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Abstract

The paper describes how Constraint Based Reasoning (CBR) can be performed with

two di�erent paradigms, Constraint Logic Programming (CLP) and Array Based

Logic (ABL). The author describes the operation of Constraint Logic Programming

emphasizing CLP techniques for �nite domain problems such as search strategies and

consistency techniques. An explanation of Array Based Logic is presented including a

description of methods for creating, joining and compressing ABL relations as well as

an heuristic for building a system of relations in ABL. A familiar cryptogram is used

as an example to demonstrate the operation of the two approaches for �nite domain

constraint problems. Some potential avenues of research are also presented.



1 Introduction

In recent years, there has been a substantial increase in interest in Constraint Based

Reasoning (CBR) among computer scientists and engineers. The great potential of

CBR as a problem solving tool is becoming increasingly apparent. Known areas of

application for CBR are as surprising as they are diverse and range from operations

research to vision. Moreover, any combinatorial search problem may be amenable to

a CBR solution. Constraint Logic Programming (CLP) and the lesser known Array

Based Logic (ABL) are two methods for performing CBR. CLP developed from and

is a superset of Logic Programming. Similarly, ABL for general constraint domains

developed from earlier work on array based boolean logic. In this paper we describe

these two di�erent paradigms, with emphasis on their operation on the �nite domain

constraint domain. The �rst section introduces the reader to important background

issues such as CBR, constraint domains, and Constraint Satisfaction Problems. Next,

an overview of CLP is presented. The next section is a description of ABL. The paper

concludes with a section devoted to a discussion of interesting issues regarding the

two approaches and some suggestions for possible avenues of research.

1.1 Constraint Based Reasoning

Constraint Based Reasoning involves the formulation of problems as sets of constraints

on variables. A solution to a problem thus formulated is an assignment to the variables

satisfying all the constraints. The term constraint has been used in a wide variety of

ways in the Arti�cial Intelligence literature. Informally speaking, a constraint states

a relationship among variables. (Note that in the next section we give a more formal

de�nition of constraints as part of our treatment of constraint domains.) Constraints

can be expressed in many ways, including as mathematical relations, as inequalities, as

logical formulae and as sets of tuples. Some examples of constraints are : X+Y � 10;

(t ^ u) ) v; F = 9

5
C + 32 and f(x; y; z) j x; y; z;2 N ; 0 < x < y < z < 10g.

Applications of CBR include circuit analysis [51], diagnosis [21], job shop scheduling

[48], car production [12], spatial reasoning [22, pp. 5-16] and scene interpretation [57,

58] to name but a few. For an introduction to CBR, which includes an explanation of

the concept of dynamic constraints, or constraints which themselves are constrained,

see [22].

1.2 Constraint Domains

In this section we de�ne constraint domains and give three important examples of

them. Before doing so, we present some preliminary de�nitions and notation. A

signature � is a set of function and predicate symbols. A �-structure D is a set D

and an assignment of functions and relations on D to the elements of � where D is the

set from where the values of the variables and constants involved in the constraints

are drawn. A primitive constraint has the form p(t1; : : : ; tn) where t1; : : : tn are terms

and p is a predicate symbol in �. A �rst order �-formula is a �rst order formula
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constructed from the primitive constraints and the logical connectives :;^;_;);(

and the quanti�ers 8 and 9 [35, p.6].

A constraint domain is an ordered pair (D;L). D is referred to as the domain of

computation and is a �-structure as de�ned above. L is the set of constraints for the

domain. It is a set of �rst order �-formulae generated from the primitive constraints

of the domain. It is usually a proper subset of all the possible �-formulae which can

be generated in this manner.

The �rst constraint domain we consider is the Herbrand constraint domain. (This

is actually the constraint domain used in the Logic Programming language Prolog.)

Its signature � contains function symbols and the predicate =. D is the set of �nite

trees whose nodes are labelled with a function symbol or a constant term such that

each node has k ordered children where k is the arity of the node. (In other words,

D is the set of tree representations of terms.) The �-structure D generates trees

by interpreting the �nite trees of D as children of the function symbols (and of the

predicate =) of �. The primitive constraints are equations between terms, i.e., �nite

trees generated by D whose root is the equals predicate. The constraints L are the

�rst order formulae generated from the primitive constraints. A sample constraint in

L is f(x; y) = h(x; y) ^ f(g(y); x).

A second example of a constraint domain of importance to this paper is the boolean

two-valued logic domain. Here, � contains 0; 1;_;^;�;) and the single predicate

=. The set D is simply true; false. D treats the symbols of � as boolean functions.

For example, _ is the boolean `or' operator. The set of constraints L is the full set

of �rst order logic formulae generated from the primitive constraints. (D;L) is BD,

the boolean constraint domain. Two examples of constraints from this domain are:

(x) y) ^ z = 0 and a� b = c _ d.

Another important constraint domain is �nite domain (FD). It is the domain

associated with constraint problems with the integers. For �nite domain, D = Z and

� = ff2 [m;n]gm�n;+;=; 6=;�g. For two integers m and n, x 2 [m;n] is the interval

constraint meaning m � x � n. Here L is the set of constraints generated from the

primitive constraints such that every variable has an interval constraint associated

with it.1 An example of a �nite domain constraint is:

x 2 [10; 32] ^ y 2 [1; 5] ^ x+ 10y 6= 76 ^ x + y � 12

As an example of a �nite domain constraint problem, consider the often cited

cryptogram shown in Figure 1. Each of the letters may take on any integer value

from 0 to 9. The columns must be added in the usual fashion. This results in one

arithmetic constraint for each of the �ve columns. An additional constraint is that

the letters must all be di�erent within each solution. The �ve arithmetic constraints

are shown below the cryptogram. The carry digits in the problem are represented by

R1, R2, R3 and R4 and may be either 0 or 1.

Other constraint domains include pseudo-boolean constraints [6], order-sorted fea-

ture algebras [3], domains of functions expressed by lambda expressions [40] and do-

1Note that the constraint domain BD is actually included in FD.
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SEND

+ MORE

MONEY

M = R1

S + M + R2 = O + 10 � R1

E + O + R3 = N + 10 � R2

N + R + R4 = E + 10 � R3

E + D = Y + 10 � R4

Figure 1: The Send More Money Cryptogram Problem

mains of �nite sets [14]. For a full discussion of constraint domains, see [28, pp.510-

516].

Closely related to information systems [50] is the concept of constraint systems

[49] which are an alternate, more general formalization of constraints which have been

proposed by Saraswat.

1.3 Constraint Satisfaction Problems

Concurrently with CLP research, a great deal of research has been done on Constraint

Satisfaction Problems or CSPs. CSPs are commonly associated with the �nite domain

constraint domain. However, the constraints involved are usually not restricted to the

arithmetic constraints discussed in Section 1.2. A CSP consists of a set of variables

whose domains are �nite and a set of constraints which restricts the values the vari-

ables can simultaneously take. A solution to a CSP is an assignment of values to the

variables that satis�es all the constraints. Examples of CSPs are the graph colouring

problem [52, pp. 19-21], as well as the cryptogram earlier described. In addition

to the constraints being satis�ed, some CSPs require that a quantity be optimized.

These are known as Constraint Satisfaction Optimization Problems or CSOPs. As

an example, consider the well known job shop scheduling problem [48]. The term

combinatorial search problem is often used to refer to either CSPs or CSOPs.

We now give a formal de�nition of a particular CSP whose constraints are ex-

pressed explicitly as tuples. The Finite CSP [36] is a sextuple (X;�; �; C;�; �). X

is the set of variables found in the problem. � is the set of domains of the variables

in X. � is a function that maps each variable x 2 X to its domain �(x) 2 �. C is

the set of constraints. � is a set of sets of variables in X such that
S
� = X. � is a

one-to-one function that maps each constraint c 2 C to a set of variables in �. �(c)

is called the scope of the constraint c. It is the set of the variables in X to which the

values in the constraint apply. Each constraint in C is the subset of the Cartesian

product of the domains of the variables in its scope that the variables may attain.

For example, consider the Finite CSP P = (X;�; �; C;�; �) where:
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Figure 2: Graph Representations of a CSP

X = fs; t; u; vg

� = ffi 2 N j 0 � i � 9gg

�(s) = f1; 2; 3; 4g; �(t) = f3; 5; 7g; �(u) = f6; 7; 8; 9g; �(v) = f2; 4; 6; 8; 9g

C = fc1; c2; c3g such that c1 = f(1; 7; 9); (4; 9; 2); (3; 6; 6)g,

c2 = f(4; 7); (3; 3); (1; 5); (2; 5)g and c3 = f(7; 6); (5; 7); (5; 9)g

� = fs1; s2; s3g such that s1 = (s; u; v); s2 = (s; t) and s3 = (t; u)

�(ci) = si; i = 1; : : : ; 3

The variable assignment s = 1; t = 5; u = 7; v = 9 is a solution to the problem.

Note that Finite CSPs are also known as Consistent Labelling Problems, Consistency

Satisfaction Problems, Constraint Networks and Networks of Relations.

Constraint hypergraphs are convenient representations of CSPs. A constraint

hypergraph is a hypergraph (V;E). The set of vertices V is the variable set X. The

edges in the set E correspond to the constraint scopes in �. The hypergraph shows the

interconnections of variables within constraints. The constraint hypergraph for the

above problem is shown in Figure 2(a). Similar to constraint hypergraphs are primal

graphs. The nodes of primal graphs are the CSP variables as in the hypergraph

representation. For every constraint in the problem, there is an edge in the primal

graph between each pair of variables in the scope of the constraint. The primal graph

for the above �nite CSP is shown in Figure 2(b).

We conclude this section with some remarks about CSPs. If a CSP has a solution,

i.e., if there is an assignment to its variables which satis�es all of its constraints, then

it is said to be satis�able. Otherwise, it is unsatis�able. The order of a constraint is

the number of variables involved in that constraint. The order of a CSP is the order

of its highest order constraint. In particular, the order of the above Finite CSP is 3.

A CSP of order 2 is said to be a binary CSP whereas those of higher order are often
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called general CSPs. For binary CSPs the hypergraph representation discussed above

is reduced to an ordinary graph. In addition, for binary CSPs the primal graph and

the constraint hypergraph will be the same.

The Finite CSP, like most CSPs, is known to be NP-complete [36]. However, as

we shall see in Section 2 heuristic problem reduction and search techniques have been

developed with a view to solving CSPs e�ciently. It is important to note that the

term constraint satisfaction has been used casually within the Arti�cial Intelligence

community to refer to problems which do not necessarily have the above speci�cation

of the CSP. In particular, some of these references are to problems whose variables

have in�nite domains. For a complete introduction to the techniques and issues

regarding CSPs, the reader is referred to [52].

2 Constraint Logic Programming

Although e�ective for solving many problems in the Herbrand Universe, the Logic

Programming paradigm has not proven to be a very practical way of solving problems

in other constraint domains including the discrete combinatorial problems of �nite

domain such as the cryptogram given in Section 1.2. For these, a more general

problem solving paradigm is necessary. Constraint Logic Programming incorporates

Constraint Based Reasoning into the Logic Programming paradigm. It was devised

by Joxan Ja�ar and Jean-Louis Lassez [26, 27]. They noted that languages based

on logic and de�nite clauses could be separated into classes according to the domain

of computation and constraints on which they operate.2 Based on this notion, a

parameterized schema CLP (�) where � is a quadruple (�;D;L; T ) has been adopted

as a means of classifying CLP languages. Here, �, D and L are all as de�ned in

Section 1.2. T is a �-theory, a collection of closed �-formulas. It is a set of axioms

that apply to the language.

The reader should be aware that in practise CLP languages are usually designated

simply by the constraint domain on which they operate, e.g., CLP(FD) is the usual

way of designating CLP languages for �nite domains.3 In this paper we describe in

detail the operation of CLP(FD) languages. Other CLP languages include CLP(R)

(real numbers) [29] and CLP(��) (regular sets) [55]. More generally, a CLP language

may be de�ned on any of the constraint domains discussed in Section 1.2.

CLP languages have built-in predicates for expressing constraints in their con-

straint domain. In addition, many CLP systems incorporate constraints that are not

strictly part of the domain on which they operate. Known as complex constraints

[28, pp.528-529], in some cases they are essentially just boolean combinations of the

primitive constraints of the constraint domain of the language. On the other hand,

many CLP languages incorporate application speci�c constraints in an ad hoc manner

that are not part of any general purpose constraint domain. The reader should note

that the SLD resolution schema used in Logic Programming is maintained in CLP.

2See Section 1.2 for de�nitions of these concepts.
3Most existing CLP systems actually implement more than one class of CLP languages.
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At each choice point, however, uni�cation is replaced by the more general concept of

constraint solving.

In this section we describe Constraint Logic Programming, focusing on those con-

cepts most relevant to the understanding of CLP for �nite domains. (For a complete

survey of Constraint Logic Programming, with a bibliography containing more than

260 items, the reader is referred to [28].) We begin this section with a description of

the Logic Programming paradigm. The structure of CLP programs is then discussed.

Next comes a semantic description of how CLP programs execute. The important

CLP concept of incrementality is the topic of the next section. A section devoted to

important CLP operations follows. Lastly, we present a detailed description of the

operation of Constraint Logic Programming for �nite domains.

2.1 Logic Programming

In this section we introduce the reader to the essential concepts of Logic Programming,

especially those which are most relevant to Constraint Logic Programming. Logic

Programming is a declarative programming language paradigm which can be used

to express problems in �rst order logic. Because of e�ciency considerations, most

programming language implementations of Logic Programming restrict themselves to

a subset of full clausal logic. Prolog is the best known Logic Programming language.

A Prolog program is a set of positive Horn clauses, also known as de�nite clauses.

Execution of Prolog programs is a derivation based on a rule of inference called SLD4

resolution [32].

Derivations based on resolution are proofs by contradiction of existential queries.

Starting with the initial goal or query, the current goal and the head of one the

de�nite program clauses are repeatedly resolved. The most general uni�er of the two is

determined and maintained. The result of the resolution is an inference which becomes

the new goal. Conceptually speaking, the set of all possible resolution inferences can

be thought of as a tree and the derivation as a search of the tree. In general there is

a choice as to which clauses to resolve and as to which subclause becomes the new

goal. For this reason, nodes in the inference tree are known as choice points. The

tree is usually searched in depth �rst manner. If at any step in the search resolution

cannot be performed, the system backtracks to a previous choice point and another

clause is selected for resolution.

The original resolution principle is due to Robinson [46]. For a full description

of Logic Programming, see, for example, [35]. For a slightly anecdotal paper by

Robinson himself about Logic Programming, including historical background and

detailed descriptions of resolution and uni�cation, see [47].

2.2 Program Structure

In this section we discuss the structure of CLP programs. The term constraint is

used as it is de�ned in Section 1.2. � is the set of predicate symbols usable by the

4Selective Linear Resolution for De�nite Clauses
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program. An atomic formula or atom is a predicate having the form p(t1; : : : ; tn)

where t1; : : : ; tn are terms and p 2 �. A CLP program [28, p.509] is a sequence of

rules having the form a  b1; : : : bn such that a is an atom and the bi are atoms or

constraints. a is called the head of the rule whereas b1 : : : bn is called the body. A goal

or query G is a conjunction of constraints and atoms. A fact is a rule a c where c

is a constraint.

2.3 Program Execution

In this section, we present the operational semantics of the top-down method of CLP

program execution as well as a description of CLP derivations.5 The semantics of

top-down execution are de�ned in terms of transitions on computational states. A

computational state of a CLP program is a triple hA; C; Si. A is a multiset of atoms

and constraints; C and S are both multisets of constraints. C and S collectively

make up the constraint store. A constraint contained in C is said to be active or

awake; one in S is said to be passive or asleep. (In Logic Programming, there are no

passive constraints and the only active constraint is the current most general uni�er.)

There is a special computational state called fail. In addition, there is a predicate

consistent and a function infer.

The initial computational state is hG; �; �i where G is the initial goal or query

of the computation.6 Associated with each CLP system is a computational rule.

The computational rule governs the execution of the CLP program running on the

system. Given the sequence of previous computational states and transitions in the

computation, the rule selects the transition which determines the next state.

There are four kinds of transitions for top-down execution. They are: resolution,

constraint transfer, constraint store management, and a consistency test. The seman-

tics of each type of state transition and a brief description are given below.

Resolution:

A resolution transition is de�ned as follows:

hA
S
fag; C; Si !r hA

S
B; C; S

S
fs1 = t1; : : : ; sn = tngi

where a is the atom chosen by the computational rule, h B is a rule of the program,

and h = p(t1; : : : ; tn) and a = p(s1; : : : ; sn): Alternatively, resolution is de�ned as

hA
S
a; C; Si !r fail

if the computational rule selects the atom a and for every rule h  B the predi-

cate symbols of h and a di�er.

5For a description of its less common alternative called bottom-up execution, see [28, pp.523-525].
6Note that constraints can be used to specify the goal G.
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Constraint Transfer:

hA
S
c; C; Si !c hA; C; S

S
ci

Here a constraint is transferred from the current goal to the passive store.

Constraint Store Management:

hA; C; Si !i hA; C
0; S 0i

if (C 0; S 0) = infer(C; S)

Under this transition, new constraints are inferred from the previous ones in the store.

Consistency:

The consistency transition determines if the active constraints are consistent or sat-

is�able:

hA; C; Si !s hA; C; Si

if consistent(C)

or

hA; C; S; i !s fail

if :consistent(C)

A CLP derivation is a sequence of transitions hA1; C1; S1i ! : : :! hAi; Ci; Sii !

: : :. If a state cannot be further rewritten, it is called a �nal state. A successful deriva-

tion is �nite and has a �nal state of the form h�; C; Si. If G is a query with free

variables x1; : : : xn, which causes a successful derivation and �nal state h�; C; Si,

then the existential closure of C ^ S, except for the variables x1; : : : xn, is said to be

the answer constraint of the query. On the other hand, a derivation is failed if it is

�nite with �nal state fail. A derivation is said to 
ounder if it is �nite and the �nal

state is of the form hA; C; Si; A 6= �.

The computational tree of a goal G in a CLP system for a program P is a tree

whose nodes are computational states and whose edges are transitions. Those nodes

whose outgoing edges are labelled with !c, !i or !s transitions have exactly one

child; those with an outgoing edge !r have as many children as there are rules in

P . The root has a state label hG; �; �i. Every branch of the tree constitutes a

separate derivation. The computational rule determines the tree for the query and

program. The process of �nding solutions to CLP queries is equivalent to searching

a computational tree. Most CLP systems do so in a depth-�rst manner with simple

backtracking.
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2.4 Incrementality

We now present a few words about incrementality. Ja�ar and Maher [28, p.532] dis-

tinguish between two notions of incrementality for algorithms. First, incrementality

can be used to refer to the nature of an algorithm. In this case, an algorithm is said

to be incremental if it accumulates an internal store of information and each new

data item is processed in conjunction with the existing data. On the other hand,

algorithms can be said to be incremental in terms of performance. Roughly speaking,

an algorithm is incremental in this sense if the time it takes to process a new input

item is proportional to the size of the data item and not the size of the existing data

combined with the item. An algorithm is nonincremental if running it on a new input

is no faster than running it on the entire data set accumulated so far. In general,

there will be a continuum of incrementality in this sense among algorithms which

perform a given task. Since it is important for CLP implementations to be practical,

it is desirable for CLP algorithms to be as incremental as possible in the second sense.

Ja�ar and Maher present a more formal description of this version of incrementality

for CLP operations in [28, pp.532-533].

2.5 Operations

There are four tests and operations on constraints of critical importance in CLP

languages [28, pp.513-514]. They are: a test for satis�ability, constraint entailment,

projection and the detection of the grounding of variables by constraints. The �rst is

the most important, and is needed in all languages, while the others may not be fully

supported by some languages. We now brie
y describe these operations and some

characteristics of the algorithms which perform them.

Testing the constraint store for satis�ability7 is the main job of the constraint

solver. Speci�cally, given a set of constraints, a set of variables and their domains the

problem is to determine if there exists an assignment to the variables that satis�es all

the constraints. For most constraint domains this problem is NP-complete. Therefore,

the e�ciency of a satis�ability algorithm for a given constraint domain is most often

assessed based on its average, and not worst case, behaviour. It is also crucially

important for satis�ability algorithms to be incremental in the second sense we have

discussed.

Constraint entailment is the process of determining what subset of a set of guard

constraints is entailed by the conjunction of a satis�able set of constraints and an

additional constraint. More formally, given a satis�able constraint set C, a set of

guard constraints G such that no g 2 G is entailed by C, and a new constraint c,

the problem is to �nd the subset G0 of G entailed by C ^ c. Once again, algorithms

which detect entailment must be incremental in nature. In particular, there should

be no reexamination of the complete set of guard constraints each time a constraint

is added to the store.

The projection operation consists of �nding the projection of a set of constrains

7In the CLP literature, the terms consistency and satis�ability are often used interchangeably.
We make a distinction between the two in the context of the CSPs of CLP(FD) in Section 2.6.1.
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with respect to target variables and expressing it in a usable symbolic form. This

involves �nding the existential closure [35, p.7] of the constraint set except for the

non-target variables. For example, the projection of the constraints s = u � 5 and

t = u+2 with respect to s and t is s = t�7. Note that the non-target variables cannot

be involved in the projection expression. The projection operation is the basis for

removing variables from the constraint store which will not be referred to again. Since

they are closely related to the domain on which they operate, projection algorithms

have little in common across di�erent constraint domains.

The �nal important CLP operation determines that, given a variable and a con-

straint, there is only one value in the domain of the variable that satis�es the con-

straint. If this is the case, then the variable is said to be grounded or determined by

the constraint. Note that detecting groundness to a speci�c value actually constitutes

a constraint entailment problem.

For a complete description of algorithms for these and other CLP operations for

various constraint domains, see [28, pp.534-545].

2.6 Constraint Logic Programming for Finite Domains

In this section, we describe the operation of Constraint Logic Programming for the

�nite domain constraint domain (CLP(FD)). CLP(FD) languages have predicates

that allow users to create programs that express combinatorial search problems. The

usual approach taken by CLP(FD) languages to solve these problems is to incorporate

techniques developed for solving CSPs and CSOPs into the SLD resolution format. In

this approach, general techniques for solving CSPs are used. Techniques also exist for

solving speci�c CSPs. For example, see [48] for a description of how the well known

job shop scheduling problem can be modelled and solved as a CSP.

One possible approach to solving combinatorial search problems is to search

through the set of all elements of the Cartesian product of the domains of all vari-

ables for those which satisfy the conjunction of constraints that de�ne the problem.

This technique is known as generate and test. Unfortunately, for a su�ciently large

problem this brute force approach can become infeasible. In particular, applying

this technique to the cryptogram described in Section 1.2 would involve testing 108

8-tuples for satis�ability of the problem constraints. More generally, discrete combi-

natorial problems usually have intractable complexity. CLP(FD) languages therefore

employ heuristic techniques developed for solving CSPs so that these problems may be

solved e�ciently in some cases. These heuristics come in two categories: consistency

techniques and search strategies.

Consistency techniques are used to reduce the search space of discrete combina-

torial problems. The basic idea is to remove inconsistent values from the domains of

variables by analyzing the problem constraints. In this way, the constraints of the

problem can be used to prune its search space in a dynamic manner. This approach

is known as constrain and generate. van Hentenryck was the �rst to incorporate this

technique in a CLP language [13, 53]. Search techniques are used to �nd the solutions

to CSPs one at a time. Backtracking (as in Logic Programming) is the basic search

technique employed in CSP problem solving. In the CSP context, it is a depth �rst
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search of possible variable labellings. The search strategies used to solve CSPs make

use of problem information to limit backtracking and the testing of inconsistent vari-

able labellings. These strategies include, but are not limited to, lookahead, variable

ordering and value ordering heuristics.

In general, there will be a tradeo� between the complexity of the consistency

technique used and the resulting reduction in the complexity of the required search.

On the one hand, there is the pure generate and test search algorithm used without

consistency techniques. At the other extreme, there is Freuder's solution synthesis

algorithm [17], which �nds all solutions to a CSP at once using only consistency

techniques and no searching. Consistency techniques and search strategies are in

fact complementary and can be used together to solve CSPs. The challenge of CSP

and by extension CLP(FD) research is to �nd clever ways of combining consistency

techniques and search heuristics with a view to �nding e�cient methods of solving

�nite domain problems. In particular, a premium has been established for �nding

classes of problems that are amenable to backtrack free search and techniques which

allow it.

In this section, we �rst describe consistency techniques. Search strategies for

solving CSPs, including some probablistic methods, are described. Next, we show

how the cryptogram in Section 1.2 can be done in CLP(FD). We conclude this

section with some remarks about complexity issues as they pertain to the consistency

and search algorithms we present.

2.6.1 Consistency Techniques

Consistency techniques reduce the complexity of CSPs and in the process make them

easier to solve. They detect redundant values of variables i.e., those which cannot

be part of any solution to the CSP. Given a CSP with X = fX1; : : : ; Xng, a partial

labelling of variables (X1 = x1; : : : ; Xi = xi) is locally consistent [10] if it satis�es

all the constraints in the subproblem restricted to the set fX1; : : : ; Xig. Consistency

techniques can be thought of as partial constraint solvers since they detect locally

inconsistent variable labellings. These labels can be removed from the domains of

the variables in question. In addition, any constraint tuple which contains such a

label can be removed from the CSP. The resulting problem will be equivalent to the

original in the sense that it will have the same variables and the same set of solutions.

If the application of a consistency technique reduces the domain of any variable or

constraint to the empty set, then the CSP is unsatis�able.

Waltz was a pioneer of consistency techniques. He used them in scene analysis

to eliminate impossible labellings of junctions in line drawings [57, 58]. Mackworth

[36] showed the techniques have more general applicability. The three basic notions of

consistency are node consistency, arc consistency and path consistency. The names are

derived from the constraint hypergraph representation of CSPs discussed in Section

1.3. As stated, the hypergraph representation devolves to a normal graph for binary

CSPs. Since most of the algorithms for attaining these levels of consistency operate

on binary CSPs, we de�ne them in terms of binary CSPs. (The notions of hyperarc

and hyperpath consistency have been conceived for general CSPs [8]. In addition,
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an algorithm, GAC4 [43] has been devised that enforces arc consistency for general

CSPs.)

The simplest concept of consistency is that of node consistency. A constraint

network is node consistent [52, p.57] if and only if for all variables the values in

its domain satisfy the (unary) constraints on that variable. What is required for

constraint network node consistency is formally stated below using the notation used

to formalize �nite CSPs found in Section 1.3:

8u 2 X ((cu 2 C ^ �(cu) = u)) 8x 2 �(u) x 2 cu)

The node consistency algorithm, NC-1 [36], is quite straightforward. The do-

main of each variable is checked against the unary constraints on that variable. Any

inconsistent values are removed.

Arc consistency is more complicated. For an arc (u; v) in a constraint network

to be consistent from variable u to variable v, for each value in the domain of u

there must be a value in the domain of v such that (u; v) is a tuple in the constraint

associated with the arc. The notion of arc consistency from variable u to variable v

is formalized below.

(u; v 2 X ^ cuv 2 C ^ �(cuv) = (u; v))) (8x 2 �(u) 9y 2 �(v) j (x; y) 2 cuv)

A constraint network is arc consistent if every edge (u; v) in it is consistent both

from u to v and from v to u. At this point we describe an interesting phenomenon

of consistency techniques. When a locally inconsistent value is removed from the

domain of a variable in a CSP, this may result in the necessity of removing values from

the domains of the variables involved in the same constraints as the initial variable.

Removal of these values can in turn cause other variable values to be removed and so

on. This chain reaction of variable domain reductions is called constraint propagation.

Its e�ect is most observable in the binary arc consistency algorithms. For this reason,

these algorithms usually maintain a queue of variables whose domains may have to

be reduced. Arc consistency algorithms go by the name AC-k where k is a natural

number.

Algorithms AC-1, AC-2 and AC-3 are due to Mackworth [36]. AC-1 is quite

ine�cient since it checks the domains of all the variables every time a variable domain

is reduced. AC-2 and AC-3 are more clever, since they check only the domains of those

variables which might be a�ected by any given variable domain reduction. AC-4 [42]

takes this idea one step further, with the result being an even more e�cient algorithm.

The key idea is to maintain support sets for each label of each variable. The support

set of a label is the list of the values of each variable that are compatible with the

label. The number of supporting labels for each possible ordered pair consisting of

a constraint and a label is also maintained. When a label is deleted, the labels that

are on its support list are examined. The number of supports of each of those labels

is decremented. If the number becomes zero, the label must be removed from the

domain of its variable. We also mention AC-5 which is due to van Hentenryck et. al.

[11, 54]. This generic algorithm has given rise to a set of algorithms for various types

of constraints. It has been shown to be especially e�cient for the useful functional

constraints.
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The notion of path consistency expands the idea of arc consistency to paths in

constraint graphs. A path in a constraint network is consistent if for every value in

the domains of the variables at its end points, there exist values in the domains of the

other variables in the path such that the sequence of arc constraints that comprises

the path is satis�ed. A constraint network is path consistent if every path in it is

consistent in this sense. The algorithms which enforce path consistency have names

of the form PC-k. It was once again Mackworth's useful 1977 paper which produced

PC-1 and PC-2 [36]. PC-1 produces path consistency by reducing constraints by

means of relations composition [52, p.91]. PC-2 improves upon its complexity by

being more selective about re-examining constraints when a change to a constraint

occurs. PC-4 [24], which corrects slight errors in PC-3 [42], uses the approach of

maintaining support sets used by AC-4 to improve upon PC-2.

An alternative notion of consistency exists for CSPs, namely k-consistency. A

constraint network is said to be k-consistent [37] i� given any labelling of any k � 1

variables satisfying all the constraints involving those variables it is possible to �nd

an instantiation of any kth variable such that the k values taken together satisfy

the constraints involving the k variables. (It should be noted that according to

this de�nition, for binary CSPs node consistency is equivalent to 1-consistency, arc

consistency enforces 2-consistency and path consistency is 3-consistency.) Cooper has

devised an algorithm [9] to enforce k-consistency in arbitrary constraint networks.

Unfortunately, k-consistency does not in general imply (k � 1)-consistency. With

this defect in mind, Freuder introduced a stronger notion of consistency. A constraint

network is strongly k-consistent [18] if it is j-consistent for all 1 � j � k. Closely

related to the notion of consistency is that of satis�ability. A constraint network is

k-satis�able [52, p.54] if there exists a labelling of every k-subset of its variables that

satis�es all the constraints involving those variables. A constraint network with n

variables is satis�able if it is n-satis�able.

It is important to note that k-consistency does not necessarily imply CSP sat-

is�ability if k is less than n. (Actually, k-consistency is neither a su�cient nor a

necessary condition for problem satis�ability [52, p. 65].) For this, strong consistency

is required. Strong k-consistency implies k-satis�ability. Therefore, proving strong

n-consistency is su�cient to show problem satis�ability. However, as we shall see in

Section 2.6.4, this can be extremely ine�cient. Search strategies must therefore be

used in conjunction with consistency techniques to prove CSP satis�ability and to �nd

solutions to CSPs. We discuss these strategies next. A �nal observation of this sec-

tion is that consistency techniques are considered to be constraint store management

transitions as described in Section 2.3.

2.6.2 Search Strategies

A great deal of research has been done on �nding e�cient search techniques for solving

CSPs, perhaps more than any other area of CSP research. Since a full discussion of

this material is beyond the scope of this paper, we restrict ourselves to the most

important CSP search techniques. For more information on this topic, the interested

reader should consult [52, pp. 119-188]. Three basic search strategies used to solve
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CSPs are simple backtracking, forward checking and lookahead. We discuss these

�rst.

Simple backtracking (or chronological backtracking as it is also called) maintains

the invariant that the variables currently instantiated are locally consistent. If the

most recent variable instantiation has resulted in a locally inconsistent labelling, then

the next value in its domain is tried. If there are no more possible values in the

domain of the variable, then the previously instantiated variable is labelled with its

next possible value.8

In addition to the restriction of simple backtracking, forward checking ensures that

each unlabelled variable has at least one value in its domain that is consistent with

the labels of the variables that have been instantiated. If a variable is instantiated

with a label and there is an unlabelled variable with no possible consistent label, a

new label is tried. If all possible labels have been exhausted, a new label is found for

the previously labelled variable.

Lookahead techniques are even more stringent. In addition to the requirements of

forward checking, these algorithms stipulate that there must be a labelling of each

unlabelled variable that is consistent with the other unlabelled variables. For example,

in the AC-lookahead algorithm [25] when a variable is labelled, all the labels that are

inconsistent with the labellings made so far are removed from the domains of the

unlabelled variables. Moreover, arc consistency is maintained among the unlabelled

variables. If at any time the domain of an unlabelled variable becomes empty, the

algorithm backtracks in the usual manner, by �rst attempting to relabel the current

variable and then previously labelled variables if necessary. In a related paper, Freuder

and Sabin [19] advocate maintaining full arc consistency at all times during a search.

Dependency directed backtracking or intelligent backtracking [5] is a general search

strategy which attempts to choose the points to which backtracking occurs cleverly.

The idea is to �nd the variable labellings that are most responsible for the need

to backtrack. An example of this technique is backjumping. Under this strategy,

whenever there is no domain value for a candidate variable that is consistent with the

previously labelled variables, the algorithm does not backtrack to the most recently

labelled variable. Instead, for each element of the domain of the candidate variable,

the `culprit' variable is identi�ed. The culprit is the �rst labelled variable that is

inconsistent with the domain value in question. The algorithm then backtracks to

the most recent culprit variable and relabels it.

By strategically choosing the order in which variables are labelled, the e�ciency of

a CSP search can be increased. Many techniques exist for making this choice. They

are called variable ordering heuristics. An example is the minimal width ordering

heuristic [18]. Under this heuristic, the ordering of the CSP variables is found such

that the width of the primal graph of the problem is minimized. The variables are

instantiated according to this ordering. Another e�ective strategy is based on the

notion that in order to reduce backtracking resulting from dead end searching, it is

prudent to start with the variable whose labelling is most likely to fail. This general

8Note that this restriction is not made in the n�aive generate and test procedure, which searches all
possible complete labellings in a depth �rst manner regardless of any intermediate locally inconsistent
labellings.
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search strategy is called the fail �rst principle or FFP. In particular, the technique of

labelling the variables in increasing order according to the size of their domain has

met with success. This technique can be used statically before a search or dynamically

during, for example, a lookahead search.

Moreover, when labelling a variable it may be advantageous to try some of the

values in its domain before others. Heuristics which decide the order in which the

values of variables are selected as potential labels are known as value ordering heuris-

tics. In contrast with variable ordering heuristics, value ordering heuristics attempt

to �nd the values most likely to succeed so that backtracking will not be needed.

The min-con
ict heuristic [41] is an example. Under this heuristic, the values of a

variable are ordered according to the degree of con
ict they have with the unlabelled

variables.

Probablistic algorithms also exist for solving CSPs. They can be faster than deter-

ministic methods. Unfortunately, they su�er from the drawback of being incomplete,

i.e., they are not guaranteed to �nd all solutions to every CSP. Hill climbing [52, pp.

254-261] is the best known of these techniques. The heuristic repair method [41] is

considered to be a hill climbing algorithm. Simulated annealing [1] is another, rela-

tively unresearched, version of probablistic search. The well known branch and bound

search technique (see for example [2]) is frequently used to search CSOPs.

It is important to note that the general heuristics mentioned in this section will

not work well for every problem instance. The reader is reminded that part of the

essence of the NP-completeness of the �nite CSP is that a problem instance can be

found for every heuristic search technique that it will not solve e�ciently. Determin-

ing which techniques are most e�ective for di�erent types of CSPs is an important

research topic. For a discussion of how problem speci�c features can be exploited

to solve CSPs, see [52, pp. 189-251]. Research also has been done which attempts

to determine e�ective combinations of the search techniques described here for vari-

ous types of CSPs [52, pp.180-184]. As stated, consistency techniques are often used

dynamically with the search heuristics. In some cases this is not a good strategy,

however. For example, intelligent backtracking searches are ine�ective when used in

conjunction with consistency techniques. A last remark is that labellings of variables

are considered to be resolution transitions as described in Section 2.3.

2.6.3 The Example Done in CLP(FD)

We now demonstrate the operation of CLP(FD) on the cryptogram problem of Sec-

tion 1.2. A CLP(FD) program for solving the cryptogram is given in Figure 3. It has

been reproduced from [53], in which van Hentenryck proposed the use of consistency

techniques in the Logic Programming paradigm.9 A commercial system named CHIP

[13] was later developed based on this notion. It has achieved some success using the

domain size variable ordering heuristic described in Section 2.6.2. For this reason, we

9We have removed the constraints S 6= 0 and M 6= 0 to make this example match the one given
in Section 3.2.5 that demonstrates the operation of ABL for �nite domains.
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domain sendmory(0..9,0..1).

sendmory([S,E,N,D,M,O,R,Y],[R1,R2,R3,R4])  

alldifferent([S,E,N,D,M,O,R,Y]),

R1 = M,

R2 + S + M = O + 10 � R1,

R3 + E + O = N + 10 � R2,

R4 + N + R = E + 10 � R3,

D + E = Y + 10 � R4,

labelling([R1,R2,R3,R4]),

labelling([S,E,N,D,M,O,R,Y]).

Figure 3: A CLP(FD) Program for Solving the Cryptogram Problem

have chosen to describe at a high level10 the operation of a CLP(FD) system which

uses the domain size heuristic and simple backtracking on the cryptogram. The value

ordering employed is simply to instantiate each variable in increasing order starting

with the smallest value in its domain.

Given the goal

S > 6, D < 6, sendmory([S,E,N,D,M,O,1,7],[R1,R2,R3,R4])

top-down execution proceeds as follows. The query automatically instantiates R

to be 1 and Y to be 7. The next smallest domain is that of S, which is initially set

to be 7. However, this is in violation of the alldifferent constraint since Y = 7. S

is therefore reset to 8. D is then set to 0. Next, the system arbitrarily attempts to

instantiate E. The only value of E that is consistent with the last constraint of the

program E + D = Y + 10 � R4 is 7. But this once more violates the alldifferent

constraint. Therefore, the system must backtrack and relabel D. Since R = 1, D

clearly cannot be 1, and so the assignment D = 2 occurs.

By the last constraint, E = 5 and R4 is set to 0. The next variable chosen to

be instantiated is N. On the one hand, the assignments N = 1 and N = 2 are not

distinct from assignments to non-carry digits already labelled; on the other hand, the

labellings N = 0 and N = 3 violate the second to last constraint, namely R4 + N +

R = E + 10 � R3, since E = 5, R4 = 0 and R = 1. Therefore the system lets N = 4

and R3 is set to 0.

Because R3 = 0, E = 5 and N = 4, the only labelling of O consistent with the

constraint R3 + E + O = N + 10 � R2 is O = 9, if R2 = 1. From the third and

fourth constraints the system then concludes that M = R1 = 0 and the solution (8,

5, 4, 2, 0, 9, 1, 7, 0, 1, 0, 0) has been found. The other solution (8, 3, 2, 4, 0, 9, 1, 7,

0, 1, 0, 0) is then found by additional backtracking.

10Note that it is possible, but well beyond the scope of this paper, to describe the operation of a
CLP system on the cryptogram problem using the computational states and state transitions given
in Section 2.3.
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The interested reader is encouraged to examine van Hentenryck's alternate de-

scription [53, pp.141-144] of how the cryptogram problem can be done in CLP(FD).

2.6.4 Complexity Issues

In this section, we discuss the complexity of some of the algorithms we have men-

tioned. Note that n refers to the number of variables in the CSP, e to the number of

binary constraints and a is the size of the largest variable domain. The node complex-

ity algorithm NC-1 is O(an). The time complexities of the arc consistency algorithms

are usually proportional to the product of the number of binary constraints and a

polynomial function of the largest variable domain in the problem. In particular,

the complexity of AC-1 is O(a3ne); that of AC-4 is O(a2e). The time complexity of

AC-5 for functional constraints is O(ea). PC-4 has time complexity O(a3n3). For a

full analysis of the complexity of the node, arc and path consistency algorithms, see

[38, 39]. The complexity of Cooper's k-consistency algorithm [9] is

O(
kX

i=1

 
n

i

!
ai)

The time complexity of Freuder's solution synthesis algorithm is also prohibitive

at O(2n + na2n). The worst case complexity of any search algorithm used without

consistency techniques where full backtracking is required is O(an) whereas that of

backtrack free search is O(an).

3 Array Based Logic

Array Based Logic is an approach to logical reasoning that has been investigated

at the Technical University of Denmark. Ole Franksen pioneered the approach for

reasoning with boolean logic systems [15, 16]. Recently, Gert M�ller has generalized

Franksen's work for arbitrary variable and constraint domains [44]. The research has

been conducted from an engineering point of view, with the goal of simulating real-

time industrial and physical systems in mind. Indeed, a commercial software product

based on the technology called Beologic [4] has been developed and marketed by the

Danish company Bang & Olufsen for use in the control of real-time systems. ABL has

been applied to a scheduling problem in production planning [45] and to the design

of a train routing system for the Danish state railway DSB [33, 34]. Another current

research project is investigating the use of ABL to control the Sydkraft power system

of Malmo, Sweden [44, p. 1].

In what follows we �rst present an overview of Franksen's approach to ABL. We

then describe how the work of M�ller has generalized ABL for other variable domains.

The operation of ABL for �nite domains is then demonstrated using the cryptogram

example from Section 1.2.
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A B C D A ^ ((B) C) _ D)

T T T T T

T T T F T

T T F T T

T T F F F

T F T T T

T F T F T

T F F T T

T F F F T

F T T T F

F T T F F

F T F T F

F T F F F

F F T T F

F F T F F

F F F T F

F F F F F

Figure 4: A Truth Table Representation of A ^ ((B) C) _D)

3.1 Franksen's Approach to Array Based Logic

In this section, we explain the most important concepts of Franksen's approach,

namely those needed to understand the description of M�ller's work which follows.

In particular, we describe the basic concepts and operations of ABL as well as the

model incorporated in the technology. For a more detailed overview of Franksen's

work in boolean ABL, see Chapter 1 of [45].11

3.1.1 Basic Concepts

Franksen takes a systemic approach to logical reasoning on the boolean constraint

domain BD. The fundamental idea behind his approach is to treat the set of possible

truth values of a conjunction of propositional logic formulae as a system which can

be manipulated and analyzed. Traditionally, the set of 2N possible truth values of a

propositional logic formula with N variables has been stored in truth table format.

For example, the truth table for the formula A^ ((B) C)_D) for boolean variables

A, B, C and D is given in Figure 4.

In ABL, the truth values of a logic formula with N variables (or those of a con-

junction of logic formulae) are stored in an N dimensional array with each dimension

or axis in the array being labelled with the possible values (false and true) of one

of the N variables.12 A truth value is stored in the array for each element of the

11Michael Jenkins has implemented heuristics [30] for building array based boolean logic systems
based on Franksen's work in the NIAL [31] programming language.

12In general, there may not be a one to one correspondence between variables and array axes. In
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Figure 5: Truth Value Array Representations

Cartesian product of the domains of the variables involved in the set of formulae. If

the element satis�es the formulae, then true is stored. Otherwise false is stored. The

resulting array contains 2N truth values.

The concept of the truth value array representation is illustrated in Figure 5. A

2 � 2 truth value array for the expression B ) C is given in (a). The truth value

array for (B ) C) _ D is shown in (b). The 2 � 2 � 2 � 2 truth value array for

the expression A ^ ((B ) C) _ D) is shown in (c). In the �gure, each true value is

represented by an l, each false one by an o. The axes are ordered A, D, C, B and are

laid out alternately horizontally and vertically starting with the last axis.

3.1.2 Operations

Truth value arrays must be created, combined and analyzed. The three operations

that do so are outer product, colligation and projection. Outer product [31, p. 82] is

an array transformer [31, pp. 143-150] which takes two lists of elements and a binary

operation and applies the operation to each element of the Cartesian product of the

lists. Outer product is used to build up the truth value arrays of propositional logic

formulae.

Colligation (or generalized transposition as it sometimes called) fuses axes together

that are labelled with the same variable. Geometrically, this corresponds to taking

out diagonal hyperplanes from the truth value array, and is done to ensure that axes

corresponding to a repeated variable assign only equal values to the variable.

particular, there may be more than one axis labelled with the same variable. If so, the colligation

operation may be used to eliminate the extra axes. See Section 3.1.2.
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There are two kinds of projection, abductive projection and deductive projection.

They are mutually derivable. Deductive projection involves taking the logical or over

a set of truth values while abductive projection involves �nding the logical and of

the values. Deductive projection can be used to eliminate axes in the system which

correspond to variables which are irrelevant in an analysis of the system. This process

is called variable elimination.

3.1.3 The Model

The goal of ABL is to build a model of a physical system which, once built, can be

repeatedly used to deduce the values of output variables based on values of input

variables. The model is based on the Walrasian economic model [56]. U , the universe

of discourse, consists of the global domain (also called the environment) and the

system and their interaction. The system S is a set of relations. The global domain is

a set of N variables V = fvi j 1 � i � Ng. Associated with each variable is a domain

of the values which the variable can attain. The set of all such variable domains is D

= fdi j i = 1::Ng. Formally, the global domain GD is the ordered set consisting of

all ordered pairs (vi; di), i = 1 .. N such that vi 2 V and di 2 D.13

Any variable that has been instantiated with a non-empty subset of its domain is

said to be an external in
uence on the system. The variables are related to each other

by means of a set of constraints C which de�nes the behaviour of the physical system.

Conceptually speaking, a relation14 or isolated element Rk is a triple (Ck; Vk; TVk)

consisting of a set of constraints Ck � C, and the set of variables Vk � V related

by the constraints and a truth value mapping TVk which maps a truth value to each

element of the Cartesian product ofDk, the variable domain subset of D corresponding

to Vk, under the constraints Ck.
15

Initially, the constraints are usually distributed among relations such that each

constraint is the only element of the constraint set of exactly one relation. The

resulting set of relations Sprim is known as the primitive system. The connections

between common variables among relations de�ne additional constraints. These are

called connectivity constraints. The connectivity constraints of a system de�ne the

topology of interconnected relations, also known as the system structure. The system

structure may be represented by an undirected multigraph GS = (Sprim; E) such

that an arc (i; j) with label v is in E if the isolated relations Ri and Rj share a

common variable v. This multigraph is known as the colligation graph of the system.

The process of removing connectivity constraints is known as constraint elimination.

Creating the system is also known as system modelling. The process of deducing the

values of output variables based on external in
uences on the system is called system

simulation.

13In general, an environment variable may be an input or an output variable.
14Note that in ABL the use of the term relation di�ers from its traditional mathematical use. In

ABL, we use the term to refer to the data structure used to represent a mathematical relation as a
set of tuples.

15Note that while conceptually relations are triples, they are represented in ABL as pairs. See
Section 3.2.1.
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3.2 M�ller's Extension of Array Based Logic

M�ller's generalization of ABL to arbitrary variable and constraint domains is the

topic of this section. (The reader should note that although some research has been

done on the representation and manipulation of other variable and constraint domains

in ABL, in this paper we restrict our attention to ABL for �nite domains. For an

introduction to array based constraint reasoning systems over other domains, see

Chapter 3 of [44].) M�ller's approach is to create relations using the tuples that satisfy

the constraints of the search problem. (Note that the tuples are called constraints in

the terminology of Section 1.3.) The resulting relations constitute a Finite CSP. The

relations are then combined to create the system model.

We begin this section with a discussion of how these relations are represented in

M�ller's work. Next comes a description of how relations can be joined together. An

explanation of the method for creating the model of the system is presented next.

The simulation of the system is then discussed. Next, a detailed example is presented.

Lastly, the complexity of the ABL �nite domain operations is discussed.16

3.2.1 Representation of Relations

It is desirable to have a compact representation of relations. Clearly the truth values

of its set of constraints must be stored. The list of variables related by its constraints

will also be maintained. However, the constraints themselves will only be implicitly

represented. The representation of the set of variables of the relation is straight-

forward: the variables are stored in a list in their global domain order. It is more

complicated, however, to store the set of truth value mappings of the relation.

There are �ve isomorphic representations for the set of truth values of a relation,

two of which are commonly used in practice. The simplest is the binary array repre-

sentation. This is the representation discussed for boolean variables in Section 3.1,

above. For �nite domain relations, each axis of the array is labelled with the domain

of one of the variables present in the set of constraints. Since the domains of the

variables can have an arbitrary number of elements, the axes of the array can be of

any size.17 The array contains the truth value of the conjunction of constraints for

each element of the Cartesian product of the variables. Hence, for a set of constraints

over N variables each with domain size M , an N dimensional array with MN values

is required. For example, consider the global domain

GD = f(X; f0; 1; 2g); (Y; f4; 5; 6g); (Z; f4; 5; 9g)g

and the constraint X + Y � Z. The truth table representation of this expression is

given in Figure 6.

The corresponding 3� 3� 3 binary array representation is shown in Figure 7.

In practice, a more compact method of representation is required since for large

values of M and N the manipulation and storage of such a table is not feasible. This

16Jenkins and the author have created NIAL implementations [30] of the compression and join
techniques for �nite domain ABL relations described by M�ller in Chapter 2 of [44].

17This is in contrast to boolean ABL binary arrays, whose axes all are of size 2.
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X Y Z X + Y � Z

0 4 4 T

0 4 5 T

0 4 9 T

0 5 4 F

0 5 5 T

0 5 9 T

0 6 4 F

0 6 5 F

0 6 9 T

1 4 4 F

1 4 5 T

1 4 9 T

1 5 4 F

1 5 5 F

1 5 9 T

1 6 4 F

1 6 5 F

1 6 9 T

2 4 4 F

2 4 5 F

2 4 9 T

2 5 4 F

2 5 5 F

2 5 9 T

2 6 4 F

2 6 5 F

2 6 9 T

Figure 6: A Truth Table Representation of X + Y � Z

4 5 9

|---------------------Z

| | 012 012 012

| |------X|-----X|----X

|4| loo 4|llo 4|lll

|5| ooo 5|loo 5|lll

|6| ooo 6|ooo 6|lll

Y Y Y

Figure 7: A Binary Array Representation of X + Y � Z
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0 4 4

0 4 5

0 5 5

1 4 5

0 4 9

0 5 9

0 6 9

1 4 9

1 5 9

1 6 9

2 4 9

2 5 9

2 6 9

Figure 8: List of True Tuples in Array Form

0 0 0 1 0 0 0 1 1 1 2 2 2 4 4 5 4 4 5 6 4 5 6 4 5 6 4 4 5 5 5 9 9 9 9 9 9 9 9 9

X Y Z

Figure 9: The A�rmative Form

can be achieved by only storing the array indices of the true values in the binary array

for each variable. Known as the a�rmative form, it is e�ective for many problems

since for a su�ciently large set of constraints, the number of possible satisfying true

values is usually relatively small. For the binary representation given in Figure 7, the

subset of X� Y � Z of true tuples is

f(0; 4; 4); (0; 4; 5); (0; 5; 5); (1; 4; 5); (0; 4; 9); (0; 5; 9);

(0; 6; 9); (1; 4; 9); (1; 5; 9); (1; 6; 9); (2; 4; 9); (2; 5; 9); (2; 6; 9)g:

This list is given in array form in Figure 8. The corresponding a�rmative form is

shown in Figure 9. The array indices for each variable are listed in the order of the

tuples above. Note that a corresponding representation exists for storing the false

values of a binary array representation. It is called the negative form [44, p.32]. Any

representation which makes use of tuples to store the truth value mapping is said to

be in developed form [44, p.52]. Note that the a�rmative form is best for performing

deductive reasoning, whereas the negative form is better for abductive reasoning. In

this paper we concentrate on the use of ABL to perform the former. For a description

of how abductive reasoning is done in ABL, see [44, pp. 80-84].

A still more compact representation is possible for the developed form in some

cases. The idea is to store lists of Cartesian arguments corresponding to subspaces in

the binary array all of whose elements are true. The elements of the Cartesian product
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+-----------------------------------------+-----+

|+---------------+-------------+---------+|X Y Z|

||+-----+---+-+-+|+-----+-+-+-+|+-+-+-+-+|| |

|||0 1 2|0 1|0|0|||4 5 6|4|4|5|||9|5|4|5||| |

||+-----+---+-+-+|+-----+-+-+-+|+-+-+-+-+|| |

|+---------------+-------------+---------+| |

+-----------------------------------------+-----+

Figure 10: Standard Array Form of the Relation X + Y � Z

of a list of Cartesian arguments are tuples that have true values in the original array.

For example, in the binary array shown in Figure 7, the subspace

f(x; y; z) j x 2 f0; 1; 2g; y 2 f4; 5; 6g; z 2 f9gg

consists completely of true values. The list of Cartesian arguments corresponding to

that subspace is [[0, 1, 2], [4, 5, 6], [9]]. A representation of truth values incorpo-

rating lists of Cartesian arguments is said to be in undeveloped form. The process

of converting a relation from developed to undeveloped form is called compression.

The conversion of relations from undeveloped form to developed form is known as

expansion.

An heuristic compression algorithm has been devised [44, p. 62] which converts

a developed set of tuples to undeveloped form in polynomial time. An alternative

compression heuristic exists [44, p. 70] which attempts to �nd the undeveloped rep-

resentation for a list of tuples with the simplest (as opposed to the fewest) lists of

Cartesian arguments. (For a full description of compression strategies, see [44, pp.

62-70].)

In ABL for �nite domains, a relation is represented as a pair (a 1-dimensional array

with two items) composed of one of the last four truth value representations of the �ve

described above (a�rmative undeveloped and developed, and negative undeveloped

and developed) and the list of the variables involved in the constraints of the relation.

Since deductive reasoning is most commonly performed in ABL, a relation is usually

represented by an a�rmative form of its truth values and its variable list. This

representation is called the standard array form of the relation. The standard array

undeveloped representation of the relation described in this section is

[[[[0; 1; 2]; [0; 1]; [0]; [0]]; [[4; 5; 6]; [4]; [4]; [5]]; [[9]; [5]; [4]; [5]]]; [X;Y;Z]]

This is given in array form in Figure 10. A clearer representation of the same

relation in standard form is given in Figure 11. In the �gure, the NIAL operations

mix and pack have been applied to the �rst element of the array.

3.2.2 Joining Relations

The colligation and outer product operations discussed in Section 3.1 are uni�ed in

the operation of joining relations. The idea of joining two relationsRk = (Ck; Vk; TVk)
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+---------------+-----+

|+-----+-----+-+|X Y Z|

||0 1 2|4 5 6|9|| |

|+-----+-----+-+| |

||0 1 |4 |5|| |

|+-----+-----+-+| |

||0 |4 |4|| |

|+-----+-----+-+| |

||0 |5 |5|| |

|+-----+-----+-+| |

+---------------+-----+

Figure 11: Alternative Format of the Standard Array Form of the Relation X+Y � Z

and Rl = (Cl; Vl; TVl) is to produce a relation Rkl = (Ck

S
Cl; Vk

S
Vl; TVkl) where

TVkl is the largest subset of the Cartesian product of the domains of the variable set

Vk
S
Vl satisfying the constraint set Ck

S
Cl. Note that ideally any algorithm that

does so should be incremental in the second sense discussed in Section 2.4. An obvious

strategy is therefore to use TVk and TVl to construct TVkl rather than building it

from scratch. M�ller has created a procedure for joining two relations in a�rmative

developed or a�rmative undeveloped form that uses this strategy [44, pp. 71-78].

This brute force technique proceeds as follows. For each variable common to

the two relations, the outer intersection of all Cartesian arguments (or tuples) is

taken. The elements of the outer intersections that are non-empty over all common

variables are the legal subspaces of the joined relation. Using the legal subspaces,

the arguments of the joined relation are extracted from the outer intersections of the

common variables and the Cartesian product of uncommon variables. An interesting

question is whether a search technique is more e�cient to perform the join. See

Section 4.3.)

3.2.3 Modelling the System

Recall that the objective of ABL is to create a system to perform real-time simula-

tion of external in
uences on output variables. It is therefore necessary to produce a

system such that the values of any output variable can be deduced based on a set of

input values quickly. As stated in Section 3.1, intersections exist among the sets of

variables of relations, namely the connectivity constraints. In general, the more con-

nectivity constraints there are in the system, the more time consuming the simulation

process will be. Also, as the number of relations increases, so too does the complexity

of simulation. Since joining relations reduces the number of relations and performs

connectivity constraint elimination, it would seem that it would be a good strategy to

join relations in the system as much as possible. However, in many cases the size of

relations grows dramatically as they are joined. There is therefore a tradeo� between

the space complexity of a system and the complexity of performing simulation using
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it. (A third issue of importance, especially for problems that grow dynamically is the

amount of time needed to build the system.) The process of creating a system that

e�ectively balances the �rst two factors is known as building the system. M�ller has

developed an heuristic procedure [44, pp. 118-141] for this task.

This operation proceeds as follows. Starting with the primitive system, pairs

of relations are repeatedly joined. When, because of spatial considerations, it is

infeasible to join any more relations, constraint elimination is executed by performing

deductive projection searches on the disjoint variables of the relations. In particular,

initially the system is set to be the primitive system, i.e., S = Sprim.
18 New systems

are repeatedly constructed in the following manner. For each pair of relations in the

current system, the connection factor is determined. The connection factor CFij for

two relations Ri and Rj is de�ned as

CFij = NCij �NCji � Si � Sj

NCij is the number of noncommon or disjoint variables between relations Ri and Rj,

i.e., NCij is the number of variables in the variable set of Ri that are not in the

variable set of Rj. Si is the number of tuples in relation Ri.
19 For example, given the

relations Ru and Rv such that

Ru = (fcug; fA;B;C;D;Eg; ft0; t1; : : : ; t22g) and

Rv = (fcvg; fD;E;F;Gg; ft0; t1; : : : ; t39g)

the connection factor CFuv = CFvu = 3 � 2 � 23 � 40 = 5520.

Let the smallest connection factor among pairs of relations in S be CFkl. Relations

Rk and Rl are than joined using a technique such as that described in Section 3.2.2.

Let the resulting relation be Rkl. If the number of tuples in Rkl is less than a constant

tolerance T , then a new system S = S � Rk �Rl

S
Rkl is created.

The process is repeated until either S is a singleton or the number of tuples in the

joined relationRkl is greater than T . In the latter case, the values of the global domain

variables not in each remaining relation are determined using deductive projection

searches of the other remaining relations. The expanded representation which results

from deductive projection searches of other relations is called the complete array form

of the relation. If at any point in the above process the system contains a relation

without tuples, then the process also halts. Under those circumstances, the system

is said to be inconsistent and the corresponding problem has no solutions.

Note that constraint elimination in M�ller's extension to ABL is in e�ect per-

formed during the building of the system either by joining relations together or by

extending them to the complete array form. The reader should also note that by

building the system in the way described in this section, the entire set of solutions

to a constraint based problem is generated at once.20 The process of determining the

18See Section 3.1.3 for a de�nition of the primitive system.
19Observe that the connection factor is symmetric i.e., CFij = CFji for any two relations Ri and

Rj .
20This is in sharp contrast to the CLP paradigm, under which solutions are found one at a time.
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states (or values) of variables within the system under external in
uences is described

next.

3.2.4 System Simulation

The interaction between the system and environment is captured by system simula-

tion. As stated in Section 3.1, the determination of the values within the system of

output variables based on external in
uences or instantiations of input variables is

the basic operation of system simulation. This is accomplished by means of a process

known as the state vector transformation. Before this can be described, some prelim-

inary de�nitions are necessary. The state of a variable in a relation is the set of all

values that it takes on within the tuples of the relation. The state of a variable in

the system is the set of all values that it takes on in the system. The system state is

a vector composed of the states of all the global domain variables in the system.

The idea of the state vector transformation is to �nd the subset of the tuples of

a relation that is constrained by the external in
uences. The latter can be viewed

as constraints on the domains of variables. The external in
uences to the system

is an ordered set of sets that contains either the domain or a subset of the domain

for every variable in the global domain. During the state vector transformation, a

new relation is found that contains the subset of the tuples of the original relation

such that every element in the tuples is contained in the set of the external in
uences

corresponding to its variable. This is done by using outer intersection techniques

similar to those used to join relations described in Section 3.2.2. The state of the

new relation is now found using deductive projection techniques like those described

in Section 3.1. The process of system simulation involves �nding the system state

vector based on an external in
uence vector. If the system is a single relation, the

state vector transformation is applied to it as described above. If it is a collection of

relations in complete array form, the transformation is applied to one of them.

3.2.5 The Example Done in ABL Finite Domain

We now illustrate the operation of ABL for �nite domains using the sample cryp-

togram problem from Section 1.2. In our presentation of this example, we have

followed M�ller's approach to the example as described in his thesis [44, pp. 132-

136].21 As we shall see, in the example M�ller creates a primitive system slightly

di�erent from that prescribed by the ABL model described in Section 3.1.3 where

usually each constraint of the problem becomes the sole constraint of the constraint

set of one relation of the primitive system.

In M�ller's approach to solving the cryptogram in ABL, the primitive system

consists of four relations. The constraint set of each relation contains the constraints

which apply to one column of the problem. For example, the constraint set of the �rst

relation contains the three constraints for the rightmost column of the problem: the

arithmetic constraint for the non-carry digits E, D and Y, the arithmetic constraint

21The author has implemented the example in NIAL, whereas the original example is illustrated
with APL [7] code.
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for the carry digit R4, and the distinctness constraint among the three non-carry

digits. M�ller's approach leads to a formulation of the cryptogram problem with 14

constraints.

The arithmetic constraints for the non-carry digits for each column are given below

in right to left order.

Y = (D + E) mod 10 (c0)

E = (R4 + N + R) mod 10 (c1)

N = (R3 + E +O) mod 10 (c2)

O = (R2 + S +M) mod 10 (c3)

M = R1 (c4)

Next we list the four constraints for the carry digits:

R4 = (D + E) div 10 (c5)

R3 = (R4 + N + R) div 10 (c6)

R2 = (R3 + E +O) div 10 (c7)

R1 = (R2 + S +M) div 10 (c8)

Although it is not included in the constraint set of one of the relations of the primitive

system, the constraint which requires distinctness among all the non-carry variables

still applies:

alldistinct(S;E;N;D;M;O;R;Y) (c9)

In addition, there are constraints to ensure that the non-carry digits are distinct

within the four rightmost columns:22

alldistinct(E;D;Y) (c10)

alldistinct(E;N;R) (c11)

alldistinct(E;N;O) (c12)

alldistinct(S;M;O) (c13)

The global domain GD is

GD = f(S; Ddig); (E; Ddig); (N; Ddig); (D; Ddig); (M; Dcar); (O; Ddig);

(R; Ddig); (Y; Ddig); (R1; Dcar); (R2; Dcar); (R3; Dcar);R4; Dcar)g.

22Given the presence of c9, these constraints appear to be redundant. However, they are required
to reduce the size of the relations of the primitive system. The alldistinct constraint is implemented
by array operations since this is easily done.
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where Ddig = fi 2 N j 0 � i � 9g and Dcar = f0; 1g.

The set C of constraints is

C = fci j 0 � i � 13g

as de�ned above.

The primitive system Sprim is fR0; R1; R2; R3g where the initial relations are:

R0 = (fc0; c5; c10g; fE;D;Y;R4g; ft0; t1; : : : ; t71g)

R1 = (fc1; c6; c11g; fE;N;R;R3;R4g; ft0; t1; : : : ; t143g)

R2 = (fc2; c7; c12g; fE;N;O;R2;R3g; ft0; t1; : : : ; t143g)

R3 = (fc3; c4; c8; c13g; fS;M;O;R1;R2g; ft0; t1; : : : ; t9g)

The sets of tuples for each relation can be generated all at once fairly easily using

compositions of NIAL operations. For example, the 72 tuples of R0 are derived by

the NIAL code shown in Figure 12. First, the Cartesian product EDpairs of E and

D is obtained by cart D E. The set Yvalues of possible sums that the variable Y can

attain is the remainder of all possible sums of D and E i.e., EACH sum (cart D E)

mod 10. The set of possible values R4 that can be carried to the next column is the

quotient of these sums, namely EACH sum (cart E D) quotient 10.

The next line of code groups the values of E, D and Y into a list of triples

(allEDYtriples). Those triples having no duplicate values are next extracted. This

is accomplished by applying the NIAL diverse operation to each triple. A boolean

list, EDYmask, is the result. Each element of the list will be true if and only if the

corresponding triple contains three di�erent values. The sublist operation, which

takes a boolean mask and a list as arguments and returns the elements of the list

which correspond to true values in the mask, is then used to create the list of distinct

triples, distinctEDYtriples. The corresponding values of R4 are then appended to

create the set alltuples of tuples for the relation R0.

The primitive system topology of the cryptogram is shown in Figure 13. The

connection factors for the relation pairs are shown in Figure 14. Clearly, the best pair

of relations to join is R2 and R3. The resulting relation R23 is

R23 = (fc2; c3; c4; c7; c8; c12; c13g; fS;E;N;M;O;R1;R2;R3g; ft0; t1; : : : ; t77g)

The system S is now altered to be fR0; R1; R23g. The connection factors for S

are shown in Figure 15. This time, it is best to join relations R0 and R1. The re-

sulting relation R01 is (fc0; c1; c5; c6; c10; c11g; fE;N;D;R;Y;R3;R4g; ft0; t1; : : : ; t519g)

The system becomes S = fR01; R23g. These �nal two relations are joined with the

result being

R0123 = (fc0; c1; c2; c3; c5; c6; c7; c8; c10; c11; c12; c13g;

fS;E;N;D;M;O;R;Y;R1;R2;R3;R4g; ft0; t1; : : : ; t297g).
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E := tell 10;

D := tell 10;

EDpairs := cart E D;

Yvalues := EACH sum EDpairs mod 10;

R4values := EACH sum EDpairs quotient 10;

allEDYtriples := EDpairs EACHBOTH link Yvalues;

EDYmask := EACH diverse allEDYtriples;

distinctEDYtriples:= EDYmask sublist allEDYtriples;

distinctR4values := EDYmask sublist R4values;

alltuples := distinctEDYtriples EACHBOTH link distinctR4values;

Figure 12: NIAL Code for Generating R0 Tuples

R

R

R

R

0

1

2

3

E

E O, R4

R3

NE R2

Figure 13: The Primitive System Structure of the Cryptogram Problem

R0 R1 R2 R3

R0 0 62208 124416 11520

R1 62208 0 82944 28800

R2 124416 82944 0 8640

R3 11520 28800 8640 0

Figure 14: Connection Factors for the Primitive System
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R0 R1 R23

R0 0 62208 101088

R1 62208 0 89856

R23 101088 89856 0

Figure 15: Connection Factors for the Altered System

Unfortunately, the join operations have produced some tuples with identical values

in the non-carry digits. One last application of the EACH diverse operation gives us

the system S = fRfing where

Rfin = (fc0; c1; c2; c3; c4; c5; c6; c7; c8; c9g;

fS;E;N;D;M;O;R;Y;R1;R2;R3;R4g; ft0; t1; : : : ; t24g).

This contains the �nal solution of 25 tuples.

Consider the external in
uence vector sv1 shown below. (The variable domains

are listed in their global domain order.)

ff7; 8; 9g; Ddig; Ddig; f0; 1; 2; 3; 4; 5g; Ddig; Ddig; f1g; f7g; Dcar; Dcar; Dcar; Dcarg

When sv1 is applied to the �nal system Rfinal, the resulting subrelation contains

the two tuples (8, 3, 2, 4, 0, 9, 1, 7, 0, 1, 0, 0) and (8, 5, 4, 2, 0, 9, 1, 7, 0, 1, 0, 0).

We note at this point that although he presents no formal algorithm for creating

the primitive system and building the system for CSPs in general, M�ller's technique

for doing the cryptogram example appears to di�er from that described in the text

of the thesis and used in other ABL examples found in it. In particular, there is

usually a one to one correspondence between the constraints of the problem and the

relations of the primitive system whose tuples satisfy them. The system is then built

by combining those initial relations into ever larger ones using the join operation.

Clearly this is not the case in the example since the constraint sets of the relations of

the primitive system contain multiple relations and one constraint (c9) is not a part

of the primitive system and is enforced not by a join but rather by an APL operation

at the end of the build process.

In presenting the example in this manner, M�ller appears to have struck a balance

between dedication to the techniques of ABL and pragmatism. On the one hand, he

has followed to a large extent the general procedures outlined in [44] for the creation

of the primitive system and building the system. On the other hand, he has done the

example in such a way that practical implementations of it are possible. For example,

he has avoided the creation of relations with a prohibitive number of tuples.23 This

is desirable since in addition to requiring a large amount of memory, large relations

can be computationally expensive to join.

A last observation of this section is that many other procedures exist for doing

the example in ABL. For example, the distinct tuples might be determined after

each intermediate join that is executed. Alternatively, the alldistinct tuples for each

column might be determined and subsequently joined with the tuples satisfying the

arithmetic constraints for that column.

23In particular, the alldistinct relation for the 8 non-carry variables would have 1814400 tuples.
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3.3 Complexity Issues

In general, the problem of �nding the undeveloped representation for a binary array

with the fewest lists of Cartesian arguments is NP-complete. (The problem is equiva-

lent to that of partitioning a bipartite graph into a minimal set of complete bipartite

subgraphs. The problem of partitioning a graph into a minimal number of cliques

(shown to be NP-complete in [20, p. 193]), can be reduced to the latter problem.)

It must be emphasized that the compression operation is not guaranteed to �nd

a smaller representation of the truth value mapping of all relations. It is merely an

heuristic which in many cases will reduce the size of the relation. In the worst case

scenario, no compression will be achieved. This entails that the space complexity of

relations in ABL �nite domain is still O(MN) for a relation with N variables with

domain size M .

4 Conclusion

In this paper we have described two di�erent paradigms for solving �nite domain

constraint satisfaction problems arising from di�erent disciplines. In this concluding

section we summarize the two approaches, discuss some interesting issues related to

the two approaches and present some potential areas of research.

4.1 Summary

The two approaches to Constraint Based Reasoning discussed in this paper have

been undertaken from distinctly di�erent points of view. Constraint Logic Program-

ming developed within Computer Science as a natural extension to Logic Program-

ming for general domains. Finite Domain Constraint Logic Programming Languages

have primitives which allow users to express combinatorial search problems and pose

queries regarding them. These queries are solved using search and consistency tech-

niques borrowed from CSP research which have been incorporated into the resolution

scheme of Logic Programming. Array Based Logic, on the other hand, was created by

Engineers with the objective of modelling large scale physical systems as Constraint

Satisfaction Problems. A system of all the tuples which are solutions to the problem

must be built in a bottom-up fashion by joining sets of tuples or relations satisfying

subsets of the problem constraints. Real-time user queries can then be answered using

search techniques on the resulting system.

4.2 Interesting Issues

As we begin this research, several interesting issues and questions occur to us. Among

these are \What is the exact correspondence between the two approaches?", \How

do the e�ciencies of the two approaches compare?", \Can CLP heuristics be used

to accelerate ABL algorithms?", \Can array computations be used to speed up CLP

computations?", \Can ABL be implemented e�ciently in parallel?", \What are the

advantages of the array based representation?" and \Are there any algorithms or
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techniques for Constraint Satisfaction which are facilitated by the array based ap-

proach to CBR?" These questions have in turn suggested some potential avenues of

research in the two areas we have discussed in this paper. We now discuss some of

these possible research directions.

4.3 Potential Research Ideas

As stated in Section 3.2.2, the join procedure included in M�ller's thesis may be

ine�cient, since it generates the full Cartesian product of the tuples of the common

variables of the relations being joined. We believe that a better way to proceed may

be to use a search procedure that looks for tuples in one relation that have matching

values in common variables in the tuples of the other. This technique might de�ne a

relationship between the system simulation and the join procedure. It appears that

performing a join is equivalent to doing a query of all identical values of common

variables from one relation to the other. It also might reduce the time required for

system simulation if the tuples are in some sort of prede�ned order. If that were the

case, then searches could be cut o� once certain values were reached. Of course, this

would increase the complexity of the relational join operation. Another possibility

is to use relational database techniques to build the system of relations. A recent

publication in the area is [23]. In the paper, the authors establish a su�cient condition

for the constraint hypergraph of a CSP which enables the corresponding problem to

be decomposed into subproblems. They show that the use of existing algorithms in

conjunction with the decomposition strategy can result in improvements in e�ciency.

It would be interesting to examine the correspondences between the two ap-

proaches for �nite domain constraint problems. In addition, we see the potential for

parallel implementations of both system modelling and system simulation. Finding

e�ective parallel algorithms for these operations might make ABL techniques feasible

for large scale problems. We feel that there are certainly other possible heuristics

for compression of relations and building the system and feel that these merit some

investigation. An interesting open question is whether it is more important to mini-

mize the time complexity of building the system (in particular for dynamic problems

whose system must be repeatedly built) or the space complexity of the �nal system.

We note that the two goals are not necessarily contradictory. Lastly, we note that

since it is of practical importance to make the system as small as possible, it would

be prudent to remove variables from the system wherever possible. In particular, if

the state of a variable is a single value then it is a constant for any positive tuple.

That variable might be removed from the system.
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