
CASE Environments and MetaCASE Tools

Hosein Isazadeh

David Alex Lamb

fisazaho,dalambg@qucis.queensu.ca

February 24, 1997

External Technical Report

ISSN-0836-0227-

1997-403

Department of Computing and Information Science

Queen's University

Kingston, Ontario K7L 3N6

Document prepared February 24, 1997

Abstract

MetaCASE is a generic approach to computer-aided software engineering. In

recent years MetaCASE tools have been developed both commercially and in

research centers. Their usage domain varies from an all-purpose CASE to a

software engineering teaching tool. They are claimed to provide solutions to

some of the key problems surrounding adoption and use of traditional CASE

tools. However very little work has been done in the examination and analysis

of MetaCASE tools.

This paper examines various opinions about software engineering environ-

ments and MetaCASE tools attempting to investigate the truth in many of

their claims. In addition, reports our on-going research in developing a frame-

work for studying MetaCASE tools. This framework is a comparative ex-

amination and categorization of the existing MetaCASE tools based on their

architecture. To establish practicality we have included reviews and compar-

isons of �ve sample MetaCASE tools. Finally, we provide a summary of our

results and discuss open problems in this area.

Contents

1 Introduction 1

1.1 Software Engineering Environments (SEE) 2

1.1.1 Software Process . 2

1.1.2 Methods . 4

1.1.3 Automation . 6

1.2 CASE Tools . 6

1.2.1 The SMP Model of the CASE Tools 7

1.2.2 Various Kinds of CASE Environment 8

1.3 MetaCASE Tools . 10

1.4 Existing Reviews . 12

1.4.1 Karrer and Scacchi's Review 13

1.4.2 Martiin et al's Review . 14

2 Framework of Our Review 15

2.1 Typical Architecture of MetaCASE tools 15

2.1.1 Data Storage, Access and Descriptor Facilities 15

2.1.2 User Interfaces . 17

2.1.3 An Object and Document Manager 18

2.1.4 A Query and Report Manager 19

2.1.5 Transformation and Meta-programming Tools 19

2.2 Categorization and Selection of Tools 20

3 ER-based Tools 21

3.1 Metaview System . 21

3.1.1 Data Storage, Access and Descriptor Facilities 22

3.1.2 User Interfaces . 23

3.1.3 An Object and Document Manager 24

3.1.4 A Query and Report Manager 24

3.1.5 Transformation and Meta-programming Tools 25

3.2 Toolbuilder System . 25

3.2.1 Data Storage, Access and Descriptor Facilities 26

3.2.2 User Interfaces . 28

3.2.3 An Object and Document Manager 28

3.2.4 A Query and Report Manager 29

3.2.5 Transformation and Meta-programming Tools 29

4 OO-based Tools 30

4.1 MetaEdit System . 30

4.1.1 Data Storage, Access and Descriptor Facilities 31

4.1.2 User Interfaces . 32

4.1.3 An Object and Document Manager 33

4.1.4 A Query and Report Manager 33

4.1.5 Transformation and Meta-programming Tools 34

i

5 Graph-based Tools 34

5.1 4thought System . 35

5.1.1 Data Storage, Access and Descriptor Facilities 36

5.1.2 User Interfaces . 37

5.1.3 An Object and Document Manager 37

5.1.4 A Query and Report Manager 37

5.1.5 Transformation and Meta-programming Tools 37

5.2 CASEMaker System . 38

6 Other Tools and Components 39

7 Discussion 39

7.1 Data Storage, Access and Descriptor Facilities 40

7.2 User Interfaces . 40

7.3 An Object and Document Manager 41

7.4 A Query and Report Manager . 41

7.5 Transformation and Meta-programming Tools 42

8 Conclusion 42

ii

1 Introduction

Building large-scale software systems is a di�cult task. A discipline is required

to guide teams of software developers towards building correct systems that are

on-time and within budget. Software Engineering provides such a discipline by

devising methodologies to be used throughout the software process, but they

are not easily enforcible. Automation of the methodologies, known as CASE,

promised to make this discipline enforcible by easing the tasks of software

engineers, but its success is questionable.

CASE tools are large, complex, very labour-intensive, and extremely costly

to produce and adopt. They provide much less than they promised, and what

they provide is not easily usable. It is no wonder that CASE tools are not

as widespread as once expected. Examination of this problem reveals that

supported methodologies play key roles. CASE tools support a �xed number

of methodologies but software development organizations dynamically change

their adopted methodologies. MetaCASE technology approaches the method-

ology automation from a dynamic perspective.

MetaCASE tools allow de�nition and construction of CASE tools that

support arbitrary methodologies. A CASE tool customizer �rst speci�es the

desired methodology and customizes the corresponding CASE tool. Then soft-

ware developers use that CASE tool to develop software systems. An advan-

tage of this approach is that the same tool is used with di�erent methodologies,

which in turn, reduces the learning curve and consequently the cost. Any de-

sired methodology can be automated or modi�ed by the developing organiza-

tion which provides a dynamic capability in todays dynamic and competitive

world. From another perspective this technology can be used as a practical

teaching tool considering the shortened length of development and learning

times that suits academic course periods.

In this paper we examine the �eld of software engineering environments to

understand CASE concepts, capabilities, and shortcomings. The �rst section

is organized according to the historical time-line of this �eld to introduce the

necessary concepts and terminology, focusing on MetaCASE technology. We

establish the need for a review of the existing MetaCASE tools by examining

the existing reviews. Next we introduce a framework for studying MetaCASE

tools which outlines their typical architecture. Section 2 describes the com-

ponents of this architecture and presents our view on how these tools should

be categorized based on their underlying data representation model: Entity-

Relationship(ER)-based, Object-Oriented(OO)-based, and Graph-based.

Sections 3, 4, and 5 contain the review of the representative tools in each

category. We have selected a research-oriented tool (Metaview) and a com-

mercial tool (Toolbuilder) from the �rst category of tools for review. Among

the tools of the second category we review a commercial tool called MetaEdit.

From the �nal category we review a prototype tool from IBM (4thought)

1

Software Process

Methods

Automation

Figure 1: Charette's Model of Software Engineering Environment

and brie
y examine a proposed tool from JRCASE in Australia called CASE-

Maker. The reviews follow our framework by identifying and examining the

typical components of the architecture. There are also tools not categorized

at this point which are mentioned in section 6.

In section 7, we discuss and summarize the key features of the reviewed

tools and identify their major shortcomings. The discussion also follows our

component-based framework of study. This allows analysis and comparison

of the components of each tool and identi�cation of the open problems on a

component basis. The �nal section of this paper provides some concluding

remarks and the future directions of our research.

1.1 Software Engineering Environments (SEE)

Charette de�nes software engineering environment1 to be the integration of

\software process", \methods", and \automation" [11]. Software process2 is

the foundation of any environment and describes the sequence of events re-

quired to develop the software system. Methods are used to de�ne, abstract,

modify, re�ne, and document the software system. Automation is the computer

implementation of the methods necessary to develop the software system. Fig-

ure 1 shows Charette's model of the software engineering environment. Ideally

this model should be a rectangle where all the methods required by the soft-

ware process are automated.

1.1.1 Software Process

Represented by process models or paradigms, software processes originate in

the monolithic waterfall model [67]. This model regards development as one

large process with successive phases as seen in �gure 2. Each phase signi�es

activities that are distinct but the boundaries are fuzzy. Typically, a project

begins with an opportunity or feasibility study which is the recognition of the

problem and the feasibility of the solutions. Formulation of the user require-

1Sometimes called Software Development Environment (SDE).
2Also referred to as Software Lifecycle.

2

Speci�cation

Requirements Analysis

Implementation

Testing

Maintenanace

Detailed Design

Architecture

Figure 2: Waterfall Model of Software Process

ments and needs comes next and often produces a document called the re-

quirements speci�cation. This document speci�es what is to be done as clearly

as possible. Often formal and graphical notations are used to produce such

documents [32]. Design phase starts with planning of all aspects of the project

from the labour management and budget plans to software con�guration man-

agement. The actual design includes an architectural design stage followed by

a detailed design stage. The outcome is often a design speci�cation document

which speci�es the modules in the system and their interfaces. Implementation

and it testing deal with the development of the code and the veri�cation and

validation that the implemented code satis�es the speci�cations. Maintenance

refers to the evolution of the system after the delivery which consumes a sur-

prising 40 percent of total software e�ort in its lifetime. A detailed discussion

of the activities involved in the software process can be found in [42].

With the waterfall model, the current position of the software system in the

process is easily known. However activities such as veri�cation and validation

which cover the entire process are left outside this framework. Furthermore

customer feedback is not possible until the completion of the development

process.

Considering this, for large systems, an incremental process was used to

allow quick prototyping and customer feedback every increment of the way

[74]. Figure 3 illustrates this incremental approach in a very crude way. The

introduction of high level 4th generation languages, such as TKL-TK, now

allows the prototype to be used as the basis of the developed system, reducing

the development time even further [59].

Today there are many software process models, among which the knowledge-

based model is worth mentioning. A signi�cant work in this area belongs to

a ESPRIT3 project called ASPIS [4]. In this approach, application domain

3European Strategic Program for Research and Development in Information

3

Management and Product Assurance

Requirements Analysis

Speci�cation

Design

Increment
#1

#2

#3

Release 1

Release 2

#n

Release n

. . .
. . .

Figure 3: Incremental Model of Software Process

speci�c knowledge is captured and used to support the system development

process. This knowledge is required in order to build a working quality system.

Figure 4 shows a model of the knowledge-based approach as outlined by An-

derson Consulting [18]. Di�erent reasoning assistants (Requirements, Speci�-

cation, and Implementation) communicate with the user, while using software

information and domain speci�c knowledge. This approach may seem to be

the only solution to building systems of enormous size. However as the size

of the system increases, the amount of knowledge base also increases which

reduces the performance. In general, current state-of-practice is far from a

completely working, AI-supported, and automated knowledge-based process.

1.1.2 Methods

Amodel is a simple representation of the system. It provides insight about par-

ticular instances and collections of instances by abstracting away the nonessen-

tial details while generalizing the essential ones into the components of the

model [60]. Methods are explicit steps and rules that are used to develop a

Technology

4

Software

Information

Domain

Knowledge

Reuse

Informal Requirements

Requirements Acquisition

Speci�cation Development

Speci�cation Implementation

Validation

Knowledge Support

Optimized Code

Figure 4: Simpli�ed Knowledge Based Model of Software Process

model. They are required by the process model to provide reliability, e�ciency,

modi�ability, or understandability when building a software system.

The ideal objective is to be able to use any method in conjunction with

any other one. However methods have implicit and con
icting rules in them

which may not allow their integration. Hence there have been a tremendous

e�ort to choose, create, and combine integratable methods into methodologies

that are useful throughout the software process. Therefore methodologies are

de�ned to be \organized collections of methods" [11].

Examples of methodologies are: Jackson System Development (JSD) [35],

Structured Systems Analysis and Design (SSAD) [90, 91], Booch Method-

ology [9], Jacobsen's Object-Oriented Software Engineering (OOSE or Use

Cases Methodology) [36], Rumbaugh's Object Modeling Technique (OMT)

[68], Sheller-Mellor Object-Oriented Analysis (OOA) [75], and numerous other

ones. A problem, which is obvious from the number of the provided examples,

is the great number and the huge variety of di�erent types of methodologies.

Each methodology has its own extensive set of speci�c notations, process rules,

and guidelines. Therefore learning about various methodologies and switch-

ing between them is a very time-consuming and costly process. A recent

ongoing e�ort by three of the leading methodologists (Booch, Jacobson and

Rumbaugh) is the creation of a standard uni�ed notation for object-oriented

development [64]. However even if this notation could be used generically,

non-object-oriented methodologies like JSD left out of this framework.

5

1.1.3 Automation

Having discussed software process and the supporting methods, we now focus

on its practicality. Although methods that can improve the practice of soft-

ware development have been available for nearly two decades, only in the last

decade the daily practice of systems organizations has been changed [14, 39].

For many years the labour-intensive nature of such methods outweighed the

improvements they produced. Automation has changed all that. In this con-

text, automation di�ers from a single tool; it is the computer implementation

of methods and an integral part of total process. It reduces the labour cost,

increases productivity and creativity by putting the focus on the task, helps

learning and communication, and allows use of certain methods that are cler-

ically impossible for manual use.

In the following sections we will discuss the concept of automation in more

detail with a focus on the \Computer Aided Software or Systems Engineering

(CASE)" which is more along the theme of our research.

1.2 CASE Tools

One of the earliest and simplest attempts to automate certain aspects of the

software process was the familiar UNIX make utility [27]. The early e�orts

were mostly focused on building a language speci�c programming support

environment with facilities for error checking, debugging, compilation, linking,

version control, and other supports [1, 82]. This is still an active research area

of software engineering. What is changed however, is the focus which is moved

from a particular phase of software process, namely implementation phase, to

cover the entire process [23].

In the last decade various process frameworks and enhancements to soft-

ware development models have gained acceptance, methods and methodologies

are developed and practiced in software development projects, and well estab-

lished techniques have been adopted from engineering disciplines. Many soft-

ware engineering support tools have been used to aid the system development

throughout the entire process from analysis and design phase to generation

of code and testing. Since these tools allow the employment of well-known

software engineering methods the term Computer Aided Software Engineering

(CASE) has been coined [24].

\CASE is a production oriented integration technology that ties meth-

ods and tools into e�ective commercially viable environments" as de�ned by

Chikofsky [14]. It o�ers graphical tools and manipulation capabilities to the

developers of software systems. Typically CASE tools are based on some form

of a \database", \dictionary" or \repository" that allows exchange of anal-

ysis and design objects. Database, dictionary and repository have di�erent

meanings in di�erent contexts but for our purposes they refer to the storage

6

of analysis and design objects such as requirements statements, structured

diagrams, and source code.

Most often system characteristics can be viewed from three perspectives.

The �rst and most studied is the static structure of the system which refers

to the data perspective. The second deals with the function of the system.

The third perspective examines the dynamic behavior and looks at the control

in the system [34]. CASE tools provide capabilities to represent these char-

acteristics. In most cases Entity-Relationship (ER) diagrams and structured

textual descriptions are used for the static structure [13]. The functions of

the system are often represented by data
ow diagrams [88]. The dynamic

behavior of the system is usually captured by state transition diagrams [61].

1.2.1 The SMP Model of the CASE Tools

A recent de�nition of methodology divides it into three parts: \representa-

tion", \process", and \guidelines" [65]. The representation part is used to

describe the components of the model with diagrams or textual notations.

For example object-oriented methodologies provide diagrammatic and textual

notations for de�ning the object structure of the model of the system. The

process part provides the sequence of steps to be taken. An example would be

the ordering of the de�nition of object structures which is done before de�n-

ing the behavior. Guidelines refer to the set of heuristics, rules of thumb, and

general directions that guide the developer in using the representation part

and enforcing the process part. A good example of a guideline is the recog-

nition of the objects from the user requirements speci�cation. It is usually in

a textual form with descriptions in natural language. Many object-oriented

methodologies have guidelines that describe the extraction of frequent nouns

from the requirements statement which become the object classes of the object

structures.

On the other hand the SMP model [60] divides CASE tools into three

interrelated components: \structures", \mechanisms", and \policies".

The �rst component relates to the structures such as the �lesystems, ab-

stract syntax trees or graph structures, project databases, and repositories

that represent the basic software artifacts and other related information. The

representation part of methodologies are usually supported by the structures of

CASE tools. As an example, CASE tools supporting object-oriented method-

ologies de�ne structures for classes, attributes, and relationships [73].

The second component deals with mechanisms such as the languages and

tools that operate on the structures. They may be visible to the users or hid-

den as the low level support methods. Mechanisms encode information from

all three parts of methodologies. As an example, most CASE tools provide

languages that allow modeling of software systems according to the represen-

tation format prescribed by the methodologies. They may even enforce some

7

of the process rules and guidelines of the methodologies. We have observed,

however, that the emphasis is on encoding the representation part more than

the other two parts of methodologies.

The third component of CASE tools relates to the policies which are the

rules, strategies, and guidelines imposed on the developers that may be sup-

ported or unsupported by the environment. The representation and process

parts of methodologies often have rules that are supported by the policies of

CASE tools. As an example, CASE tools may have rules that ensure the

correctness of certain aspects of a diagramming representation notation or

the ordering of the modeling process. In addition, guidelines prescribed by

methodologies are also addressed by policies component of CASE tools but

with much less emphasis. Some believe that none of the existing CASE tools

support all the guidelines prescribed by their underlying methodology [73].

Based on our preliminary studies of guidelines suggested by the OMT

methodology, we believe these guidelines range from simple general directions

to di�cult and tedious tasks. As an example, selecting meaningful names

for classes is easily enforced by developers but may be di�cult to ensure by

CASE tools. On the other hand, selecting quali�ed names for objects can be

a tedious task for developers but it is a simple job for CASE tools when they

use a naming convention. Some of the guidelines are technically di�cult to

implement at this point. An example is extracting nouns from requirements

speci�ed in a natural language and mapping them onto classes of the modeled

system. Understanding natural language is an active research area and we

believe CASE research should also emphasis more on the application of this

type of research in developing better CASE tools that support more of the

guidelines.

1.2.2 Various Kinds of CASE Environment

Research in CASE tools has been a continuous focus of the scienti�c commu-

nity. An early classi�cation is based on the supported process phases [88].

Upper CASE or Front End tools are used during analysis and design; Lower

CASE or the Back End tools are used during implementation and testing.

This way of looking at CASE tools changed as soon as total process support

tools were introduced. As an example of a typical CASE tool that supports

the entire process, we can look at SoftDA [33]. As seen in �gure 5, it has seven

subsystems, two of which provide support for structured analysis and design

[19]. Another two subsystems deal with detailed design and testing and the

other three provide databases and reuse capabilities.

Further shift of research from ensuring that a CASE tool works was onto

making sure that di�erent tools work together. Hence the integrated CASE

tools gained popularity to the point of having dedicated workshops and confer-

ences. A landmark e�ort in this area is the categorization of tool integration

8

Module

Diagrams
Structure

Structured analysis
Auto Generation

Information Flow

Data Structure
Diagrams

E-R Diagrams
Data
ow
Diagrams

Database
Software

Database
Knowledge Source Code

Reuse

Module
Speci�cations

HCP

HCP
charts

�les

Structured Design

Detailed Design

Testing

Figure 5: Simpli�ed version of the SoftDA CASE tool functionalities

into �ve types by Wasserman: platform, presentation, process, data, and con-

trol integrations [87]. Tool integration means following open architectures

principles, writing program interfaces, using �le formats or database schemas,

building data sharing mechanisms, and doing all of these within a common

user interface.

Of other buzzwords involving CASE tools, three are worth mentioning.

Intelligent CASE tools refer to the application of AI to CASE in the form of

built-in domain speci�c (or real world) knowledge that may assist the developer

[45]. These tools although promising and ambitious, lack performance when

the domain is wide; they are not practical as general tools. Repository-based

CASE tools o�er enterprise-wide and project-wide repositories that integrate

various tools for di�erent stages of development [56]. However, they are very

dependent on the employed methodology and can support development of only

certain type of applications. \MetaCASE tools", also known as CASE shells,

are the most recent approach to computer aided software engineering which

we will discuss in the remaining of this paper.

9

1.3 MetaCASE Tools

Traditionally CASE tools only allowed the employment of a certain type of

software engineering methodology which was �xed for the end users. With

this approach the developer is provided with the expressive powers that the

underlying methodology provides, a certain type of data dictionary or repos-

itory is used to store all the development artifacts, object Exchange is only

allowed within the compatible and o�ered tools, and the o�ered graphical

or textual editors are usable when the rules and guidelines of the methodol-

ogy are followed. As an example, Teamwork/OOAD is heavily based on the

Shlaer-Mellor methodology [30, 75].

This traditional approach is a source of great di�culty. It must be under-

stood that every development company has its own organizational software

process. CASE tool developers not only base their products on a particular

methodology, they also adopt the underlying software process dictated by the

methodology. This makes each CASE tool a special purpose tool that is useful

for a particular type of organization, developing a particular type of software

system. However, software developing organizations are di�erent from one

another and evolve over time. They change their product lines, management

styles, and manufacturing procedures to adapt to their customer needs and to

maintain a competitive edge. Therefore, since the software process and the

development methodologies change, traditional CASE tools are not able to

provide any realistic solutions.

Many CASE developers are now moving towards CASE tools that are capa-

ble of providing support for several di�erent methodologies [26]. Often a group

of related methodologies are supported by these tools without any real data or

control integration. The user selects a methodology and follows the enforced

notation, rules and guidelines. Although this approach is better than building

tools that support a single methodology, it does not provide the solution to the

problem of changing and dynamic software process which requires modi�able

methodology support. We believe the solution is to build generic CASE tools

that provide capabilities for dynamic production of di�erent methodologies'

toolsets.

Customizing a tool to an organization's needs is not a new concept. Many

vendors have been providing this service to the large companies with a long

software lifecycle who can a�ord the high cost of the customization. This high

cost is due to the fact that CASE tools are large, complex, and very labour-

intensive to produce. What is required is to provide the ability to capture

the speci�cations of the required CASE tool and then to generate that CASE

tool from its speci�cation as automatically as possible. This is exactly what

MetaCASE technology o�ers.

In general \a CASE Shell includes mechanisms to de�ne a CASE tool for

an arbitrary method or a chain of methods" as de�ned by Bubenko [10]. The

10

Developer
MetaCASE

Customizer
Developer
Software

Generic Tool

Components

Software
Product

Customized

Tool

Figure 6: A High Level View of the MetaCASE Used in Three Levels

terms CASE Shell as used by Bubenko, MetaCASE tool as described earlier,

and the metasystem as coined by those involved with the Metaview project

[29], di�er in detail but refer to the same concept of generic CASE tools. As

a simple example of this technology, Alderson (who is associated with IPSYS,

developers of Toolbuilder MetaCASE tool), describes compiler-compiler sys-

tems [2]. First the syntax of language is described to the system using a meta

language. Then the system generates syntax and lexical analysis tables which

parametrise a generic compiler to create a compiler for that speci�c language.

Alderson believes MetaCASE tools must have three components, a speci�-

cation component, a generation component (which transforms the speci�cation

into parameters for the generic tool), and a run-time generic tool. A similar

division is believed by Sorenson and Tremblay of Metaview system [78]. In

their opinion there are three levels of speci�cation in MetaCASE domain. In

�rst level, the meta level, the meta de�ner de�nes the speci�cation model or

the \meta-model"4 of the system. In second level, the environment level, the

environment de�ner speci�es the environment or the tool. In last level, the

user level, the developer uses the speci�ed tool to de�ne a software system.

Figure 6 shows a high level view of a typical MetaCASE tool with the three

levels of usage.

At the top level MetaCASE developers build the generic components of the

tool and de�ne the basic structure of one or more meta-models to be used in

capturing the representation information present in a methodology. In addi-

tion, mechanisms and languages are developed that would allow de�nitions of

structures of the meta-models (according to the SMP model discussed in sec-

tion 1.2.1). The di�culty in de�ning a meta-modeling technique is twofold. If

the meta-model is too simple then it can be used to model most methodologies

but it would not be su�cient when dealing with sophisticated methodologies.

On the other hand, complicated meta-models are di�cult to work with and

might make the modeling of a new methodology too complicated and infeasi-

ble.

At the second level CASE customizers use the provided meta-model and the

generic components to build a customized CASE tool. They de�ne structures

4Meta-model is a term we will use to refer to the underlying data model of a

methodology which is captured using data modeling techniques such as those based

on entity-relationships.

11

of the particular CASE tool and encode the methodology prescribed represen-

tation and process rules (policies of SMP model). Customization of the CASE

tool is done using the mechanisms and languages de�ned by MetaCASE de-

velopers. This process can take only a few hours which is much shorter and

yet less costly than the traditional vendor customization approach [3].

At the last level software developers use the customized tool to develop

software systems. An interesting approach to showing the powers of Meta-

CASE would be to compare development of the MetaCASE initially and using

MetaCASE itself. This has been done in the case of Toolbuilder [28].

1.4 Existing Reviews

There exists a large amount of work on CASE tools including a number of

books [52], various conference proceedings (SEE, SDE and CASE, and CAiSE),

and special issues of journals and magazines. There are also many investigative

and comparative papers [16, 57, 63, 85], and proposed general requirement

models for CASE tools [23, 54]. However with respect to generic environments

and MetaCASE technology there are only a few publications.

It is only recently in 1995 that a conference was dedicated to MetaCASE

technology [55]. This focused e�ort brought together researchers from around

the globe to exchange idea's and time will show its e�ects in the MetaCASE

community. The keynote speaker, Alan Gillies believes MetaCASE will fail

since the facilities o�ered by MetaCASE do not address the reasons why CASE

tools are not adopted [31]. His reason is based on the 1991 Stobart et al's col-

lected data about adopting CASE tools in UK [80]. He argues that only 5

percent of studied companies use CASE tools and the major reasons for this

are said to relate to cost (30 percent) and lack of management backing (16

percent). Only 8 percent of the reason is due to the lack of supported method-

ologies which is the issue addressed by MetaCASE technology. However as we

have discussed in section 1.3, high cost of adopting CASE tools is yet another

issue that the MetaCASE technology addresses.

We believe MetaCASE enables companies to produce their customized

CASE tools in a very cost e�cient way. Unfortunately MetaCASE is a rela-

tively a young �eld without much analytical data. However the MetaCASE

conference proceedings alone contains over six papers dealing with adopting

MetaCASE and using it to produce CASE tools. Often the selection criteria

is the cost [3]. MetaCASE technology has also opened avenues of research in

automation of such tedious jobs as the collection of measurement data, met-

rics, and assessments [22, 41]. This capability is due to the generic nature

of the MetaCASE which allows methodology independent measurement data

collection, generic metric engines, and quality assessments. In the MetaCASE

conference many speci�c issues are addressed but there are no papers that

provide a comparative review of the existing MetaCASE tools which is the

12

focus of our paper.

Among the existing publications about MetaCASE, there are two reviews

that we will examine here.

1.4.1 Karrer and Scacchi's Review

This paper focuses on the broad area of the generic software engineering

environments5 and categorizes more than 60 of the related tools and tech-

nologies [38]. The basis for this classi�cation is the provided service or the

type of the adopted software process. This approach leads to division of meta-

environments into �ve classes. Karrer and Scacchi discuss this division and

name a few typical tools in each division. Since the number of the reviewed

tools is very high, the discussion is not in deep. However, it provides an

overview of the existing meta-environments and can be used as a great pre-

liminary framework.

The �ve classes distinguished in this paper are environment frameworks,

customizable environments, process modeling, process programming, and tool

integration.

Environment frameworks are those that support a set of low level services.

Object Management Service (OMS) is an example of a low level service that

provides for persistent objects and relationships as oppose to the traditional

�lesystems. User Interface Service (UIS) is another example that provides

mechanisms for de�ning user interfaces and associating environment objects.

The Portable Common Tool Environment (PCTE) is a typical environment

framework with an Entity-Relationship-Aggregate (ERA) model-based OMS

and a set of user interface primitives that can be used as a basis for integrating

tools as part of the development of an environment [83].

Customizable environments provide a high level and �xed core of services

and sometimes allow the users to extend the core capabilities. The main di�er-

ence between this class and the frameworks is that they model a small portion

of the environment and allow for customization of that portion while �xing

the rest. For example meta-programming environments assist in creation of

parsers and related tools which manipulate a particular language. Most Meta-

CASE tools are hybrids of the frameworks and customizable environments.

They o�er low level services, such as the ER-based OMS of Metaview [78]

or the graphical UIS of Toolbuilder [2], as well as customizability of a large

portion of the environment.

Karrer and Scacchi believe that the above two classes adopt particular

software processes and consequently cannot be useful for other processes. The

process modeling class of meta-environments attempts to overcome this prob-

lem. Here the provided software process model can be instantiated to specify

5Also Known as meta-environments [25, 40] or environment generators[89].

13

the activities, developers, resources, artifacts, and their relationships which

together forms the environment. We believe the generality of such a model

reduces the possibility of providing focused and useful tools.

Process programming uses a programming language (like Ada) to describe

the processes that form the capabilities of the environment. It seems the

expressiveness of a programming language in modeling of the software process

maybe of the concern. Perhaps it is most useful in providing programming

support environments.

The �nal class, tool integration, deals with integrating various environment

tools. This is done either by adopting a set of standards during development

of new tools or by integrating existing non-standard tools.

1.4.2 Martiin et al's Review

A more focused and detailed comparative review of meta-technology is the

research result of Martiin et al from the MetaPHOR project [46, 49]. The

acronym MetaPHOR stands for Meta-modeling, Principles, Hypertext, Ob-

jects, and Repositories. These words are used to show objectives of this project

which is to build a con�gurable CASE tool by applying object-oriented mod-

eling philosophies in a distributed computing environment and using modern

hypertext-based user interfaces. The result of this project is the MetaEdit

MetaCASE tool [53].

Martiin et al's comparative review of MetaCASE tools is based on a frame-

work addressing two issues. The �rst one is the properties of MetaCASE tools

and the second one is their e�ectiveness and usability. The properties of Meta-

CASE tools are divided into linguistic, functional, and mechanisms. Linguis-

tics refer to the description languages used in de�ning conceptual structure

of models and their textual or graphical representations. Functional relates

to the essential data management facilities like query and report de�nitions.

Mechanisms cover user interface, data communications, and operating sys-

tem issues. E�ectiveness and usability of MetaCASE tools are studied in the

meta-model, user interface, and design tasks and functions areas.

The selection of the MetaCASE tools for the study is based on classifying

the tools according to the style of customization. Four styles are identi�ed.

Database oriented tools use a meta-language to de�ne the methodologies; like

MetaPlex [12], Metaview [78], and QuickSpec [62]. Interface oriented tools

have generic graphical notations for building the environment; like RAMATIC

[5]. Extension kits involve extending an existing tool to include new meta-

languages; like Excelerator and its Customizer [17, 26]. Finally, knowledge

oriented tools like ConceptBase have a meta-model based on logical rules [66].

Martiin et al discuss the �rst three of these categories and review a repre-

sentative tool for each of those three. They compare them based on properties

and e�ectiveness as outlined before. Although a good deal of detail is put

14

into each tool and an example environment has been developed by all three

selected tools, only three tools are covered. In our opinion a detailed study

some of the tools not covered in this review is necessary and timely.

2 Framework of Our Review

As discussed in the previous section, existing reviews provide some very helpful

preliminary information about MetaCASE tools. However there are still many

research issues that need to be addressed. There has been very little detailed

study of the existing tools. The one detailed study that we know considers the

tools from the user tasks and accomplishments point of view (Martiin et al's

review).

Our approach in examining MetaCASE tools is based on studying their

system architectures. We believe this study would be bene�cial for researchers

of this �eld as well as the stake-holders from industry. Analysis of the compo-

nents of MetaCASE tools and their interconnections can help us identify the

common parts and recognize the weak spots. It can be useful in evaluating the

performance of the tool and isolating the bottlenecks. In order to do this we

will introduce a typical and general architecture for MetaCASE tools which

is our preliminary modeling attempt. It is provided to be used as a common

architectural framework in our study of di�erent tools.

2.1 Typical Architecture of MetaCASE tools

Figure 7 shows our preliminary typical model of the architecture of MetaCASE

tools. In this �gure the core components are represented by boxes with solid

lines. These components are parts of almost all MetaCASE tools. The other

components are the possible additions and variations. As an example a tool

maybe distributed with more than one data store or it may support group-work

with more than one user. The interface between these components is fuzzy

and depends on the individual MetaCASE tool implementation. In an ideal

open architecture, each component should be replaceable by other ones. Hence

there maybe di�erent components that are interchangeable. An examples is

the \Other User Interface" which may substitute the original one based on

the application type or the user preference. In the following sections we will

describe the typical components of MetaCASE tools.

2.1.1 Data Storage, Access and Descriptor Facilities

The storage of data involves the low level data management issues such as �le

locking, concurrency control, data sharing, and mapping of data from physical

to conceptual level. A data management system is often used to control the

15

Other UserUser

Object
and
Document
Manager

Query
and
Report
Manager

Transformation

Programming
Meta

Data Access
Data Access

Descriptor

Data Store Data Store

Other

Other

. . .

. . .

. . .

User Interface Other User Interface

Other Descriptor

Figure 7: Components of a Typical MetaCASE Tool

access of data in the storage and provides functionality such as locking that

would make the tool a multi-user one. Another issue is the possibility of

network computing and distributed databases.

The data access allows the modeling and manipulation of the data at the

conceptual level. By modeling of data, we mean using data structures to

specify the methodology and the actual software systems. Descriptors are the

models of the methodologies which are also called meta-models. Often one

or more meta-modeling technique(s) are used in a MetaCASE which we can

categorize into the following three types:

1. ER-based: Some MetaCASE tools use traditional entity-relationship

modeling techniques, where concepts are represented as entities with

relationships among them. This allows easy modeling of most of the

concepts in structured analysis and design methodologies, but requires

extensions for hierarchy of entities and their graphical representations.

However, even with the recent extensions this modeling technique fails to

provide the semantic power needed for modeling more complex concepts

16

(as discussed in section 3).

2. OO-based: Other tools use more recent object-oriented modeling tech-

niques. This di�ers from ER-based techniques in allowing object instan-

tiation as well as the use of object modeling notation. This permits

easy modeling of most of the concepts in OO-based methodologies but

requires extensions to include concepts such as aggregation, generaliza-

tion, and graphical representations. The existing OO-based meta-models

often contain too many details and lack a clear and prede�ned structure

and functionality (details in section 4).

3. Graph-based: The third meta-modeling technique refers to graphs

that are hierarchical and formal (set-theoretic or logic-based). They of-

ten have visualization and querying aspects with associated mechanisms

and languages. Since the concepts of methodologies are often graph-

like, graph-based meta-modeling techniques match the natural form of

these concepts and, therefore, are more expressive. In addition, they are

formal and include visualization and querying languages providing prede-

�ned structures and functionality with more semantic power (described

in section 5).

There are further issues, like the evolution of the software system and the reuse

of the components, that need to be addressed by any MetaCASE tool. These

issues arise during the customization of the CASE tool and more importantly

while using the CASE tool. Often they are methodology dependent. There-

fore, the meta-modeling technique must provide the appropriate capabilities.

Evolution refers to concepts such as re-engineering, reverse engineering, and

design recovery of the existing software systems. Reuse is concerned with pro-

viding knowledge storage and analysis facilities including libraries of GUI or

program-code components.

2.1.2 User Interfaces

User interfaces make up the front end of the MetaCASE tool. Often a combi-

nation of graphical and textual interfaces are used as a bridge between the sys-

tem and the user. Since many of the concepts in software engineering involve

graphical elements and since use of these elements helps understandability, by

reducing the complexity, there is a strong need for a usable graphical inter-

face. However, some of the concepts maybe better and faster understood and

manipulated using a textual interface. Hence a combination is often desired.

Another factor to consider is the type of user. MetaCASE is used in two

di�erent levels as tools for building information systems as well as software

systems. Information engineers in one level build meta-models of methodolo-

gies and produce a customized CASE tool. The customized CASE tool is then

17

used by developers in building software systems. Users in these two levels

may have di�erent computer knowledge and expertise. A good user interface

should provide tools according to the knowledge and expertise of its users.

A current popular tendency is towards a common user interface. This is

based on the assumption that information engineers or CASE customizers and

the software engineers or CASE users are the same people. It is believed that

a good approach is to let the developers customize their own CASE tools and

use the customized tools to build the software systems.

In any case, the user interface needs to provide consistent facilities to reduce

the learning curve. A user should be able to �nd and perform the common

commands in a common and consistent way throughout the MetaCASE tool.

Di�erences may arise based on the requirements of di�erent methodologies but

these should be understood by the user. We believe this aspect of MetaCASE

is very important. A consistent and easy to learn user interface can mean

customizing and quickly using customized tools in shorter times which means

increased productivity.

2.1.3 An Object and Document Manager

The object and document manager is the direct back end of the user interface.

With this facility, graphical or textual objects are assembled for viewing or

manipulation by the user through the user interface. Interaction with the user

is the responsibility of the user interface but the management and organization

of the artifacts is the responsibility of the object and document manager.

Documents are the artifacts created during software engineering process.

These range from the data
ow or the module speci�cation diagrams to the test

plans, user manuals, and the source code. Organization and management of

such documents involves gathering all the related information from the data

store, interpreting and applying the enforced policies of the methodologies

from the descriptor, and allowing user customizations. Users often outline

a document and the tool would search for the related artifacts, collect them

while enforcing the descriptor's rules, create the desired format by applying

possible transformation techniques, and display or output the result in the

appropriate format.

Perhaps a form of process support falls within the responsibilities of this

component. This requires a way of de�ning the process involved in building

software systems as prescribed by each methodology. In a sense the process

maybe embedded in the descriptions of methodologies which would make it

a part of the descriptor component. A simple example of this type of func-

tionality is the order in producing documents that maybe enforced during the

engineering of the software. Supporting such a functionality requires an active

and triggering type of mechanism that interacts with the user and manages the

process of the software production. In a more general sense software process

18

support allows guidance and coordination of various activities and manage-

ment of the produced documents.

2.1.4 A Query and Report Manager

This component deals with user queries and the retrieval of the respective

information. Queries vary from simple requests of information about states

of certain documents to more complicated inquiries about the methodology.

Reporting the results of queries may involve searching and navigating around

the documents, performing logical and arithmetic calculations, and displaying

the results.

Queries may involve requesting information about the methodology dur-

ing the customization of the CASE tool. Often the CASE customizer would

inquire about the consistency and correctness of the meta-model with respect

to certain logical rules and conditions. This may involve having a meta-model

which is mathematically manipulable.

Queries may also be about the software systems under design. The sim-

plest query would be to ask about \a certain input item" or \object" of the

system. This involves searching and navigation through the documents. A

more complicated query may deal with checking \if the system can be in such

and such state at the same time". This involves a simulation of the dynamic

behavior of the system and a search through the possible states. Perhaps some

of these queries are quality assurance issues such as consistency, completeness,

and conformance to the rules of the adopted methodology. These facilities

identify errors and problems in the form of reports.

2.1.5 Transformation and Meta-programming Tools

These tools refer to the activities involved in \lower CASE". The ideal is to

have the MetaCASE automatically transform the requirement speci�cation

onto the source code. Transformations should be mathematically provable, in

which case, the source code would provably satisfy the requirements. How-

ever, in reality this is not always the case. Very few MetaCASE tools o�er

automatic code generators and those who o�er require extra information from

the developers to be inputed and checked manually at earlier stages.

According to the used methodology, transformation may involve the auto-

matic generation of one or more of the documents (like the module speci�ca-

tion document) from the previous ones (like the data
ow and state transition

documents). Often the level of the automatic generation is dependent on the

level of the formality of the originating documents. Methodologies prescrib-

ing a formal speci�cation of the design would often provide transformation

mechanisms that, if employed, can lead to the automatic generation of the

code.

19

Meta-programming often involves providing the methodology prescribed

programming support environment from the choice of the language to the

parsers, compilers, and debuggers speci�c to that language. In most cases

automatic transformation mechanisms provide the programmer with the mod-

ule interfaces and program headers. Then according to the speci�ed behavior

the �nal coding is done and tested against the requirements,, all within the

guidelines of the speci�c customized methodology.

2.2 Categorization and Selection of Tools

Based on the architecture discussed in the previous section we can now classify

the MetaCASE tools and select representative ones for the study. To classify

we will use the underlying data structure representation and meta-modeling

techniques as our basic framework of study. We believe this approach is sound

and reasonable because most of the functionality provided by a MetaCASE

is dependent on its meta-modeling technique(s); fundamental limitations and

capabilities of a tool can be traced back to the meta-modeling characteristics.

As an example, if a MetaCASE customized CASE tool does not allow modeling

of the nested objects in a system then it is likely that the underlying meta-

modeling facility fails to model the hierarchy of the objects. Perhaps a simple

ER-based meta-modeling technique has been used.

As discussed in the previous section there are three major types of meta-

modeling techniques: ER-based, OO-based, and graph-based. Almost all the

tools often extend and modify these basic modeling techniques to facilitate

modeling of more complicated software engineering artifacts. Examples in-

clude set theoretical concepts such as hierarchy, diagrammatic objects, and

graphical management capabilities.

Our division of CASE tools, which is based on their meta-modeling tech-

niques, di�ers from the existing classi�cations in more than one way. One

classi�cation is based on the scale of the system that the CASE tool is capable

of supporting [60]. Karrer and Scacchi's approach is based on the provided

services or the type of the adopted software process. That is a broad classi�ca-

tion of more than just MetaCASE tools. In fact, in their approach MetaCASE

tools are hybrids of two of the classi�ed divisions. Martiin et al classify only

the MetaCASE tools, however, their framework is based on the properties and

e�ectiveness of the tools.

In the following three sections we will provide examples for each of the

categories mentioned and select and review some representative tools:

20

3 ER-based Tools

Some of the MetaCASE tools that use an ER-based meta-modeling tech-

nique or an extension or variation of it are Metaview, MetaPlex, Socrates [84],

Totem [79], Toolbuilder, RAMATIC [49], and Customizer. As a representative

of research tools we review the Metaview system which we chose because it

is a project with a history of research and a wide variety of publications. We

examine the Toolbuilder system which is one of the most popular commercial

MetaCASE tools in the market and has not been reviewed before. A review

of the last two tools can be found in [49].

3.1 Metaview System

Metaview project is a joint e�ort between the universities of Alberta and

Saskatchewan in Canada and dates back to McAllister's 1988 Ph.D. Thesis

1988 [51]. The result of this project is the Metaview MetaCASE tool which is

primarily a research tool. Currently, this research continues in areas such as

incorporation of the \methodology knowledge" into MetaCASE tools and bet-

ter representation of \aggregation" in the meta-modeling techniques employed

by Metaview [77].

Figure 8 outlines the architecture of the Metaview system using a data

ow diagram. Based on data
ow diagram conventions, boxes are labeled

\P" for processes, \S" for data stores, and no labels for the external users

and developers interacting with the system. The arrows show the
ow of

information between the boxes. This diagram divides the system into three

levels of description (meta, environment, and user) which we have described

in section 1.3.

In the meta level there are two types of softwares developed by two types of

developers. Metaview de�ner describes one type of software which forms the

Metaview software library (S1) and tool de�ner speci�es the required tools to

form the Metaview tools library (S3). The main di�erence between these two

types of software is that the programs of Metaview software library (S1) are

not directly visible to the end user. In fact, in the environment level they are

used by the method de�ner to form the methods library (S4). Furthermore

the software process engineer makes use of all three libraries (S1, S3, and S4)

to con�gure the system and produce the customized CASE tool. The system

developer in the user level uses this tool to produce software systems (S5). In

the following subsections we will describe the components of Metaview system

based on our architectural framework.

21

P4
System
Con�guration Engineer

Process

De�ner
Metaview

DBMS Software

P1

Software
Design

Method Modeling

P3
Method

De�ner

Software Library

De�nition

Selected

Tools

Interfaces

Generic Tools

Support

P5
Software
Development

De�ner
ToolP2

Tool
Creation

Meta Level

Environment Level

User Level

Method LibraryS4

Developer
System

Queries

Speci�cation
Information

Description

Editors &

Method

Compilers

Description

Interfaces
Utility Software

Description S2

Tool Library

Components Library

Software Repository

S3

S1

S5

Figure 8: Metaview Architecture

3.1.1 Data Storage, Access and Descriptor Facilities

The meta-model de�ned for Metaview is EARA/GE (Entity - Aggregate - Re-

lationship - Attribute with Graphical Extensions). It is designed to describe

various software development methodologies. The entities, relationships, and

attributes are the familiar concepts from the ER modeling technique. How-

ever, Metaview extends these concepts to include specialization, aggregation,

and some generalization elements. These extensions allow data abstraction

and modeling of the hierarchical nature of the artifacts and components of

software systems during the engineering process. This permits representation

of heterogeneous collection of entities and relationships as a single entity. Fur-

thermore a graphical extension to EARA model supports de�nition of graph-

ical representation of software objects.

Among the methodologies modeled in EARA/GE, we can name Structured

Design [91], Higher-Order software [50], and recently the OMT methodology

[68, 93]. The concepts of these methodologies are de�ned using the Environ-

ment De�nition Language (EDL). This language allows modeling of many of

the concepts present in the methodologies in a textual form but lacks any

graphical formalism. In de�ning an environment using EDL there is a need

to de�ne constraints for the objects of the EARA. The constraints enforce a

completeness and consistency checking on the objects. They are de�ned using

22

the Environment Constraint Language (ECL).

Metaview is able to model a complex OO methodology (OMT) however

it has limitations. These limitations are most visible when fully modeling

a complex environment. Among these limitations is the lack of possibility

of creating two relationships with the same participants. Furthermore the

aggregation mechanism which is the main feature of the EARA fails to work

well with the graphical extension.

Data storage facilities of Metaview are various libraries of components,

tools, softwares, and methods. The components and tools libraries (S2 and

S3) support the user interface facilities. The software library (S1) provides the

database management and utility facilities to be used by the software process

engineer. The methods library (S4) contains the descriptions of the software

development methodologies. The software repository (S5), also referred to as

speci�cation database, contains the developed softwares. At the user level

the database engine is a prolog-based database management system, which

manages the speci�cation database.

3.1.2 User Interfaces

Metaview system is an X-windows based multi-user system. Besides the meta

and tool de�ners, there are three types of users, not necessarily distinct, with

three di�erent interfaces of Metaview.

At the environment level the method de�ner interfaces with the system by

providing the EDL and ECL source codes and creating the graphical objects

using a primitive graphical editor. These codes are compiled using the EDL

and ECL compilers. Then tables describing de�nitions of the objects and a set

of predicates enforcing constraints are created. Currently the compilers can not

handle the graphical aspects of the objects including the graphical constraints.

Therefore creating graphical tables and constraints is done manually. Further

research in this area is under way.

Con�guration of the CASE tool, to be used by software developers, is

done by the software process engineer who selects one or more methods and

con�gures the tools. Currently specialized tools are con�gured but the only

universal tool, \Metaview Graphical Editor" (MGED), stays the same. It is

anticipated that other tools maybe added later. The database engine is also

customized and a project daemon is created to handle consistency and com-

pleteness checking. This con�guration requires a large amount of knowledge

about the methodologies, tools, and the system under development. All the

work is done manually and there are no help systems.

At the User level the project daemon initializes and controls the server.

It allows multi-user access and arranges the appropriate locking mechanism.

The developer accesses and modi�es the speci�cation database via an interface

based on the MGED tool. This tool allows graphical editing of the objects of

23

the speci�cation database. Operations such as creation, deletion, and modi�-

cation of objects, edges, and icons are supported using a variety of graphical

editing facilities.

3.1.3 An Object and Document Manager

Tool components and Metaview tools libraries (S2 and S3) are the back-end

libraries to the user interface facilities of Metaview system. These libraries

are collections of C++ routines and interfaces used in building the MGED

graphical editor.

One of the capabilities of Metaview at the user level is to allow automatic

transformation of objects between two supported representation formats: tex-

tual and graphical (local transformation). The preliminary e�orts in this area

are towards automatic transformation of the diagrams created using MGED to

Prolog-form compatible for the Prolog-based speci�cation database. Further

research in this area is required.

In another sense, global transformations of documents between di�erent

formats, at di�erent stages of development, or even between di�erent meth-

ods are supported. This is done using a language called the Environment

Transformation Language (ETL) which we will discuss in section 3.1.5.

Among the software in the software library is a Project Daemon, which

is a server program that provides a uniform interface between the tools and

the database engine. This program is responsible for handling the concurrent

accessing of the database from the tools. It also manages the speci�cation

documents and enforces consistency.

Metaview has an executable process model speci�cation mechanism. This

model is based on an active database model. A special language, which is

designed and hoped to be implemented in future, allows describing the process

models, after which, automatic triggering rules act on the database and provide

the necessary interaction with the user [6].

3.1.4 A Query and Report Manager

The methodologies in Metaview are stored in the methods library. In de�ning

these methodologies there are no user supporting systems and no querying is

possible about the correctness and consistency of the methodologies.

The speci�cation database is managed by a Prolog-based database that al-

lows simple queries about the states of the objects. Often these queries involves

searches and tracing of the objects and requesting information using the em-

bedded metrics. These metrics must be de�ned explicitly at the environment

level, using the ETL together with the de�nition of each environment. As an

example, metrics for DFDs and structure charts are embedded in the EDL and

ETL of those environments [8]. They are often simple count functions that

24

give the number of input and output data elements, processes, terminators,

etc.

The reporting is done using screens that display the metrics for each object

or group of objects. Furthermore rules speci�ed in ETL, allow the system to

calculate certain metrics and, based on the result, give some assistance to the

user. As an example the depth of the decomposition in the DFDs can be

analyzed based on the number of the data elements at each level. There seems

to be no other reporting facilities available at this point.

3.1.5 Transformation and Meta-programming Tools

Metaview supports semi-automatic transformation of formal documents from

one format or environment (like DFD of structured analysis) to another format

or environment (like structure chart of structured design). This form of global

transformation is possible since both environments are modeled with the same

formal language (EDL) and the rules of transformation are also expressed

formally using a set based language called ETL [7].

Explicit de�nitions of the speci�c ETL for a particular transformation take

place at the environment level. The developers later specify a software system

in one environment and use the ETL de�nitions to automatically transform

them into the �rst-cut of that system in the other environment. Finally they

must manually improve, optimize, and complete the �rst-cut to a full and valid

system in the other environment.

Metaview focuses on the \upper CASE" and provides tools for the analysis

and design stages of the software engineering process. It does not provide any

means of transforming the design into source code, meta-programming, or any

other \lower CASE" activity.

3.2 Toolbuilder System

Toolbuilder is a commercial MetaCASE tool built by IPSYS Software in UK.

Currently this tool is used by many researchers around the world in build-

ing experimental CASE tools. Research is on the way to extend the tool in

automating more of diagram editing and correctness checks [28].

Toolbuilder has a method speci�cation capture component (METHS) that

captures the underlying meta-model of the methodologies including the lan-

guage of the diagrams and the input or output structures. These speci�cations

are then transformed into parameters for generic tools and mechanisms which

form the run-time component. This component interacts with the user, captur-

ing the speci�cation of the software, according to the rules of the parameterized

methodology [2].

It has been di�cult to obtain technical detail about Toolbuilder since it is

a commercial tool. However, there are documentation prepared by academics

25

DDL FDL GDL

Customized

A generic design tool

Parameterise

Acts on

Describes

Generic Editor

Database

Figure 9: Components of a Generic Tool

using Toolbuilder that provide some technical detail [28]. Based on these

documentation, Toolbuilder seems to be a collection of integrated and generic

tools and function libraries. Toolbuilder has two editors (diagram and text

editors) and allows building of the corresponding tools. Figure 9 shows the

constituent parts of a diagram editor (or design editor). Here DDL describes

the underlying data structure, FDL provides an interface, and GDL describes

the symbols and graphics. These descriptors parameterize the design editor

and de�ne its allowed behavior. With this architecture the design editor stays

as a generic tool and is capable of providing some functionality. However often

there is a need for more speci�c capabilities. DDL, FDL, and GDL describe

what is allowed and not how a desired action is to be performed. To make

the tool method-speci�c (capable of providing speci�c functions), Toolbuilder

allows the user to write customizer functions and link them to the design

editor. In this case the design editor is parameterized by the descriptors and

has an speci�c behavior de�ned by the linked functions. At a lower level these

functions can be C functions.

3.2.1 Data Storage, Access and Descriptor Facilities

The meta-modeling technique de�ned for Toolbuilder is based on the realiza-

tion that diagrams used in methodologies generally take the form of a directed

network of nodes and links. The nodes are modeled by entities and links by

relationships. Diagrams also contain labels with values that are modeled by

attributes and their values. The symbols and graphical styles are recognized

as lexis of a graphical based language. The legal uses of symbols are the syntax

and the legal relationships among nodes and links are the semantics. Similar

principles apply to forms, structured text, and matrices. Hence a language is

26

de�ned to capture and describe the methodologies.

Data description language (DDL) is the language used to describe the

schema of the data. Schema is meant to be the de�nition of entity types,

their attributes, and relationships among them. The database or the data

dictionary of Toolbuilder is produced by a compiler that takes the schema

created by DDL de�nitions. This database has two tiers: the directories and

�le level, and the �le content level. There is also a distributed OO database

management system which is proprietary to the IPSYS company and is used

to manage the database. This system provides the necessary locking and

concurrency control.

The meta-model of Toolbuilder covers more than just the simple entities

and relationships. In this model entities have types that determine the allowed

attributes. Attributes also have types that maybe printable, like strings and

integers, or an entity by themselves. These latter types are known as the links

or the relationships between entities. There are constraints on the types and

cardinality of the entities and their attributes. As an example an attribute

of an entity maybe of the same entity type and it maybe single or multiple

valued.

This meta-model supports hierarchy of the entities where sub-types inherit

the attributes of their parent type. It is possible to de�ne derived multiple

valued relationships as the collection of the values of a group of other relation-

ship(s), which is the familiar notion of the aggregation. In addition recursion

is also supported which de�nes a derived relationship by a recursive function

over another relationship. This meta-model is active in that triggers can be

associated with events applying to attributes and relationships.

In addition, the graphical information about a diagram, like the various

types of shapes, lines, texts, matrices, maps, and the relationship between

them is described using the graphical description language (GDL). On the

other hand, textual editing tools are provided with the description of how

they are to be edited using a layout language (LL). Yet at run-time most of

the functionality of tools are provided by the customizer functions which we

discussed in previous section.

Toolbuilder has been used to encode SSADM which is considered to be a

complex methodology. In addition it has been used in many MetaCASE related

research projects including teaching, reverse engineering and re-engineering [3].

Our general impression is that Toolbuilder provides a very e�ective mean for

capturing data model of methodologies and creating the appropriate diagrams

and text editors. Often this is most e�ective when the engineer is very familiar

with the domain and yet very ine�ective when the users are not experts.

27

3.2.2 User Interfaces

The user interface of Toolbuilder is OSF/Motif based which is usually used in

the Unix environment. However Toolbuilder has addressed portability across

operating systems and hardware platforms. As an example, e�orts are on the

way to port Toolbuilder into Linux environment. The customized tools are

often single-user tools, however, Toolbuilder provides facilities for teamwork.

The interaction styles of the user interface (windows, menus, buttons, etc.)

and the layouts are described by a format description language (FDL). FDL

parameterizes the tools by associating speci�c actions with the creation and

selection of an interaction object like a menu or an icon. The interaction is

through the design diagram and structure text editors which capture both

the diagrammatic and textual aspects of the methodologies or the designed

software systems.

During the speci�cation of the methodologies there seems to be no help

available for the CASE tool customizer. However with the speci�cation, there

are (not very explicit) facilities that would allow building of help systems,

metrics, and guidelines to be used by CASE users. In general, a conclusion in

using Toolbuilder by Ferguson is the extreme complexity when extending the

functionality of the tools beyond the default operations which, together with

poor documentation, requires a lengthy learning curve [28].

3.2.3 An Object and Document Manager

Toolbuilder manages user interaction with a user interface management sys-

tem. Initially a log-on facility is responsible for setting-up the environmental

variables used by the tools, compilers, and the database. Once logged-on,

the user interface manager controls the interaction between the tools, com-

pilers, and the database. Compilers are the back-end to the languages of

the Toolbuilder (DDL, FDL, LL, and GDL). These languages parameterize

the run-time component and in
uence the METHS component that captures

di�erent aspects of the methodologies.

Toolbuilder addresses the user's view of the underlying data model in its

frame model. Frames are collections of graphical or textual objects with images

on the screen and associated actions. The actions maybe default functions, like

cut-and-paste, or more speci�c functions like navigation. There is a root frame

which is invoked by the run-time component and determines the presentation

of the information to the user. FDL, LL, and GDL scripts are all generated

within the frames for use by the run-time component.

Data consistency among di�erent representations is said to be the result of

using a uniform meta-modeling technique in the database. However, as a result

of current research, high level manipulation functions have been developed

which maybe used recklessly and introduce inconsistencies. Hence there is a

28

need for a mechanism that would check the correctness of diagrams.

It is claimed that Toolbuilder has been used in building a management

process support system. We do not have documentation of this, however, the

database of Toolbuilder seems to have the capability of supporting automatic

triggering rules. These rules can be used to de�ne events and actions required

in supporting a process that would be executable at run-time. This capability

is implicit in the meta-model.

3.2.4 A Query and Report Manager

It appears that Toolbuilder does not provide a complete, clear, and high level

querying facility. However the current stage of Toolbuilder's functionality

is not clear and therefore passing a judgment seems unfair. Based on the

documentation available to us, there are functions developed for accessing the

database (based on the attribute values) and visualizing the data (using links

and sequences). This is done by queries de�ned by the CASE tool customizer

to be used by CASE tool user.

Toolbuilder allows generation of reports with structures de�ned by an spe-

ci�c sub-language. Once the report structure has been customized, the output

generation aspect of Toolbuilder uses the design and structure text editors'

o�-line facilities to produce the appropriate output. These outputs maybe for

the users or for the further stages of the process. The customization of outputs

takes place in the following four stages: �rst by controlling the source of the

information which is a crude form of integration, second by controlling the

structure which includes scripts for generating particular representations of

data, third by controlling the logical appearance at the run-time, and fourth

by controlling the physical appearance directly or using a publishing system.

3.2.5 Transformation and Meta-programming Tools

Toolbuilder uses an integrated and shared data system between its tools, and

allows transformations between textual and diagrammatic formats of data.

This is like viewing the same data using di�erent tools or in di�erent environ-

ments. Furthermore, the report generating sub-language of Toolbuilder and

the corresponding run-time components are used to de�ne speci�c formats for

the outputs. This can be done between di�erent stages of the process.

Toolbuilder provides facilities for \lower CASE", including code genera-

tion, con�guration management, and version control. This is based on its

open architecture which allows third party component integration, speci�cally

document processors and code generators. However we have not been able to

obtain any documentation describing experiences in these areas.

29

4 OO-based Tools

Examples of tools that use an OO-based or an extension of this meta-modeling

technique are MetaEdit, QuickSpec [49], Phedias [86], and ConceptBase [37].

QucikSpec has been reviewed by Martiin et al. Phedias is a fairly recent at-

tempt in MetaCASE technology but in many ways very similar to MetaEdit

and RAMATIC. ConceptBase is basically a deductive object manager for

MetaCASE tools. It amalgamates an OO-based meta-modeling technique with

knowledge-based features to facilitate deductive reasoning on the data storage

of MetaCASE tools. Among the tools of this type we will, therefore, exam-

ine MetaEdit which happens to be a popular commercial tool with distinct

methods engineering capabilities.

4.1 MetaEdit System

The MetaEdit family of tools and in particular MetaEdit+ is one of the most

popular MetaCASE tools both from the research and from the industrial usage

point of view. In addition, MetaEdit+ is also a Computer Aided Method

Engineering (CAME) tool. Although all MetaCASE tools provide means of

methodology speci�cation, MetaEdit+ claims to be a CAME tool since it

also provides
exible means of method management, integration and reuse.

This tool is the result of a joint research project between Jyv�askyl�a and Oulu

universities in Finland. This project is named MetaPHOR6 with an estimated

cost of about 600 000 US-D within 20 man years. This research is much focused

on meta-modeling theory and its applications to method engineering.

Considering our discussion about the three levels of MetaCASE modeling

in section 1.3 we can discuss the corresponding three levels in MetaEdit+ [76].

As a MetaCASE tool which is used to build CASE tools, the three levels are

similar to our model in �gure 6. However as a CAME tool the three levels

operate one level \higher" than in the MetaCASE tools. Therefore the highest

level is called the meta-meta-modeling level where the syntax and semantics

of various meta-modeling techniques are de�ned. The subsequent levels are

the two highest levels in the MetaCASE tools. This allows de�nition of meta-

modeling techniques and engineering of methodologies. We will refer to meta-

meta-modeling as meta-modeling since the concept of modeling is the same at

any meta level.

The general architecture of MetaEdit+ is shown in �gure 10. This ar-

chitecture is based on conceptual modeling principles. Hence, the repository

has an associated conceptual schema and the tools resemble external views

of that schema. In addition object-oriented design is used in development of

MetaEdit+ which allows reuse and interoperability between tools as claimed

6Introduced in section 1.4.2

30

MetaEngine

Diagram Editor

Matrix Editor

Table Editor

Report Editor

Object etc. Tools

Symbol Editor

Retrieval

Management

Tools

Management
Instance of

Browsers

Startup/Main

Network

MetaEdit+

Environment

Tools

Model

Editing

Model

Tools

Method

Tools

Repository

MetaEngine

Figure 10: MetaEdit+ Architecture

by developers. The heart of MetaEdit+ is the MetaEngine which handles all

operations on the underlying conceptual data. The tools of MetaEngine are

divided into four groups: environment management tools (to manage features

of the environment); model editing tools (to create, modify, and delete model

instances or their parts); model retrieval tools (to retrieve design objects and

their instances); method management tools (for method speci�cation, man-

agement, and retrieval).

4.1.1 Data Storage, Access and Descriptor Facilities

The meta-model used in MetaEdit+ is called GOPRR: Graph, Objects, Prop-

erties, Relationships, and Roles. This data modeling technique is used at the

conceptual level for speci�cation of Methodologies as they are observed, inter-

preted, and recorded. The objects of GOPRR refer to the independent and

identi�able design objects like the entities of an ER diagram. These objects

often have properties that are their attributes like the name of a process in a

DFD. Relationships are associations between objects that appear as lines be-

tween shapes in diagrams. Roles de�ne speci�c ways that objects participate

in relationships.

The concept of graph was added to the meta-model for several reasons. It

denotes an aggregate concept which contains a set of objects and their rela-

tionships. This allows representation of complex objects using decomposition

into contained objects. In addition this design allows di�erent \representa-

tional" graphs (like matrix or diagram) of the same \conceptual" graph (like

a DFD). Furthermore it makes possible the use of multiple methods at various

levels of the project while maintaining links among them.

31

Other capabilities provided by the graph concept are the inclusion of gen-

eralization and specialization constructs as well as polymorphism. This last

extension allows viewing of an object in one method as an object and in another

method as a relationship or property. GOPRR allows method integration in

such a way that objects, relationships, and roles can be reused and properties

can be shared. It provides rules for checking model integrity, consistency, and

completeness which is done by de�ning constraint rules that are attached to

the properties of a given object, role, relationship, or a graph.

MetaEdit+ provides support for OO analysis and design methodologies

such as OMT and Booch as well as structured analysis and design method-

ologies such as Yourdon SA/SD. Developers claim that their system provides

one of the largest selection of method supports. An advantage of this system

is the capability to change the description of the methodology even while it

is in use. These changes are said to be re
ected on the models immediately.

The major focus of this tool is on capturing the data about the methodology.

Little work is done on ensuring correctness or providing detailed analysis and

simulation tools.

The data is stored in the repository of the MetaEdit+. This data includes

the method speci�cations represented as GOPRR concepts and other informa-

tion bases needed to operate the tools. Among them are the information about

the symbols representing objects, information necessary for the operation of

the tools such as the spatial coordinates of objects, information describing

various users with their status, and �nally reports and other output speci�-

cations. There is a data management system that allows data sharing and

concurrency. This is achieved using a locking mechanism which admittedly

reduces the performance.

4.1.2 User Interfaces

MetaEdit+ is a multiuser system with client-server architecture that is also

multi-platform. Each client has an instance of MetaEdit+ with copies of all

the available tools and the controlling MetaEngine. The main launcher allows

only the permitted capabilities based on the login information and the user

status located in the repository. As an example, a browser allows hierarchical

access to the models and the meta-models stored in the repository based on the

user permission. Further interfaces with the system is through the graphical

or textual tools.

Speci�cation of the methodologies is through the conceptual object type

tools, such as the relationship tool, and their textual representations. This is

often done by �lling in a form that describes the conceptual object. A symbol

editor is used to specify and design the graphical objects and their behavior

while linking them to the conceptual object type. There seems to be no help

available during the speci�cation of the methodology. However facilities are

32

provided for de�ning helps, metrics, and reporting systems for the CASE users.

CASE tool users interface with the system using model editing tools such

as the diagram, matrix, and table editors. These tools are invoked from a

WorkSpace which holds information about the user and can be con�gured to

the users likings. Added facilities by the CASE tool customizer can provide

help and guidance systems that maybe triggered automatically and metrics

that maybe used to produce reports.

4.1.3 An Object and Document Manager

The MetaEngine is the direct back-end of the tools used by the users to access

the repository. The implementation of the conceptual data model and the

operational signatures are embedded in the MetaEngine. Accordingly, tools

request services from the MetaEngine but operate solely based on their own

speci�c paradigm. In the client-server architecture MetaEngine deals with all

the communication issues with the server and even between the tools. Hence,

data sharing is made possible through data integration.

As discussed earlier this architecture allows transformation of objects from

one format to another one. This is possible between the three supported for-

mats: diagrammatic, matrix, and tabular. In addition, it is possible to view

objects in one method as an object and in another method as a relationship

or property. Although such a
exibility is most desired, it may cause prob-

lems. Among them is to ensure consistency and integrity within and between

methods. This problem is the topic of one the future research directions of

MetaEdit+.

The research is on the way for a
exible process support system which

guides and coordinates various activities and manages deliverables in MetaEdit+

[48]. An activity in process modeling refers to an information system devel-

opment or managerial task (or a composition of tasks) that uses, or produces,

a deliverable or acts as a managerial event like signi�cant dates of a project.

Such a support is project tailored and involves all the managerial aspects of

the project. Therefore, it requires a rule based triggering mechanism, a version

control for all the deliverables, and navigational as well as viewing capabili-

ties. An aspect, not available in MetaEdit+, is the selection assistant that

guides the user in selecting the right Methodology for a project or a part of it.

Ongoing research in this area is also acknowledged [88].

4.1.4 A Query and Report Manager

MetaEdit+ provides tools for editing speci�cation of methodologies which gets

stored in the repository. No support is available for making queries about the

correctness of the methodology, however, its consistency and completeness is

veri�ed during the description process.

33

Querying the states of the software developer speci�ed data is possible

using the customized querying and reporting facilities. The CASE tool cus-

tomizer can use the report editor and its procedural query and data manipu-

lation language to generate the capability for producing textual descriptions

of the models. This capability can be used by software developers in querying

the models of the repository. These queries maybe simple checks about the

consistency and completeness, requests about the states of the data, or more

complicated SQL type queries. MetaEdit allow creation of various reports

that give textual descriptions about the model of the software system under

construction.

4.1.5 Transformation and Meta-programming Tools

Objects of MetaEdit+ can be viewed by di�erent tools which act as local

transformation facilities. In essence, there is only one copy of the objects which

maybe viewed in di�erent environments and formats. An example is a textual-

to-graphical transformation. However, there are no additional transformation

languages that could be used to transform models between methodologies or

tools.

Transformation between di�erent phases of the software engineering pro-

cess is possible using the combination of the speci�cation of the methodolo-

gies and the report generating facilities. With the help of the report editing

tool, functions can be de�ned to take data inputs from one phase (like ob-

ject descriptions) and produce data outputs in the next phase (like language

dependent class de�nitions). Although the focus of MetaEdit+ is to act as

an \upper CASE", there are semi-automatic facilities that could be used as

meta-programming tools. MetaEdit+ provides prede�ned SQL and Smalltalk

generation capabilities.

5 Graph-based Tools

This �nal category of MetaCASE tools is a less explored category. The meta-

modeling technique of the tools in this category is an attempt to overcome the

di�culties with the OO-based and the ER-based techniques. A graph-based

meta-modeling technique is said to be expressive enough to model all the

aspects of methodologies and yet provide clear and easy to use querying and

manipulating capabilities. Examples of tools in this category are a prototype

tool by IBM called 4thought [71] and a proposal level tool by JRCASE called

CASEMaker [73]. We will examine both of these tools.

34

5.1 4thought System

The 4thought prototype is a result of the Advanced Software Design Tech-

nology (ASDT) project of the Center for Advanced Studies (CAS) in IBM

Canada, which ended in 1995 [70]. The underlying theory for the development

of 4thought is the Theory-Model paradigm [43, 69] which is an attempt to pro-

vide con�dence about the correctness of a complex design. Of course the real

solution to the problem of correctness is the \proof" paradigm which requires

great e�ort in using formal methods and consequently is not practical.

In the Theory-Model paradigm there are theories (methodologies) that

prescribe categories of design concepts and rules. A design is said to be a

collection of facts that form a model for the theory. Once the model falls

within a category and satis�es the rules, it is assumed valid. This approach is

more practical than the formal proof approach. Yet it is still partially formal

since methodologies are described using a formal speci�cation language such

as Z [21]. This paradigm provides the theoretical basis for the development of

4thought system.

It is important to notice that 4thought approaches MetaCASE from a dif-

ferent viewpoint. Most MetaCASE tools focus on providing means of captur-

ing the data model of methodologies using various meta-modeling techniques.

Then they focus on providing ways of customizing easy to use CASE tools to

be used by the software developers. In this process, ensuring the correctness

of the produced software system is secondary. With 4thought, the focus is

towards verifying that a design meets the constraints of the methodology with

which it was developed.

4thought is only a prototype and lacks a complete architectural design.

Based on the available documentation, it is described as a collection of stand

alone components. These components are integrated to provide the function-

ality that supports the Theory-Model paradigm. First, methodologies are for-

malized using various formalization techniques. Next, they are modeled, both

graphically and logically, using meta-modeling techniques. Then, executables

are generated using Prolog programs. Finally, software systems are speci�ed

and checked using the executable methodologies.

One of the components that is used in 4thought is a Prolog database server

that contains the information captured using meta-modeling and formalizing

techniques. The visualization of data in the form of graphs is through a visu-

alization and querying system called GraphLog [15]. The textual views of the

data is also available which maybe integrated with the graphical information

and using the hypertext technology linked together.

35

5.1.1 Data Storage, Access and Descriptor Facilities

Based on the Theory-Model paradigm, methodologies are �rst formalized.

This step is particularly important for the informal methodologies. The key

goal in doing this is to ensure that there is a precise meaning for the con-

cepts found in the methodologies. Since most of the fundamental concepts in

software engineering can be described using elements of set theory and pred-

icate logic, a formal language such as Z notation has been used for this part.

Examples of modeled methodologies are JSD, OMT, and OOA [92]. It has

been argued that only a subset of the predicate calculus would be su�cient to

represent the elements of methodologies. Hence a visual logic programming

language (GraphLog) has also been used to express typical predicate calculus

concepts of methodologies graphically.

The meta-modeling technique used by 4thought is based on graphical rep-

resentation of the concepts of the methodologies. As the �rst step, ER dia-

grams are used to model the primitive concepts. This meta-model provides a

basis for visualizing concepts as graphs where entities are the nodes and the

relationships are the arcs of the graph. This allows association of a seman-

tic network with the meta-model. However, ER models are not su�cient to

describe methodologies. Therefore, GraphLog has been used to provide more

semantic power. It allows representation of hierarchy using the nesting of

nodes within nodes. This is referred to as Hygraph structures that are formal,

rich, and expressive semantic networks [15].

A methodology includes derived concepts that maybe expressed in terms of

the primitive ones. These concepts may include logical constraints and rules

of the methodology. Perhaps operations for viewing or updating the data,

while preserving the integrity constraints, are required. GraphLog, as the

meta-modeling technique, allows de�nition of concepts, constraints, queries,

and update transactions. Since GraphLog is a logic programming language,

it allows de�nition of the logical constraints and rules which maybe used in

proving the correctness, consistency and completeness of the speci�ed software

systems.

The database of the facts about the methodology and the speci�ed software

systems are Prolog-based. The entities of the ER diagrams are represented as

Prolog predicates. In addition, relationships, integrity constraints, queries and

the update transaction operations of the GraphLog become the Prolog rules

and facts. A database management system controls and manages transactions

with the database but we do not expect much functionality in terms of locking

and concurrency control since 4thought is only at the prototype level.

36

5.1.2 User Interfaces

The user interface of 4thought is mainly through GraphLog where the method-

ology and the software system data can be visualized, speci�ed, and edited

graphically. We are not aware of the details of this user interface but it is

expected to be a standard data visualization and editing facility. Besides

GraphLog the other facilities of 4thought are prototypes involving little or no

user interface issues.

5.1.3 An Object and Document Manager

Initially 4thought allows the users to connect to the Prolog database and cre-

ate a workspace that contains meta-model of a methodology and snapshots of

any speci�ed software system. Using the meta-model and the speci�c software

system further Prolog programs can be invoked as helping or guiding facili-

ties. Among these programs we can name the viewing facilities that create a

snapshot of the data about a speci�c design. This facility is under research

to provide a faster refreshing capability and more up-to-date views. There is

also a Prolog program that allows veri�cation of the correctness of a speci�ed

software system against the rules of the methodology. In addition, Prolog pro-

grams exist that help in searching the database of a particular software system.

These programs are compiled with the standard Prolog compiler creating the

run-time components.

5.1.4 A Query and Report Manager

GraphLog system allows inquiries about the modeled methodology, speci�ed

software system, and their consistency and correctness. These queries may

involve searches through the database and computations about the states of

the data. GraphLog is claimed to have a higher expressive power than SQL, in

particular, when expressing graph traversal operations without using recursion.

This maybe considered one of the most advantageous aspects of using a graph-

based meta-modeling techniques.

There seems to be no reporting facilities available in 4thought other than

what the GraphLog provides.

5.1.5 Transformation and Meta-programming Tools

There is a GraphLog-to-Prolog translator which takes the GraphLog repre-

sentation of the system and produces Prolog facts and rules for the use by

the Prolog-based database system. This transformation can be considered

a formal transformation since the language of GraphLog is logic which can

be mathematically transformed into logical statements readable by the Pro-

log compiler. This GraphLog-to-Prolog translator seems to have performance

37

problems which is most problematic for large-scale software systems. This area

is considered to be an active research area by deductive database community.

4thought, at this prototype level, provides no other facilities for the \lower

CASE" activities.

5.2 CASEMaker System

CASEMaker is the most recent MetaCASE tool project undertaken by the

Joint Research Center for Advanced Systems Engineering (JRCASE) and Mac-

quarie University in Sydney, Australia. This project is only at a proposal level

which can hardly be reviewed in comparison with other more developed tools.

However, we believe it addresses many fundamental issues about MetaCASE

technology and is worth examining. In addition, this study can help us under-

stand the current state-of-practice in building MetaCASE tools.

Motivation for the development of CASEMaker is claimed to be the demand

for \better" MetaCASE tools. The \better" here refers to the capability of

providing more than just the data capture which is about the only major

functionality o�ered by tools such as Toolbuilder and MetaEdit. CASEMaker

claims to be able to o�er more in areas such as design simulation, metrics,

transformations, and guidance services. However, this project is at a proposal

level and results remain to be seen.

The proposed architecture of CASEMaker has two parts: components (cus-

tomizable building blocks of the CASE tool), and assembly-customization tools

(mechanisms for the assembly and customization of the components). There

are also three sections recognized in CASE tools: the user interface, the design

support facility, and the database. For each of these sections there are both

the components library and the assembly-customization tools that are used by

the CASE tool customizer to produce all three aspects of the CASE tool.

Details of the architecture is yet unknown but the existing documentations

show numerous issues being addressed in the design of CASEMaker. The

user interface of the CASEMaker is an aspect which has been researched, its

necessary requirements have been identi�ed, and the concept has been designed

[47]. It is referred to as the MetaDesigner which consists of a group of generic

GUI classes (engine) that maybe integrated and con�gured (into the builder)

so that speci�c CASE tools can be built.

We will leave the review of speci�c components of CASEMaker to a later

date when a prototype is available. At this point we can examine the fairly

complete meta-modeling technique (hypernode) used in CASEMaker [72]. Sim-

ilar to GraphLog structures, hypernodes are sets of nodes and edges of a graph

where a node maybe a graph itself. Hence they generalize nodes as oppose to

the edges (which is the case in hypergraphs). The hypernode model was orig-

inally proposed in 1990 and described as a graph-based deductive data model

with a Datalog-based query language [44]. Later it was formalized using set

38

theory and the hypernode query language (HNQL) was described to be a

high-level procedural query language [72]. Based on these descriptions, HNQL

provides functions for the creation, deletion, and manipulation of hypernodes

as well as declarative querying.

The hypernode model was �nally extended by Louis Scott in his PHD the-

sis to include scripting capabilities by the addition of concepts such as the

assignment statements and while loops. He argues that the hypernode model

can provide support for modeling a variety of concepts in methodologies. This

includes data structure representations, like the OO data, and dynamic behav-

ior representations like the Petri-net data. To demonstrate this, a prototype

hypernode-based CASE tool has been developed to simulate software behav-

ior. We believe the e�orts to show the e�ectiveness is a practical step towards

building \better" tools.

We have provided some detail to introduce CASEMaker but any further

detail without having a prototype would seem to shift us away from our pur-

pose which is to review the existing tools. In general. this tool is a hybrid

between a formal research work (like 4thought) and a commercial tool (like

Toolbuilder). Its capabilities remain to be seen.

6 Other Tools and Components

There are other MetaCASE tools and Components that we have not catego-

rized or examined in this paper. For example ObjectMaker [58], Paradigm Plus

[81], and Graphical Designer [20] are commercial tools with little or no avail-

able documentation and Hotdraw, Hardy, Re�ne, and Goodstep [81] are merely

components that can be used in construction of MetaCASE tools. Hence our

review does not include them. An extension to this research is the examination

of the remaining tools and the related components based on the framework

built in this preliminary paper.

7 Discussion

In this section we will summarize and provide concluding discussions about

the examined MetaCASE tools based on the framework of our study. We will

use our typical component subdivisions and attempt to compare and analyze

the advantages and disadvantages of each tool. A more detailed list of re-

quirements based on the tabulation of the results is one of our future research

goals.

39

7.1 Data Storage, Access and Descriptor Facilities

The Metaview system o�ers EDL and ECL languages for modeling data,

graphical objects, and constraints. Similarly the DDL, FDL, and GDL lan-

guages of Toolbuilder are used for modeling and formatting of data. MetaEdit

provides an OO modeling capability which is extended by the concept of

graph (GOPRR). This graph concept di�ers from the graphical capabilities

of Metaview or Toolbuilder. It refers to aggregation and representation of

hierarchical concepts using graph structures.

With the meta-modeling techniques of Metaview or Toolbuilder some com-

plex methodologies, like SSADM, can be modeled. In addition, with certain

di�culties, OO methodologies can also be modeled. An example is the di�-

culty of Metaview in modeling two relationships with the same participants.

The MetaEdit, on the other hand, is capable of modeling complicated OO

methodologies, like the OMT, and may have di�culties with the structured

analysis and design methodologies. All three of these tools have enforced

extensions on top of the basic ER or OO meta-modeling techniques. These

extensions provide capabilities for representing hierarchy. They have caused

inconsistencies like the problems with the integration of the aggregation and

the graphical extension that the Metaview system faces. In short they lack a

clear and prede�ned structure.

The 4thought and CASEMaker systems use logic/set-based meta-modeling

techniques with formal mathematical foundations and well developed modeling

and querying languages. GraphLog and Hypernode have been shown to be

capable of modeling \many" (\all" as claimed by developers of these meta-

models) software engineering artifacts. However, much more work is needed

to prove the usefulness of these tools since both of the tools in this category

are in their early stages of development.

The databases of the existing and developed tools (Metaview, Toolbuilder,

and MetaEdit) o�er �le locking mechanisms which permit concurrent access

of the data. The commercial tools also provide facilities for software evolution

which we will examine in future research.

7.2 User Interfaces

The customization of CASE tools requires experts when using the Metaview

system, since the con�guration of the tool as well as much of the work in

creating graphical tables and constraints is performed manually. However,

Toolbuilder and MetaEdit o�er easy to �ll form-based interfaces for customiz-

ing CASE tools that maybe �lled by customizers or even the novice developers.

4thought and CASEMaker are only in the early stages of development.

None of the existing tools o�er any kind of help to the CASE tool cus-

tomizer. The primary objective of most of the commercial CASE tools, like the

40

Toolbuilder and MetaEdit, is to capture data and diagram formats, for which,

form-based language constructs would be su�cient. Further customizations,

specially in de�ning method speci�c behaviors, are possible but reduce the

ease of use. For the CASE tool users commercial tools o�er an easy to use

interface which includes customizable help systems.

7.3 An Object and Document Manager

The process of CASE customization in Metaview is done at two stages of

method de�nition and tool con�guration. The method de�nition is basically

writing EDL and ECL codes while tool con�guration requires knowledge of the

methodologies and is performed manually. CASE customization in Toolbuilder

is simply data and graphical format capture using form-like speci�cation cap-

ture facilities (METHS). The captured speci�cation forms the parameters for

the run-time component automatically. The MetaEngine of MetaEdit sup-

ports its method management tools that interact with the user in a form-

like data capture fashion. The CASE tool is then con�gured automatically.

CASEMaker approaches the process of CASE customization by providing cus-

tomizable components and customization tools that interact with the user

and con�gure the generic components. The 4thought system, in its prototype

phase, does not o�er any usable CASE tool customization facilities.

In terms of management process support, the Metaview, Toolbuilder, and

MetaEdit tools either have an active database or facilitate de�nition of trig-

gers that maybe used in de�ning events and actions necessary for supporting

management process controls. The 4thought and CASEMaker systems are

also capable of this functionality but no work has been done in this area.

7.4 A Query and Report Manager

Among the studied tools, 4thought and CASEMaker o�er the most formal,

clear, and functional querying facilities. The reporting facilities o�ered by

Toolbuilder and MetaEdit seem to be most comprehensive, but the others

also provide the basic capabilities. Often there are di�erent levels of report

generation controls but the format seems to be always text-based. The text

provides a description of the methodologies or the speci�ed software systems.

All the tools provide some form of consistency and completeness checking

which is often at the diagram syntax level. However, none of the tools o�er

any formal way of proving theorems about the correctness of methodologies

or the software systems speci�ed in those methodologies. An exception is

the formal approach of the 4thought system and its support of the Theory-

Model paradigm, which allows some reasoning about the methodology and the

speci�ed software systems.

41

7.5 Transformation and Meta-programming Tools

In all of the tools a single repository is used to store the captured informa-

tion about the software systems. This allows viewing of the same data in

di�erent formats. All of the tools o�er capabilities, often as a side e�ect of

their querying and reporting facilities, for de�ning transformations between

phases of the software process. However, only Metaview provides a semi-

automatic mechanism, through ETL language constructs, that maybe used to

de�ne mathematically based transformations.

The need for some form of meta-programming capability has been acknowl-

edged by most of the tools. Some tools, like the Metaview and CASEMaker

focus on the \upper CASE", at this point and provide no facilities for \lower

CASE". Others, like the Toolbuilder and MetaEdit, provide at least a basic

and semi-automatic code generation capabilities.

8 Conclusion

In conclusion, we would like to emphasize on the importance of MetaCASE

technology. It has been observed that CASE and consequently MetaCASE

tools are not widely used in the industry. Investigation of the underlying

reasons reveal that the cause is the high cost of adopting CASE tools. In

addition, the ease of use is a major factor in successful use of CASE tools.

MetaCASE tools o�er solutions to some of these problems however there are

many open problems in this area that needs to be addressed. These open

problems can be summarized by the following three items:

� Functionality in specifying the methodologies:

{ The meta-modeling techniques have unclear structures with incon-

sistencies caused by various extensions (except CASEMaker).

{ They are often limited to data-capture and provide little or no

means of specifying the process or the guidelines prescribed by

methodologies.

{ Methodologies are captured informally and their correctness is not

ensured (except 4thought).

� Functionality in using the customized CASE tools:

{ Although most of the tools allow capture of the dynamic behavior,

they do not provide facilities for simulation/animation of this be-

havior (except CASEMaker). This capability would prove useful in

ensuring the correctness of the captured speci�cation of the system.

42

{ Research is needed to provide a better support for the entire soft-

ware process.

� Usability of the tools:

{ During methodology speci�cation and CASE tool component con-

�guration there seems to be no help or guidance available.

{ Most commercial tools provide an easy to use interface for the CASE

tool user. However more guidance can be used in recommending

and navigating between di�erent methodologies depending on the

application.

The contribution of this paper is the introduction of a framework for studying

MetaCASE tools and grouping of the existing tools. Based on this framework,

we have examined some representative tools. It has lead to the identi�cation

of the problem areas which we have summarized in this section. We plan to

formulate a list of requirements which will lead us towards the proposal of

a MetaCASE tool that satis�es them. The most essential part of a Meta-

CASE tool, as identi�ed in this study, is the meta-modeling technique and the

underlying database which we hope to design and prototype in the nearest

future.

43

References

[1] Ada. Conference proceedings. In 2nd International Conference on Ada Ap-

plication and Environment. IEEE Computer Science Press, 1986. Standard

Reference.

[2] A. Alderson. MetaCASE technology. In Proceedings of European Symposium on

SDE and CASE Technology, Lecture Notes in Computer Science, pages 81{91.

Springer-Verlog, June 1991.

[3] G. Allen and A.R. Jackson. MetaCASE technology in the support of infor-

mation systems teaching. In Proceedings of First International Conference on

MetaCASE. Sunderland, UK, 1995.

[4] M.J. Aslett. A Knowledge Based Approach to Software Development: ESPRIT

Project ASPIS. North-Holland, Amsterdam, 1991.

[5] P. Bergsten, J. Bubenko, R. Dahl, M. Gustafsson, and L.A. Johansson. RA-

MATIC - a CASE shell for implementation of speci�c CASE tools. Technical

Report T6.1, TEMPORA Project, SISU, Stockholm, 1989. Cited From [49].

[6] G. Boloix, P.G. Sorenson, and J.P. Tremblay. Process modeling using a Meta-

system approach to software speci�cation. Technical Report TR 92-11, Depart-

ment of Computer Science, University Of Alberta, Canada, 1992. Cited From

[8].

[7] G. Boloix, P.G. Sorenson, and J.P. Tremblay. Transformations using a metasys-

tem approach to software development. Software Engineering Journal, 7:425{

437, 1992.

[8] G. Boloix, P.G. Sorenson, and J.P. Tremblay. Software metrics using a meta-

system approach to software speci�cation. Systems Software, 20:273{294, 1993.

[9] G. Booch. Object-Oriented Analysis and Design with Applications. Benjamin

Cummings, Redwood City, 1993.

[10] J.Jr. Bubenko. Selecting a strategy for computer-aided software engineering

(CASE). Syslab Report 59, University of Stockholm, Sweden, June 1988. Cited

From [49].

[11] R.N. Charette. Software Engineering Environments Concepts and Technology.

McGraw-Hill, 1221 Avenue of Americas, New York, 1986.

[12] M. Chen and J.F.Jr. Nunamaker. MetaPlex: An integrated environment for

organization and information systems development. In Proceedings of 10th

International Conference on Information Systems, pages 141{151. ACM Press,

New York, 1989. Cited From [49].

[13] P. Chen. The Entity-Relationship model towards a uni�ed view of data. ACM

Transactions on Database Systems, 1, March 1976.

44

[14] J. Chikofsky. Software technology people can really use. IEEE Software, pages

8{10, March 1988.

[15] M.P. Consens. Creating and �ltering structural data visualizations using Hy-

graph patterns. Ph.D. Thesis, University of Toronto, 1994.

[16] M. Crozier, D. Glass, J. Hughes, W. Johnston, and I. McChesny. Critical

analysis of tools for CASE. Information and Software Technology, 31:486{496,

November 1989. Cited From [49].

[17] Customizer. Reference guide. Index Technology Co., Cambridge, USA, 1987.

Cited From [49].

[18] M. DeBellis. The knowledge-based software assistant program. Notes Form

Lectures in Stanford University. Anderson Consulting, Palo Alto, USA.

[19] T. DeMarco. Structured Analysis and System Speci�cation. Prentice-Hall, En-

glewood Cli�s, New Jersey, 1978.

[20] Graphical Designer. Reference guide. Advanced Software Technologies, Col-

orado, USA, 1996. http://davinci2.csn.net/~jefscot/index.html.

[21] A. Diller. Z: An Introduction to Formal Methods. John Wiley and Sons, Chich-

ester, England, 1990.

[22] M.B. Dixon, J.F. Coxhead, and E.A. Dodman. MetaCASE and audit: Auto-

mated generic quality assessment. In Proceedings of First International Con-

ference on MetaCASE. Sunderland, UK, 1995.

[23] A.L du Plessis. A method for CASE tool evaluation. Information and Man-

agement, 25:93{102, 1993.

[24] A. Endres. Preface. In Proceedings of European Symposium on SDE and CASE

Technology, Lecture Notes in Computer Science. Springer-Verlog, June 1991.

[25] A.V. Lamsweerde et al. Generic lifecycle support in the ALMA environment.

Tr, Honeywell Systems and Research Center, Minneapolis USA, 1989. Cited

From [38].

[26] Excelerator. Reference guide. Index Technology Co., Cambridge, USA, 1987.

Cited From [49].

[27] S.I. Feldman. MAKE - a program for maintaining computer programs. Software

Practice Experiences, 9:255{265, 1979. Standard Reference.

[28] R.I. Ferguson. The beginner's

guide to IPSYS TBK. University of Sounderland Occasional Paper 93/3, 1993.

http://osiris.sunderland.ac.uk/rif/metacase/metacase.tools.html.

[29] P. Findeisen. The

Metaview system. University Of Alberta Research Homepage Article, 1994.

http://web.cs.ualberta.ca/~softeng/Metaview/project.html.

45

[30] G. Forte. Tools fair: Out of the lab, onto the shelf. IEEE Software, pages

70{79, May 1992.

[31] A. Gillies. MetaCASE: One step beyond? In Proceedings of First International

Conference on MetaCASE. Sunderland, UK, 1995.

[32] A. Isazadeh. Behavioral views for software requirements engineering. Ph.D.

Thesis, Queen's University, 1996.

[33] S. Isoda. SoftDA - a computer aided software engineering system. In Proceedings

of Fall Joint Computer Conference, pages 142{151, 1987. Cited From [34].

[34] S. Isoda, S. Yamamato, H. Kuroki, and A. Oka. Evaluation and introduction of

the structured methodology and a CASE tool. Journal of Systems and Software,

28:49{58, 1995.

[35] M.A. Jackson. System Development. Prentice-Hall, Englewood Cli�s, New

Jersey, 1983.

[36] I. Jacobson, M. Christerson, P. Jonsson, and G. �Overgaard. Object-Oriented

Software Engineering, A Use Case Driven Approach. Addison Wesley, Reading,

Massachusetts, 1992.

[37] M. Jarke. Concept-

Base: A deductive object manager for meta databases. Reference Guide, 1996.

http://www-i5.informatik.rwth-aachen.de/CBdoc/cbflyer.html.

[38] A. Karrer and W. Scacchi. Meta environments for software pro-

duction. University of Southern California Homepage Article, 1994.

http://www.usc.edu/edu/dept/ATRIUM/index.html.

[39] S. King, P. Layxell, and S. Williams. CASE 2000: The future of CASE tech-

nology. Software Engineering Journal, 9:138{139, 1994.

[40] P. Klint. A meta-environment for generating programming environments. ACM

Transactions on Software Engineering and Methodology, 2:176{201, 1993. Cited

From [38].

[41] P. Laamanen. Automation of software product metrics: a proposal for a meta-

model based metrics engine. In Proceedings of First International Conference

on MetaCASE. Sunderland, UK, 1995.

[42] D.A. Lamb. Software Engineering, Planning for Change. Prentice-Hall, Engle-

wood Cli�s, New Jersey, 1988.

[43] D.A. Lamb, A. Malton, and X. Zhang. Applying the Theory-Model Paradigm.

Internal Technical Report 1996IR-01, Queen's University, February 1996.

[44] M. Levene and A. Poulovassilis. The Hypernode model and its associated

query language. In Proceedings of the 5th Jerusalem Conference on Information

Technology, pages 520{530. IEEE Computer Society Press, October 1990.

46

[45] M. Lioyd. Knowledge based CASE tools: Improving performance using domain

speci�c knowledge. Software Engineering Journal, 9, July 1994.

[46] K. Lyytinen and P. Kerola. MetaPHOR: Meta-modeling, principles, hypertext,

objects, and repositories. TR 7, Department of Computer Science, University

Of Jyv�askyl�a, Finland, December 1994.

[47] G. Maokai and L. Scott. Developing the user interface for the MetaCASE

toolset (concept document). JRCASE research report, Macquarie University

Joint Research Center for Advanced Systems Engineering, Sydney, Australia,

1996.

[48] P. Martiin. Towards
exible process support with a CASE Shell. In Proceed-

ings of Advanced Information Systems Engineering CAiSE'94, Lecture Notes

in Computer Science, pages 14{27. Springer-Verlog, June 1994.

[49] P. Martiin, M. Rossi, V. Tahvanainen, and K. Lyytinen. A comparative review

of CASE shells: A preliminary framework and research outcomes. Information

and Management, 25:11{31, 1993.

[50] J. Martin and C. McClure. Design Techniques for Analysis and Programmers.

Prentice-Hall, Englewood Cli�s, New Jersey, 1985. Cited From [77].

[51] A. McAllister. Modeling concepts for speci�cation environments. Ph.D. Thesis,

University of Saskatchewan, 1993. Cited From [29].

[52] C. McClure. CASE is Software Automation. Prentice-Hall, Englewood Cli�s,

New Jersey, 1989.

[53] MetaEdit+. Refernce guide. Metacase Consulting, Jyv�askyl�a, Finland, 1996.

[54] S. Misra. CASE system characteristics: Evaluative framework. Information

and Technology, 32:415{422, July 1990. Cited From [49].

[55] I. Mitchell and C. Hardy. MetaCASE editorial. In Proceedings of First Inter-

national Conference on MetaCASE. Sunderland, UK, 1995.

[56] R.J. Norman and M. Chen. Working together to integrate CASE. IEEE Soft-

ware, pages 13{16, March 1992.

[57] K.S. Oakes, D. Smith, and E. Morris. Guide to CASE adaption. SEI TR 15,

Carnegie-Mellon University, Pittsburgh, USA, 1992.

[58] ObjectMaker. Reference guide. Mark V Systems, Encino, California, 1996.

http://www.markv.com/.

[59] J.K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1 Jacob Way, Read-

ing, Massachusetts, 1994.

[60] D.E. Perry and G.E. Kaiser. Models of software development environments.

IEEE Transactions on Software Engineering, 17, March 1991.

47

[61] R.S. Pressman. Software Engineering, a Practitioners Approach. McGraw-Hill,

1221 Avenue of Americas, New York, 2 edition, 1987.

[62] QuickSpec. Reference guide. Meta Systems Ltd., Ann Arbor, Michigan, 1989.

Cited From [49].

[63] J. Rader, A.W. Brown, and E. Morris. An investigation into the state of the

practice of CASE tool integration. SEI TR 15, Carnegie-Mellon University,

Pittsburgh, USA, 1993.

[64] Rational. Rational

appoints Ivar Jacobson as vice president of business engineering. Company

Newspage, 1995. http://www.rational.com/htdocs/news/pr146.html.

[65] A. Reeves, M. Marashi, and D. Dudgen. A software design framework or how

to support real designers. Software Engineering Journal, pages 141{155, July

1995.

[66] T. Rose and M. Jarke. A decision-based con�guration process model. In Pro-

ceedings of 12th International Conference on Software Engineering, pages 316{

325. Nice, France, 1990. Cited From [49].

[67] W. Royce. Managing the development of large software systems: Concepts. In

WESCON Proceedings, August 1970. Cited From [11].

[68] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-

Oriented Modeling and Deign. Prentice-Hall, Englewood Cli�s, New Jersey,

1991.

[69] A.G. Ryman. The Theory-Model Paradigm in software design. Technical Re-

port 74.048, IBM Co., October 1989.

[70] A.G. Ryman. Foundations of 4thought. In Proceedings of CAS Conference

CASCON'92, pages 133{155, Toronto, November 1992. IBM CANADA.

[71] A.G. Ryman. Constructing software design theories and models. In Proceedings

of ICSE'93 Workshop: Studies of Software Design, Lecture Notes in Computer

Science, pages 103{114. Springer-Verlog, May 1993.

[72] L. Scott. Hypernode model support for software design CASE. JRCASE Re-

search Report 96/7, Macquarie University Joint Research Center for Advanced

Systems Engineering, Sydney, Australia, July 1996.

[73] L. Scott. MetaCASE concept document. JRCASE Research Report 96/8, Mac-

quarie University Joint Research Center for Advanced Systems Engineering,

Sydney, Australia, August 1996.

[74] SEEWG. A software engineering environment for the navy. Technical report,

NAVMAT Software Engineering Environment Working Group, March 1982.

Cited From [11].

48

[75] S. Shlaer and S. Mellor. Object Lifecycles Modeling the World in States.

Prentice-Hall, Englewood Cli�s, New Jersey, 1992.

[76] K. Smolander, K. Lyytinen, V. Tahvanainen, and P. Martiin. Metaedit-A

exible graphical environment for methodology modeling. In Proceedings of

Advanced Information Systems Engineering CAiSE'91, Lecture Notes in Com-

puter Science, pages 168{193. Springer-Verlog, May 1991.

[77] P.G. Sorenson and J.P. Tremblay. Using a Metasystem approach to support

and study the design process. In Proceedings of ICSE'93 Workshop: Studies of

Software Design, Lecture Notes in Computer Science, pages 88{102. Springer-

Verlog, May 1993.

[78] P.G. Sorenson, J.P. Tremblay, and A.J. McAllister. The Metaview system for

many speci�cation environments. IEEE Software, pages 30{38, March 1988.

[79] A.V. Staa and D.D. Cowan. An overview of the Totem software engineering

Meta-Environment. Technical Report PUC-Rio.infMCC 35/95, Ponti�cia Uni-

versidade Catolica do Rio de Janeiro, Brazil, November 1995.

[80] S.C. Stobart, J.B. Thompson, and P. Smith. The use, problems, bene�ts, and

future directions of CASE in the UK. Information and Software Technology,

33:629{636, 1991. Cited From [31].

[81] Sunderland. Homepage article. University of Sunderland, UK, 1996.

http://osiris.sunderland.ac.uk/rif/metacase/metacase.tools.html.

[82] W. Teielman and L. Masinter. Interlisp programming environment. IEEE

Computer, 14:25{33, April 1981. Standard Reference.

[83] I. Thomas. PCTE interfaces: Supporting tools in software engineering envi-

ronments. IEEE Software, 6:15{23, November 1989. Cited From [38].

[84] T.F. Verhoef and A.M.T. Hofstede. Structuring modeling knowledge for CASE

Shells. In Proceedings of Third International Conference on CAiSE, pages 502{

524. Springer-Verlag, May 1991.

[85] I. Vessey, S. L. Jarvenpar, and N. Tractinsky. Evaluation of vendor products:

CASE tools as methodology companionships. Communications of ACM, 35:90{

105, April 1992. Cited From [49].

[86] X. Wang and P. Loucopoulos. The development of Phedias: a CASE Shell. In

Proceedings of CASE'95, pages 122{131. IEEE Computer Society Press, July

1995.

[87] A.I. Wasserman. Tool integration in software engineering environments. In

Proceedings of Software Engineering Environments, Lecture Notes in Computer

Science, pages 137{149. Springer-Verlog, 1989.

[88] J.L. Whitten, L.D. Bentley, and V.M. Barlow. Systems Analysis and Design

Methods. Irwin, Burr Ridge, Illinois, 1994.

49

[89] Y. Yamamoto. An approach to generation of software lifecycle support systems.

Ph.D. Thesis, University of Michigan, 1981. Cited From [38].

[90] E. Yourdon. Modern Structured Analysis. Yourdon Press, Englewood Cli�s,

New Jersey, 1989.

[91] E. Yourdon and L.L. Constantine. Structured Design. Yourdon Press, Engle-

wood Cli�s, New Jersey, 1979.

[92] X. Zhang. A Theory-Model formalization of Shlaer-Mellor Object-Oriented

Analysis. In Proceedings of CAS Conference CASCON'94, pages 324{333,

Toronto, November 1994. IBM CANADA.

[93] Y. Zhuang. Object-Oriented modeling in Metaview. MSc. Thesis, University

of Alberta, 1994.

50

