named features are in one-to-one correspondence.

12

OMTFeatureNamesBasic

OMTFeature

namedFeature : ENTITY "�FEATURE

nameOfFeature : ENTITY " (FEATURE � NAME)

featureName : ENTITY "�NAME

theFeature : ENTITY " (NAME � FEATURE)

8 e : entity �

namedFeature(e) � featureOf �feg� ^

namedFeature(e) = dom(nameOfFeature(e)) ^

featureName(e) = ran(nameOfFeature(e)) ^

nameOfFeature(e) 2 namedFeature(e)� featureName(e) ^

theFeature(e) = (nameOfFeature(e))�

Both attributes and operations must be named; roles need not be. Again we

can formalize the constraint, but not the license. Since attributes, operations,

and roles partition features,

OMTFeatureNames

OMTFeatureNamesBasic

8 e : entity �

8 f : attributeFeature [operationFeature j e 7! f 2 featureOf �

f 2 namedFeature(e)

To collect the rules about names for future reference, we de�ne a schema

that combines the properties of the previous names-related schemas.

OMTNames b= OMTFeatureNames ^ OMTEntityNames

2.5 Formalizing Properties of Design Elements

Sets introduced for design categories have members which formalize design

elements. This captures the identity of design elements. However, design

theories usually allow for additional properties of design elements, optional for

their category; and impose or allow for further relationships between elements.

For example, in OMT a \role" of an \association" may or may not have a

name but it must have at least two other data:

� the class whose \objects" can play the role in an association

� the \multiplicity", which governs how many objects can play the role (in

a dynamic sense).

13

In general, this kind of relationship-determining data can be formalized in

either of two ways.

� Represent the data collectively as variables of a new schema which for-

malizes the relationship.

� Represent each datum separately, as we did with names, as a function

of the design category.

The �rst alternative seemed attractive to us at �rst, since it gathered all the

information about a type in one place. However, as Section 3.5 describes, we

eventually decided that it leads to unnecessary complications. Thus we �nd

the second alternative to be generally better.

Every role has a multiplicity and an associated class; thus we introduce

OMTRoleProperty

OMTBasic

player : ROLE � CLASS

multiplicity : ROLE #

player 2 role" class

dommultiplicity = role

The de�nition of player is similar to ones we have seen before; every role in

a design has a single class that plays that role. multiplicity is slightly more

subtle.

Multiplicity represents the number of instances of classes that can play the

given role in the given relation. In standard databases one thinks of simply

having a range of cardinalities, which can be represented by pair of numbers.

In OMT the restrictions are allowed to be more general, thus requiring a set

of natural numbers for the representation.

� A one-to-one relationship would be represented by a multiplicity being

the set consisting of single number 1.

� An optional role would be represented by the set consisting of the num-

bers 0 and 1.

� A \many" side of a relation would be represented by a multiplicity con-

sisting of all the natural numbers.

This suggests that multiplicity might be considered a function from roles to

sets of natural numbers. However, for reasons discussed later, we prefer to

replace functions returning sets by general relations.

We also introduce the following schema to show the relationship between

the basic OMT categories and roles:

14

OMTRole

OMTRoleProperty

isRoleOf : ROLE � ASSOCIATION

roleOf : ASSOCIATION # ROLE

isRoleOf 2 role" association

roleOf = isRoleOf �

2.6 Evolving a Formalization

Our main application of the Theory-Model paradigm is formalzing software

design methods, which are typically de�ned in large books. It is common

in such books to cover basic features �rst, then introduce advanced features

separately. This will sometimes mean that decisions you make earlier in the

formalization process require revision (or, at least, reconsideration) later.

What we have for roles is adequate for most kinds of associations one

�nds in an object model in OMT. However, two of the advanced features

complicate our representation. In both generalization and aggregation, there

can be several sets that play a particular role. In aggregation there is a single

container class and possibly several \part of" classes. In generalization there

is a single superclass and potentially several subclasses.

2.6.1 Aggregation

In the earlier stage of our thinking about this problem it seemed necessary

to introduce several di�erent roles to represent subclasses of a generalization

and similarly several di�erent roles to represent the di�erent parts in an ag-

gregation. The formalization began to look more and more complicated as we

introduced several new schemas and other elements to represent properties of

generalization and aggregation. We considered introducing special elements

to distinguish the parts in a �xed aggregation, special representations for the

subclasses and superclass in a generalization, and so on.

Whenever things look like they are getting too complicated, it is wise to

look over the material again to see if one can discover an appropriate simpli-

�cation. For example, we considered attempting to represent all the di�erent

parts of a �xed aggregate as one role, where the role simply had several distinct

players. This would have required changing the OMTRoleProperty schema so

that the player function (from ROLE to CLASS) became a general relation.2

This introduces its own complications, but would let us talk about \the part-of

role" as meaning all the parts of an aggregation. Unfortunately, Rumbaugh's

book gives examples of aggregates where, for example, a microcomputer is an

2This is our preferred approach, instead of having it become a function returning a set

of classes.

15

aggregate of a monitor, a system box, a mouse, and a keyboard, and each of

those parts of the microcomputer aggregate could potentially have di�erent

multiplicities. For example, there are one or more monitors and zero or one

mice3. Thus, we are forced to regard an aggregate as having many di�erent

\part of" roles. This vindicates our original idea that the \part of" elements

of an aggregate could each be thought of as a distinct role { but it required

considerable examination of the original material to ensure that this was an

essential aspect of the formalization, and not just a convenience.

The fundamental question arises at this point: can we still view generaliza-

tions and aggregations as associations, or must we introduce a new category?

If aggregates were to be completely di�erent from other kinds of associations,

they would require a new Z base type (i.e. a new given set) as their represen-

tation in the formalization. However, aggregates still seem to have roles, just

as simple associations do, but require additional information and additional

structure in their descriptions.

Thus, we introduce a given set to represent aggregates, and a schema to

represent the basic information associated with an aggregation:

[AGGREGATE]

OMTAggregateBasic

OMTRole

aggregate : �AGGREGATE

collects : AGGREGATE # ASSOCIATION

collectedIn : ASSOCIATION � AGGREGATE

collectedIn 2 association� aggregate

collects = collectedIn�

We de�ne the set of aggregates in a particular design (aggregate), and the

relationship between associations and the aggregates that collect them.

Each aggregate can be considered as a container that contains one or more

parts. We represent this information as a pair of relations:

OMTAggregateProperty

OMTAggregateBasic

containerOf : AGGREGATE # ROLE

partOf : AGGREGATE # ROLE

dom containerOf = aggregate

ran containerOf � role

dom partOf = aggregate

ran partOf � role

3Figure 3.22 on page 38 of Rumbaugh's book.

16

An aggregate isn't just an arbitrary collection of associations. We need to

express several consistency requirements:

OMTAggregate

OMTAggregateProperty

containerClass : AGGREGATE � CLASS

containerClass 2 aggregate" class

8 ag : aggregate � 8 a : collects�fagg� �

#(roleOf �fag�) = 2

8 a : aggregate � (containerOf � player)�fag�

= fcontainerClass(a)g

8 a : aggregate � 8 r : containerOf �fag� �

multiplicity�frg� = f1g

8 a : aggregate �

containerOf �fag� [partOf �fag� =

roleOf �collects�fag��

� Each aggregate has a single \container" class.

� All associations collected in each aggregate must be binary (that is, have

exactly two roles).

� The containers of an aggregate must all have the same class as their

player.

� Every part will have exactly one container, so all container roles have

multiplicity 1.

� The containers and parts of an aggregate must be all the roles of the

associations making up the aggregate.

2.6.2 Generalization

The visual representation of generalizations in Rumbaugh's method seems su-

per�cially similar to that for aggregation. We spent considerable thought on

whether they were similar enough to have a common formalization. At �rst,

we thought that the various classes used as super or subclasses in an general-

ization do not really represent distinct \roles" since the concept of multiplicity,

which applies to roles, did not seem to apply to subclasses or superclasses.

Eventually, Ryman pointed out that we could view a generalization as like

an aggregation of injection functions, in just the way that we had injection

functions from CLASS and ASSOCIATION to ENTITY in our formalization

17

(Section 2.1.1 on page 5). In addition to the usual properties of aggregates, a

generalization would have an additional restriction on the multiplicity of the

subclass roles.

Generalizations appear to have new property, distinct from those of other

associations: that of a \discriminator". Discriminators would seem to be a

form of a label for a generalization, specifying the basis of the generalization.

Thus, Rumbaugh gives the example of class Vehicle, which could be discrim-

inated by its propulsion mechanism, and also by its operating environment.

On page 39 Rumbaugh says that the discriminator is simply a name for the

basis of the generalization. In the examples we see that many generalizations

have no discriminator, and Rumbaugh says that the discriminators are op-

tional. Thus, discriminators would appear to be closely resembling names of

associations, and at this point in our formalization there does not seem to be

a need to introduce a separate category for discriminators.

Rumbaugh requires one additional property of generalizations: the dia-

grams have either an open triangle, where the subclasses are disjoint, or a

closed triangle, where they overlap. Thus for example \musician" might have

overlapping subclasses for \pianist" and \cellist". To represent this, we would

introduce variables disjoint and overlapping , both being sets of generaliza-

tions. Unfortunately, Z has no Boolean data type, so we can represent a

Boolean property only via enumerating the set of elements that have that

property.

2.6.3 Revisions

In the previous section we did not present a formalization of generalization,

since it would be similar to that for aggregation. In fact the two are su�ciently

similar that we should consider merging them, as CLASS and ASSOCIATION

are each ENTITIES . Thus AGGREGATE and GENERALIZATION might

each be kinds of GROUPING ; GROUPING in turn might be another kind of

ENTITY , or a kind of ASSOCIATION .4

Regardless of the speci�c choice we make, incorporating the new pieces of

the formalization requires going back to edit old ones. We regard such revision

cycles as normal, perhaps even necessary; it is quite similar to what one must

do with any expository prose.

2.7 Putting the Pieces Together

We early wrote of needing to separate out di�erent elements of the formaliza-

tion, to avoid overwhelming the reader. One must eventually put all the parts

together to form an entire formalization. We do so in de�ning a new schema

4These considerations are very similar to those for designing a class hierarchy for an

object-oriented system.

18

which incorporates the properties of all the previous schemas, thus OMT is

the conjunction of the component schemas:

OMT b= OMTBasic ^ OMTFeature ^ OMTNames

^ OMTRole ^ OMTAggregate

3 Things People Did Wrong

In experimenting with aspects of Z, we have tried several idioms that did not

work out well for us, or which we eventually decided were the wrong ways to do

things. In reading beginners' speci�cations, we have found similar problems.

This section summarizes the mistakes, and what we think writers should do

instead.

3.1 Distinct Names

There is a natural tendency to try to phrase predicates similarly to the original

natural language. We originally phrased the \distinct names" predicate as

\distinct entities have distinct names;" phrased more formally, this became

\given two entities, di�erent from each other, their names are di�erent," which

became the following predicate:

xOMTDistinctEntityNames

OMTBasic

nameOfEntity : ENTITY � NAME

nameOfEntity 2 entity� NAME

8 e1; e2 : domnameOfEntity j e1 6= e2 �

nameOfEntity(e1) 6= nameOfEntity(e2)

The requirement can be phrased more elegantly as \there is a one-to-one cor-

respondence (a bijection) between named entities and their names," as we do

on page 12.

We expect that some readers might prefer avoiding a \complicated" con-

cept like bijection, believing the above formulation to be simpler and easier to

understand. However, we prefer to avoid quanti�ers over elements of sets when

we can express the same concept easily using operations on the sets themselves.

This might be viewed as another instance of the classic dichotomy between us-

ing a smaller and \simpler" vocabulary (and consequently writing longer sen-

tences) versus a larger \more technical" vocabulary (and consequently writing

smaller sentences). Both positions have some merit, but we choose to regard

bijection as such a fundamental concept that it is well worth using when it is

applicable.

19

3.2 Quantifying Over Set Expressions

People seem reluctant to quantify over set expressions. For example, the �rst

predicate of OMTAggregate on page 17 includes the quanti�er

8 a : collects�fagg� � : : :

We have seen many initial attempts at such quanti�ers that were phrased in

the style

8 a : association j a 2 collects�fagg� � : : :

which is unnecessarily longer and more complex.

3.3 Repeated Predicates

In an earlier version of the OMTFeatureNames schema on page 13, we wrote

the predicates this way:

XOMTFeatureNames

OMTFeatureNamesBasic

8 e : entity �

(8 a : attributeFeature j e 7! a 2 featureOf � a 2 namedFeature(e)) ^

(8 o : operationFeature j e 7! o 2 featureOf � o 2 namedFeature(e))

The parallel structure of the two clauses violates the fundamental principle

that one should state a common property in only once place. Our present

formalization combines the two into a single quanti�er of the form

8 f : attributeFeature [operationFeature : : :

3.4 Eliminating Quanti�ers

Often a predicate written using elements of sets can be simpler if written using

the sets themselves; this may simplify the predicates by eliminating quanti�ers

and the corresponding quanti�er variables. For example,

8 x : S � x 2 T

is simpler as

S � T

Z provides many useful operations for treating sets as a whole, instead of

element-by-element; Table 1 shows several of them.

20

R1 �R2 relational composition f r1 : domR1; r2 : ranR2 j

(9 y : ranR1 � r1 7! y 2 R1

^ y 7! r2 2 R2)

� (r1; r2) g

S � R domain restriction fs : S ; r : ranR j s 7! r 2 Rg

R�S � relational image fs : S ; r : ranR j s 7! r 2 R � rg

Table 1: Set Operations

3.5 Functions versus Schemas

In Section 2.5, we introduced function player and relation multiplicity to rep-

resent properties of roles. At one time we believed it was better to collect all

such properties into a schema, such as:

Role

role : ROLE

player : CLASS

multiplicity : �
1

Some predicates needed to quantify over members of the role set; to talk

about the corresponding properties, we then needed a way to �nd the schema

representing the properties of a role, given the role itself:

xOMTRole

OMTBasic

roleData : ROLE � Role

dom roleData = role

fr : role � (roleData(r)):playerg � class

8 r : role � (roleData(r)):role = r

We abandoned this scheme in favour of the present one (representing prop-

erties as separate functions) for several reasons:

� The need to use the roleData function complicated several of our predi-

cates, con
icting with our basic rhetorical principles.

� Using a schema in this way requires that every element of the design

category in question possesses the properties to be described. Names,

for example, cannot be formalized as variables of a schema describing

roles in OMT, because not all roles have names.

� De�ning a schema for a design category requires that we discuss all the

properties of the design category in one place. It makes it more di�cult

for us to distribute our discussion of properties among separate sections

of the formalization.

21

1+

ClassToEntity

AssociationToEntity

nameOfEntityisRoleOf

role class

association

m
ul

tip
lic

ity

entity NAME

player

N

Figure 1: Example Entity-Relationship Diagram

4 Data Model and Execution

Section 2 focussed on the formalization task, since it is the most di�cult

one for most members of our target audience. The Theory-Model approach

also includes developing a data model of the formalization, and an executable

representation of the axioms. We discuss these steps in this section.

4.1 Data Model

The second phase of the Theory-Model approach is to develop a data model

of the material formalized in the �rst phase. We use a variant of the Entity-

Relationship approach[Chen88] for this.

Translation of our style of Z speci�cation to an E-R model is fairly straight-

forward, aside from the rhetorical issue of how large a diagram to make and

which items to group in each diagram. Most given sets become entity sets,

represented by boxes; prede�ned types, such as
, become value sets, rep-

resented by ovals. Functions and relations become relationship sets, usually

represented by arrows, which point in the direction implied by the name of

the Z function or relation.

Figure 1 shows an E-R diagram of some of the concepts of roles and entities.

In some E-R conventions there would be a special notation for the injection

functions ClassToEntity and AssociationToEntity , which can be viewed as

de�ning a generalization. Most E-R conventions of which we are aware forbid

any cardinality except 1-1 for \attributes" such as the multiplicity function.

22

In some early applications of the Theory-Model paradigm[Lamb90], we

presented the collection of E-R diagrams in a section of the document separate

from the formal description. We now believe this to be a mistake; regardless

of the order in which they are developed, the diagrams and the formal prose

complement each other, and should be presented together.

4.2 Executable Representation

Our primary aim for the formal prose and information model is clear com-

munication with other people about the meaning of the original work we are

describing. An executable version of the axioms is unnecessary for this pur-

pose. However, we believe a formalization e�ort should still proceed to develop

an executable representation, as this checks the soundness of the formalization.

We have developed a reasonably straightforward method for translating

our style of formal description into Prolog, which falls into four main steps:

� Represent the entity sets.

� Represent the relationship sets

� Represent basic integrity constraints, such as type and multiplicity con-

straints.

� Represent other axioms of the formalization.

Each member x of a given set M is represented by a Prolog ground fact, of

the form M (x), asserting that its single argument is an element of the set, and

de�ning x 's identity. There are several possibilities for representing entities:

� A simple method is to pick Prolog atoms formed by appending a number

to a base name. Thus, for example, roles might be represented as

role(role_001).

role(role_002).

� If an entity set has a collection of \attributes" su�cient to uniquely

identify its elements, you might use the representation of the attribute

values as the unique identities. Thus, for example, each class must have

a unique name:

class("employee").

class("department").

� If a collection of given sets form a single generalization hierarchy, you

might consider using the representation of the parent of the hierarchy

for the children as well. Thus, for example, classes and associations are

both entities:

23

class(entity_001).

class(entity_002).

association(entity_003).

With this approach, it would be natural to represent the parent by a

rule rather than by enumeration:

entity(X) :- class(X).

entity(X) :- association(X).

You can represent n-ary relationship sets by n-ary Prolog predicates. Thus

we might represent part of the information about an \employee works-in de-

partment" relationship as:

nameOfEntity(entity_001,"employee").

nameOfEntity(entity_002,"department").

nameOfEntity(entity_003,"works in").

player(role_001,entity_001).

isRoleOf(role_001,entity_003).

Integrity constraints are straightforward. In general, constraints are veri-

�ed by searching for a counter-example; on failure, the constraint is considered

to be satis�ed.

� Type constraints on relationships can be checked by rules that search for

elements of the wrong type:

badNameOfEntityFirstArg(X) :-

nameOfEntity(X,_),

not(entity(X)).

� Cardinality constraints on functions and relations can be checked by

stylized rules that build sets and check their sizes.

More complex axioms, such as those for aggregate consistency in Sec-

tion 2.6.1 on page 17, may require hand-translation.

4.3 Iterative Development

We have presented the three activities of the Theory-Model paradigm (for-

malization, diagramming, and executable representation) as though they were

sequential steps. Instead, the \later" stages can feed back to the \earlier." If

a concept proves di�cult to diagram directly, you may need to revise both the

diagram and the original formal prose. If an axiom proves di�cult to translate

24

into an executable form, and seems important enough to be worth checking,

you may need to revise the formal description.

We have found that some people prefer to begin immediately with the

entity-relationship diagrams, and only later move on to the formal prose. We

see no harm in this, if all three forms eventually exist.

5 Conclusion

We have shown how to apply the Theory-Model paradigm and basic princi-

ples of rhetoric to writing readable design theories (formalizations of software

design methods).

As yet there exist no complete formalizations in this style; we have applied a

less well-developed set of stylistic guidelines to Shlaer-Mellor Object-Oriented

Analysis[Zhan94], and are working on one for Rumbaugh's OMT.

5.1 Di�culties with Z

A few properties of Z got in the way of our rhetorical principles.

In Section 2.3, we pointed out that Z inherently seems to require a \double

de�nition" of most concepts because of its scope rules. It would seem possible

to de�ne an extension to Z allowing for names introduced in a de�nition part

to be reused elsewhere in the de�nition, if there is some topological sort of the

de�nitions that avoids circularity.

We use schemas as a modularity mechanism, breaking up a large speci�ca-

tion into units. Were this our only use of schemas, it would be possible to argue

that they buy us nothing that isn't already conveyed by the table of contents

of the paper. If we made all our declarations global, the \double de�nition"

problem would vanish, and later de�nitions could make use of earlier ones.

We have been reluctant to take this step, but in private conversations some

of our colleagues have suggested that it might be appropriate when clarity of

communication is paramount.

5.2 Acknowledgements

The Theory-Model paradigm was proposed by Ryman [Ryma89], and applied

in a preliminary form to the development of the ImagEdit product of IBM.

From Ryman we have learned many of the principles of writing readable Z

descriptions.

Zhang and Lamb learned Z from a short course by McMorran[McMo93],

where he emphasized several rhetorical principles for readability.

25

References

[Chen88] P. Chen, \The Entity-Relationship Model - Towards a Uni�ed View

of Data," in J. Mylopoulos, editor, Readings on Arti�cial Intelli-

gence and Databases, pages 98-111, Morgan Kaufmann Inc. (1988).

[Lamb90] David Alex Lamb, Nitin Jain, and Arthur Ryman, \A Theory-

Model Formalization of Jackson System Development," Technical

Report ISSN-0836-0227-90-269, Queen's University Department of

Computing and Information Science (October 1990). Published si-

multaneously as IBM TR-74.051.

[McMo93] Mike McMorran and Steve Powell, Z Guide for Beginners. Black-

well Scienti�c Publishers (1993).

[Rumb91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick

Eddy, and William Lorensen, Object-Oriented Modeling and Design.

Prentice-Hall, Inc. (1991).

[Ryma89] Arthur G. Ryman, \The Theory-Model Paradigm in Software De-

sign," Technical Report TR 74.048, IBM Corporation (October

1989).

[Spiv92] J. M. Spivey, The Z Notation: A Reference Manual. Prentice-Hall,

Inc. (1992).

[Zhan94] Xiaobing Zhang, \A Theory-Model Formalization of Shlaer-Mellor

Object-Oriented Analysis," in Proceedings of IBM Centre for Ad-

vanced Studies Conference (CASCON'94), pages 324-333, Toronto,

Ontario (1994).

26

