
Dept. of Computing and Inf. Sc. Technical Report 1997-405

AN ACTION-BASED LOGIC OF CAUSALITY,

KNOWLEDGE, PERMISSION AND OBLIGATION
1

Glenn MacEwen

Department of Computing and Information Science

Queen's University, Kingston, Ontario K7L 3N6 Canada

Xiao Jun Chen

Department of Computer Science, University of Ottawa

Scott Knight

Department of Electrical and Computer Engineering

The Royal Military College of Canada

E-mail: macewen@qucis.queensu.ca

Phone: 613-545-6052 Fax: 613-545-6513

Abstract

The critical properties required of secure systems can vary widely in their nature

from application to application. Di�erent properties required within the same sys-

tem can result in interactions that are di�cult to understand. In addition, the

integration of systems having di�erent properties can cause unanticipated interac-

tions. The Critical System Logic (CSL) addresses these problems by providing a

common language for specifying a wide range of security-related properties so that

their interactions can be analyzed. CSL extends ACTL, an action-based propo-

sitional branching time temporal logic. It contains elements of epistemic logic to

reason about knowledge, temporal logic to reason about time and causality, and

deontic logic to reason about permission and obligation. Permission and obligation

are given semantics determined by role-based access and visibility control. Exam-

ples, including those of access control in medical system records and multi-level

secrecy, are given to demonstrate the expressiveness of the logic and to argue the

utility of formal reasoning in such applications.

Key Words: security, formal methods, requirements speci�cation, temporal

logic, deontic logic, knowledge, permission, roles.

1This work was supported by the Natural Sciences and Engineering Research Council

of Canada (NSERC) and by the Universit�a degli Studi di Roma La Sapienza. It was

initiated by the �rst two authors during 1995 at the Universit�a di Roma while the �rst

was there on sabbatical.

1

1 Introduction

An important part of requirements speci�cation for critical systems with se-

curity requirements is a precise expression of those security properties that

are fundamental and formalizable. The nature of such properties can vary

widely over issues of secrecy, integrity, legitimate use and availability. Secrecy

pertains to the prevention of unauthorized information
ows through a sys-

tem. Integrity pertains to the protection of system state from unauthorized

modi�cation. Legitimate use pertains to the prevention of unauthorized use

of system resources. Availability pertains to the prevention of unauthorized

interference with use of system resources. Security can mean any combina-

tion of these concerns.

In addition to having an inherently large scope, security properties can

have aspects that overlap onto other domains of behaviour such as fault-

tolerance. Consequently, it is highly desirable to have available a formal

requirements speci�cation language that is able to express this wide range of

properties. Furthermore, if a number of critical properties are speci�ed the

danger of inadvertent undesirable interactions arises. It is necessary therefore

to be able to analyze such collections of properties and to derive properties

from them.

Finally, the integration of systems having security property requirements

raises similar problems of inadvertent interactions. Here the problem is often

more di�cult to address because the security properties of the component

systems being integrated may have been speci�ed in di�erent languages using

di�erent concepts thus making the analysis of interaction very di�cult.

We view the four security property classes, secrecy, integrity, legitimate

use and availability, as being the basic security property classes, while other

property classes such as identi�cation, authentication, access control, data

privacy, data integrity and digital signatures are supporting security mecha-

nisms. The reason for this is that the �rst four seem to be more properly part

of requirements speci�cation while the latter are properties often speci�ed in

ways to enforce the basic properties. For example, in order to correctly en-

force a secrecy property with respect to a particular user, that user needs

to be identi�ed. And access control is often used as a mechanism to enforce

secrecy.

The Critical System Logic (CSL) was developed to provide a common lan-

guage for specifying critical properties of systems, primarily from a computer

2

security viewpoint. It is intended for the speci�cation and analysis of proper-

ties over a wide range of security concerns. It is also speci�cally designed to

be at a su�ciently abstract level so that it can be used to express properties

that may have been originally speci�ed in di�erent formalisms so that they

can be analyzed together. At the same time, the intended domain of appli-

cation of CSL is much larger than computer security alone. The reason for

this, from a computer security perspective, is that security properties can be

compromised by behaviour that is not accounted for in formulating the secu-

rity properties themselves. For example, CSL allows the expression of some

aspects of fault-tolerance. Extensions to provide hard-real-time properties

remain an objective of future work.

Most current and proposed formal security policy de�nitions deal with

only one of the security policy classes. For example, see [18, 34, 25] for

secrecy, [7, 5, 2] for integrity, and [19, 33, 1] for legitimate access. There has

been work in integrating secrecy and integrity [24], and secrecy under special

(possibly faulty) behaviour [4]. We are not aware of a formal de�nition

of availability. CSL is an attempt to provide a way of expressing at least

some aspects of all of these concerns. In this, we have been successful with

respect to secrecy, integrity and legitimate access. Some limited properties

of availability and fault behaviour are also expressible.

CSL builds on Computation Tree Logic (CTL) which is interpreted on

Kripke Structures and is a well-known temporal logic used for state-based

logical reasoning [15]. The Action-based version of CTL (ACTL) [29] has

similar syntactic and semantic styles as CTL, but it is interpreted on labelled

transition systems (LTS's) and thus permits us to express properties in terms

of sequences of actions and to work on action-based logical reasoning [30].

In summary, CSL is a formal method intended for requirements speci�-

cation and analysis of critical systems. It extends ACTL with the following

primitive notions: active agents called subjects; action names called com-

mands; visibility of commands; the enabling and disabling of authorization

for subjects to invoke commands; the masking and unmasking of authoriza-

tion for subjects to view the occurrence of commands; and the backwards

temporal operators Since and Last. The three major security modalities,

permission (and its dual obligation), causality and knowledge, are derived

de�nitions. Roles are introduced to express the time dependent set of access

and view authorizations possessed by a subject. The semantics is interpreted

on LTS's. The logic is motivated in part by an earlier Security Logic called

3

SL [17] which provided a vehicle to investigate the relationship between the

knowledge and permission modalities. However, that logic was not given a

clear semantics. Indeed, the semantics of permission were left completely

open.

The set of subjects models the active entities in any universe of discourse.

These can be users, processes, programs, accounts or whatever other entity it

is useful to model for expressing security. The formulae of the logic express

assertions about the state of the system under speci�cation. Knowledge

allows one to specify that a subject knows that a formula is true. Causality

allows one to specify that a subject can cause a formula to be true. The

temporal logic allows the truth of a formula to be time dependent. Obligation

and permission are properties specifying an authorization for a formula; the

�rst says that a formula is not authorized to be false, and the latter says

that a formula is authorized to be true. Although there have been formal

treatments of roles, e.g. [12], we are not aware of an action-based approach,

nor of an approach incorporating view authorizations in addition to access

authorizations. For a formula to be obligated means that if the formula is not

true in some system state then there is some other state which is identical

except that the formula is true and which is deemed to be a better state.

Obligation and permission are duals; permission for a formula to be true

means that it is not obligated to be false.

The remainder of the paper is organized as follows. The next section

presents the computational model, which is an extended labelled transition

system. Section 3 gives the syntax and semantics of the logic. Section 4

extends the logic with derived operators which include those for causality,

knowledge, permission, obligation and roles. Section 5 discusses some of the

common problematic properties of deontic logics which do not occur in CSL;

it also gives some short examples of speci�cation and of properties that are

of general veri�cation interest. Section 6 presents some security applications,

and the last section contains suggestions for future work and some comments

about related work.

2 Computational Model

CSL is interpreted on labelled transition systems, which have been widely

used as operational semantic models of distributed and concurrent systems

4

to formalize the activities and changes of a system [28, 32]. In particular,

they o�er a simple and convenient model to explicitly describe causality and

choice, the two main aspects of interest in distributed systems. Causality

refers to the fact that certain events in a distributed system can only occur

in a �xed order; for example, a message can be received only after it has been

sent. Choice captures the fact that systems can behave in a non-determinate

fashion. In other words, at certain points of the computation, the system may

choose between alternative events, leading to di�erent behaviours. Formally,

a Labelled Transition System (LTS) is a tuple A = (Q;A;!; 0Q) where:

� Q is a set of states;

� A is a �nite non-empty set of actions;

� ! � Q � A� Q is the transition relation: an element (r; a; q) 2 ! is

called a transition and is written as r
a
! q;

� 0Q is the initial state.

Typically, Q is a set of states or con�gurations: states of a database, pro-

gram states, states of knowledge, con�gurations of a machine and so on. A

transition r
a
! q represents the fact that state r may become q due to or

under the in
uence of a which could be an action, a period of time, a person

or whatever. In CSL, we use labelled transition systems to model commands

invoked to change the state of some system of interest, which may or may

not be a distributed system.

Computation is de�ned on paths over a LTS. In the following, let r; q; s; : : :

range over Q and a; b; : : : range over A. Paths over a LTS A = (Q;A;!; 0Q)

are de�ned as follows:

� A sequence (q0; a0; q1)(q1; a1; q2) : : : 2 !1 is called a path from q0; a

path that cannot be extended, i.e. is in�nite or ends in a state without

outgoing transitions, is called a fullpath; the empty path consists of a

single state q 2 Q and is denoted by q;

� If � = (q0; a0; q1)(q1; a1; q2) : : : we denote the starting state q0 of the

sequence by �rst(�) and the last state in the sequence (if the sequence

is �nite) by last(�); if � is an empty path (i.e. � = q, then �rst(�) =

last(�) = q;

5

� Concatenation of paths is denoted by juxtaposition: � = ��; it is only

de�ned if � is �nite and last(�) = �rst(�).

� When � = �� we say that � is a su�x of � and that it is a proper su�x

if � 6= q; q 2 Q.

� When � = �� we say that � is a pre�x of � and that it is a proper pre�x

if � 6= q; q 2 Q.

A pre�x of a path from 0Q is called an initial-path. If � is an initial-path,

path(�) is the set of fullpaths of which � is a pre�x. In the following, let

� range over initial-paths, � range over fullpaths, �; � range over su�xes of

initial-paths, and � range over su�xes of fullpaths.

Actions play an important role in computation; in fact, we are interested

in reasoning about sequences of actions to capture the behaviour of a sys-

tem. To de�ne actions, we assume sets of subjects and commands. The set

U of subjects includes the initial subject boot. One can think of these as the

active entities of interest: processes, processors, computers, humans, termi-

nals, etc. The set C of commands includes the initial command init. One

can think of these as the ways in which a subject can receive or issue a com-

munication: interactive terminal commands, operating system commands,

application language operations, message types, etc.

2.1 Actions and Security

The logic permits reasoning about static, i.e. mandatory, security policies.

The capability of a subject to arbitrarily invoke a command or to view the

occurrence of a command can be restricted by speci�cations given in the

language of the logic. Such restrictions limit the evolution of paths, and thus

the behaviour of the system under speci�cation. The restrictions on what

commands a subject is authorized to invoke or view in any state, given by

the speci�cation, form the basis of a mandatory security policy.

In addition, the logic permits reasoning about dynamic policies through

roles; one can think of a role as the status of some subject as it acts. A

subject can have many roles, and can share each with other subjects. A role

de�nes the capability of a subject to act and to view. Examples of roles

are: message sender, system administrator, auditor, authorized user, system

programmer, trusted system process, I/O processor, etc. A role assigned to

6

a subject confers to the subject a subset of commands that the subject is au-

thorized to invoke, and a subset of commands that the subject is authorized

to view. In the computational model, then, a role is simply a set of command

authorizations. To capture roles we have four deontic relations, the �rst two

of which are * � C � (U � C) and + � C � (U � C). c * (i; c0) means that

immediately following the occurrence of c, i is authorized to invoke command

c0. c + (i; c0) means that immediately following the occurrence of c, all cur-

rent authorizations for i to invoke command c0 are revoked. We call a pair

(c; (i; c0)) 2 * an access-authorization and a pair (c; (i; c0)) 2 + an access-

forbiddance. The e�ect of an access-authorization (access-forbiddance) per-

sists until a corresponding access-forbiddance (access-authorization) occurs.

An access-authorization (access-forbiddance) (c; (i; c0)) is said to enable (dis-

able) the (subject,command) pair (i; c0).

The �nal two of the four deontic relations are 4 � C � (U � (U � C))
and 5 � C� (U � (U �C)). c4 (i; (j; c0)) means that immediately following

the occurrence of c, i is authorized to view the invocation by j of command

c0. c5 (i; (j; c0)) means that immediately following the occurrence of c, all

current authorizations for i to view the invocation by j of command c0 are

revoked. We call a pair (c; (i; (j; c0))) 2 4 a view-authorization and a pair

(c; (i; (j; c0))) 2 5 a view-forbiddance. The e�ect of a view-authorization

(view-forbiddance) persists until a corresponding view-forbiddance (view-

authorization) occurs. A view-authorization (view-forbiddance) (c; (i; (j; c0)))

is said to unmask (mask) the viewing by subject i of j invoking command c0.

These four relations are also intended to capture the deontic interdepen-

dence of commands independent from subjects, what we call safety security;

the occurrence of a certain command can mean that some other command

should not occur until after some third command occurs. For example, in

some system the occurrence of an o� command might mean that an on com-

mand should not occur until after a reset command has occurred. Under

a safety-based policy an authorized command is authorized for all subjects,

and a forbidden command is forbidden for all subjects.

An action is a tuple a = (S; cm;R;E;D; U;M) where

� S � U , the set of subjects invoking cm; jSj > 1 represents a synchro-

nization in which all the subjects in S jointly invoke cm,

� cm 2 C, the associated command,

7

� R � U , the set of subjects that view (receive or observe) cm,

� E � U � C, the set of pairs (i; c) such that cm * (i; c),

� D � U � C, the set of pairs (i; c) such that cm + (i; c),

� U � U � (U � C), the set of pairs (i; (j; c)) such that cm4 (i; (j; c)),

� M � U � (U � C), the set of pairs (i; (j; c)) such that cm5 (i; (j; c)),

and where E and D, and U and M , are respectively disjoint, and S � R. In

addition, if (i; c) 2 E then (i; (i; c)) 2 U and if (i; (i; c)) 2M then (i; c) 2 D,

since, respectively, a subject invoking a command is aware of that fact so an

enabled command should be viewable and a masked command should not be

invokable. The initial command init is implicitly authorized.

For CSL we de�ne an Extended Labelled Transition System (ELTS) as a

tuple A = (Q;A;!; 0Q; 0A), where the �rst four components are the same as

for a LTS and 0A is an initial action of the form (fbootg; init; fbootg; E; fg; U; fg).
E is the set of initially enabled (subject,command) pairs. U is the set of

initially unmasked (subject,(subject,command)) pairs. The following two

conditions hold: (i) j fq j 0Q
0A! qg j> 0 ; (ii) if 0Q

a
! q then a = 0A.

Note that in our setting the notion of the visibility of actions, which

has been widely discussed in process theory (see e.g. [28]), is implicitly and

statically de�ned in terms of speci�c subjects; i.e. any action not visible to

subject i is silent with respect to i.

3 The Logic

As with ACTL, we start with a small logic of actions which is embedded

within CSL. This logic permits the speci�cation of a class of actions by con-

straining the components of members of the class. In the following, let i; j; : : :

range over U and c; d; : : : range over C. We write a:X to denote the compo-

nent X of action a. Given U and C, the set of action formulae LA is given

by the following BNF grammar:

� ::= true j :� j � ^ � j sb(i) j cm(c) j rc(i) j en(i; c) j ds(i; c) j um(i; (j; c)) j
ms(i; (j; c))

8

We write false for :true. The operators : and ^ have the usual meaning.

The mnemonics sb, cm, rc, en, ds, um and ms, respectively, abbreviate the

words subject, command, receiver, enables, disables, unmasks and masks.

The semantics for the action formulae LA is given by means of the satis-

faction relation j= � A� LA inductively de�ned as follows:

a j= true always

a j= :� i� a j== �

a j= � ^ �0 i� a j= � and a j= �0

a j= sb(i) i� i 2 a:S

a j= cm(c) i� a:cm = c

a j= rc(i) i� i 2 a:R

a j= en(i; c) i� (i; c) 2 a:E

a j= ds(i; c) i� (i; c) 2 a:D

a j= um(i; (j; c)) i� (i; (j; c)) 2 a:U

a j= ms(i; (j; c)) i� (i; (j; c)) 2 a:M

Example 1: The action formula (sb(i)_ sb(j))^ cm(c)^ rc(k)^
en(k; d)^um(k; (l; d)) speci�es the class of all actions that model

command c invoked by either or both of subjects i and j, which

are visible to subject k as well as the invokers i; j, which enables

command d for subject k, and which unmasks l invoking d for

subject k.

Notice that any action formula of the form cm(c) ^ cm(d), for

c 6= d, is unsatis�able, and also that sb(i)) rc(i), en(i; c))
um(i; (i; c)) and ms(i; (i; c))) ds(i; c) are axioms.

We now give the main CSL logic in which the logic of actions is embed-

ded. The language of CSL formulae is given by the following grammar:

� ::= true j :� j � ^ � j 9
 j 8
 j

X�� j ��

U�� j Ki� j Ac
i j V

j;c
i

 ::= X�� j ��U�� j ��U�

As with action formulae, we write false for :true and the operators : and

^ have the usual meaning. A formula of the form �, called an initial-path

formula, speci�es a state property. A formula of the form
, called a fullpath

9

�

�

-
�0

�0�

s s-

......

�

�9 ��U�0�0
- sss

Figure 1: Visualization for Until Modality.

formula, speci�es a property of future time. 9
 asserts that there exists a

future path with the property
. 8
 asserts that
 holds for all future paths.

X�� (pronounced Next) asserts that the next transition involves an action

that satis�es � and that after the action � holds. Figure 1 illustrates the

meaning of U, (pronounced Until). ��U�0�0 means that � holds now and

eventually an action satisfying �0 will occur after which �0 will hold, and

until that time all actions will satisfy � and all states will satisfy �. The

alternate version of Until, ��U�
0, is similar except that until �0 holds all

actions will satisfy � and all states will satisfy �; this includes the case that

�0 holds in the current state.

X�� (pronounced Last) is the backwards analog of X��.

X�� asserts that

the previous transition involved an action that satis�ed � and that before the

action � held.

U (pronounced Since) is the backwards analog of U. ��

U�0�0

means that at some time in the past, an action satisfying �0 has occurred.

Before that action, the state satis�ed property �0 and after that action (since

then) all the states satis�ed � and all the actions satis�ed �.

Ki� (pronounced i Knows �) asserts that subject i knows fact �. This

operator is explained in more detail after we show the semantics. Ac
i and V

j;c
i

form the basis for permission; Ac
i means that subject i is access-authorized to

invoke command c and V
j;c
i means that subject i is view-authorized to view

subject j invoking command c.

The formal semantics of CSL formulae is given below. Satisfaction of an

initial-path formula � (fullpath formula
) by an initial-path � (fullpath �

with pre�x �), notation � j=A � or just � j= � (�; � j=A
 or just �; � j=
),

is given inductively by:

� j= true always

� j= :� i� � j== �

� j= � ^ �0 i� � j= � and � j= �0

� j= 9
 i� there exists a fullpath � 2 path(�) such that �; � j=

10

� j= 8
 i� for all fullpaths � 2 path(�), �; � j=

� j=

X�� i� � = �(q; a; q0) and a j= � and � j= �

� j= ��

U�0�0 i� � j= � and there exists � = �0(q; a; q0), pre�x of �, such that

�0 j= �0; a j= �0 and for all � = �0(r; b; r0), pre�xes of �,

of which � is a proper pre�x, we have �0 j= � and b j= �

� j= Ki� i� � j= true:rc(i)

Ucm(init)(:9(true:rc(i)U:�)) or there exists some

command c such that � j= true:rc(i)

Urc(i)^cm(c)^:cm(init)

Ki(:9(true:rc(i)Urc(i)^cm(c)(9(true:rc(i)U:�))))
� j= Ac

i i� there exists subject k and command d such that

� j= (true:ds(i;c)

Uen(i;c)^cm(d)^sb(k) true) and either d = init or

for every subject k0 and command d0

� j= :(true:ds(i;c)

Uen(i;c)^cm(d0)^sb(k0) :A
d0

k0)

� j= V
j;c
i i� there exists subject k and command d such that

� j= (true:ms(i;(j;c))

Uum(i;(j;c))^cm(d)^sb(k) true) and either d = init or

for every subject k0 and command d0

� j= :(true:ms(i;(j;c))

Uum(i;(j;c))^cm(d0)^sb(k0) :A
d0

k0)

�; � j= X�� i� � = �0� and �0 = �(q; a; q0) and �0 j= � and a j= �

�; � j= ��U�0�0 i� � j= � and � = �� and there exists � = �0(q; a; q0), pre�x of �,

such that �� j= �0; a j= �0 and for all � = �0(r; b; r0),

pre�xes of �, which are proper pre�xes of �, we have

�� j= � and b j= �

�; � j= ��U�
0 i� � = �� and there exists a pre�x � of � such that �� j= �0

and for all � = �0(r; b; r0) which are pre�xes of �,

we have ��0 j= � and b j= �

The Since modality

U plays an important role in our logic because it

allows us to derive useful information about the past. The following example

shows a way of using

U to express the fact that a command c has been seen

by subject i.

Example 2: A user sees any message that he receives. An initial-

path � holds the sequence of message sending actions, and thus

also the information about these received messages. For each user

i, only some of the messages are visible. Recall that subscripting

a modal operator with an action class rc(i) speci�es that the

11

action is visible to i; in the last state of �, the string of messages

that i has seen can be de�ned by

(i) seeni(") = true:rc(i)

Usb(boot)true

(ii) seeni(sc) = true:rc(i)

Ucm(c)^rc(i)seeni(s)

where in (i), " denotes the empty string: user i sees nothing i�

after the initial action (identi�ed by action formula sb(boot)), no

action is visible to i (expressed by action formula :rc(i)). (ii)

expresses the fact that i has seen a string s of messages concate-

nated with message c i� there is a state in the past in which i

has seen s, from which it received visible message c (expressed by

cm(c) ^ rc(i)) and after which no other messages are visible.

It is easy to see that, by means of

U and action formulae, we can also

derive other useful information about the past. Such information can be

important to the security of behaviours in the future. For example, the

access rights of user i depend on how he has logged in. Furthermore, deriving

information via

U gives us the ordering of past events. This is important

when we need to select among the messages according to the order in which

they appeared. For example, if a user �rst logged in as a system manager

then as a normal user, his authorization should be based on the latest login.

Observations with respect to a subject i in an initial-path � form the basis

both for controlling i's future behaviours, and for obtaining its knowledge.

Intuitively, the knowledge of a subject i in a given state is determined by all

those states that, from i's perspective, appear equivalent in the sense that

any one of them could possibly be the actual current state. That is, i cannot

distinguish equivalent states using only the partial state observable to it. A

subject i knows a fact �, denoted Ki�, if � is true in all the states that appear

equivalent to i [22].

It is easy to see that a subject i cannot distinguish exactly those states

with past paths (histories) having the same observations with respect to

i. Therefore, i knows a fact � in a state s i� all the states having the

same observations (in the past) w.r.t. i as does s, satisfy �. This can be

characterized by using

U to go back to the initial state and then using U

to proceed forward to �nd all the states having these observations, skipping

through all actions invisible to i.

12

Figure 2: Example to Help Visualize the Knowledge Modality

The semantic de�nition of Ki� has a recursive style similar to the de�ni-

tion of seeni in Example 2. Figure 2 shows an example to help visualize and

explain the de�nition of knowledge. The tips of the arrows at the top of the

diagram represent all the states having histories with the same subsequence

of actions visible to i, namely ab. Actions visible to i are shown with solid

arrows and (possibly empty) sequences of actions not visible to i are shown

with dotted arrows. The initial action init is not visible. One arrow tip is

labelled with Ki� to represent a state for which one wants to check if i knows

�. In order to check that fact one must �nd all the other states with identical

visible histories, i.e. those represented by the upper arrow tips, and check

that � is satis�ed in all of them.

The search for all such equivalent states starts by moving backwards

through the history, ignoring invisible actions, until a visible action is found.

At this point one records the visible command name, b in the example, and

moves forward in all possible su�xes identical to the one just traversed back-

wards, to ensure that none ends in a state that does not satisfy �. The search

also continues backwards recursively to �nd the next visible action, a in the

example, and carries out the same check at that point. The recursive search

ends when the initial action init is reached.

Fundamental to security in CSL are the facts that a particular subject i is

13

access-authorized for command c in the current state, and that a particular

subject i is view-authorized for the subject-command pair (j; c) in the current

state. These two facts, respectively, are denoted by Ac
i and V

j;c
i . For Ac

i to hold

the (subject,command) pair (i; c) must have been enabled by some access-

authorization (d; (i; c)). Also, a command in such an authorization must,

itself, have been authorized for all invoking subjects when it occurred, and

so on back in the current history until the initial command init is reached.

To determine whether or not a pair (i; c) has been enabled it is necessary to

scan backwards along the history to determine that the last relevant action

was an enabling action. The scan then continues recursively to determine

that all the (subject,command) pairs in the enabling actions in the relevant

sequence were themselves enabled. The search for unmasking is analogous.

4 Derived Operators

The usual derived operators of temporal logics can be de�ned. For example,

for the two quanti�cations of Eventually we write

8F�
def
� 8(truetrueU�)

and

9F�
def
� 9(truetrueU�)

The two quanti�cations of Always are then de�ned by

8G�
def
� :9F:�

and

9G�
def
� :8F:�

Similarly, the analogous Backwards Eventually and Backwards Always oper-

ators can be de�ned

F �
def
� truetrue

Utrue�

G �
def
� :

F :�

14

The important notion of causality is easily introduced via a de�ned Caused

operator. A subject i is said to have caused the path formula
, denoted Ci
,

when
 holds on all future paths and i reached the current state, via some

action, from a state in which some di�erent action could have led to a state in

which
 does not hold on some future path. Put another way, it is necessary

that
 holds after i's action and, if it had not been i that acted,
 might not

hold.

Ci

def
� 8
 ^

Xsb(i) 9Xtrue:8

The permission modality P on a state formula depends on the authoriza-

tions and forbiddances in the history of the current state, and is based on

the structure of the formula. In developing the various de�nitions we use the

usual de�nition of obligation,

O�
def
� :P:�

which can be used to assist the intuition in developing the de�nitions below.

First, constants are dealt with in a straightforward way:

P true
def
� true

P :true
def
� false

Conjunction also o�ers no di�culty:

P(� ^ �0)
def
� P� ^ P�0

P:(� ^ �0)
def
� P:� _ P:�0

For convenience in de�ning quanti�cation over future paths we use an auxil-

iary operator

A expressing the fact that the previous action was authorized:

A
def
�

^

i2U ;c2C

(

Xsb(i)^cm(c) true)

Xtrue A
c
i)

^

i;j2U ;c2C

(

Xrc(i)^sb(j)^cm(c) true)

Xtrue V
j;c
i)

15

Using this shorthand notation we have:

P9X��
def
� 9X�(P� ^

A)

P:9X��
def
� :9X�(:P:� ^

A)

P8X��
def
� 8X�(P� ^

A)

P:8X��
def
� :8X�(:P:� ^

A)

P9(��U�0�0)
def
� P� ^ (P9X�0�0 _ P9X�9(��U�0�0))

P:9(��U�0�0)
def
� P:� _ (P:9X�0�0 ^ P:9X�9(��U�0�0))

P8(��U�0�0)
def
� P� ^

P:9X:�^:�0true ^ P:9Xtrue(:�
0 ^ :8(��U�0�0)) ^

P:9X:�^�0:�0 ^ P:9X�^:�0:8(��U�0�0)

P:8(��U�0�0)
def
� P:� _

P9X:�^:�0true _ P9Xtrue(:�
0 ^ :8(��U�0�0)) _

P9X:�^�0:�0 _ P9X�^:�0:8(��U�0�0)

P9(��U�
0)

def
� P�0 _ (P� ^ P9X�9(��U�

0))

P:9(��U�
0)

def
� P:�0 ^ (P:� _ P:9X�9(��U�

0))

P8(��U�
0)

def
� P�0 _ (P� ^ P:9X:�true ^ P:9Xtrue:8(��U�

0))

P:8(��U�
0)

def
� P:�0 ^ (P:� _ P9X:�true _ P9Xtrue:8(��U�

0))

Permission on the Last operator is analogous to permission on quanti�-

cations of Next.

P

X� �
def
�

X� P� ^

A

16

P:

X� �
def
� :

X� :P:� _ :

A

And permission on the Backwards Until operator is analogous to permis-

sion on quanti�cations of Until.

P(��

U�0 �0)
def
� P� ^ (P

X�0 �0 _ P

X� (��

U�0 �0))

P:(��

U�0 �0)
def
� P:� _ (P:

X�0 �0 ^ P:

X� (��

U�0 �0))

4.1 Derived Role Operators

A subject's access and view privileges are characterized by the commands and

(subject,command) pairs for which it is role-authorized. This is captured

in CSL with the Ac
i and V

j;c
i operators. A role is associated with a set of

access and view authorizations. This association is speci�ed by de�ning a

role operator that takes the name of the role. A role operator is subscripted

by a subject name to denote that the indenti�ed subject is acting with the

de�ned role authorizations. For example, for a role called "Bigrole" that

authorizes access to commands c1; c2; : : : ; cn and the viewing of invocations

(j; c1); (j; c2); : : : ; (j; cm) one de�nes:

Bigrolei
def
� Ac1

i ^ Ac2
i ^ : : :Acn

i ^ V
j;c1
i ^ V

j;c2
i ^ : : :V

j;cm
i

Often roles and commands are subject-relative. For example, send(r)

might be the command "send message to subject r". The role, called "Sender",

that authorizes the sending of messages to any recipient is speci�ed via the

role operator Senderi:

Senderi
def
�

^

r2U

A
send(r)
i

A more restricted role, called "Sender(r)", that authorizes the sending of

messages only to r is speci�ed via the role operator Sender(r)i:

Sender(r)i
def
� A

send(r)
i

17

5 Properties and Expressivity

CSL encounters the standard problems and paradoxes that commonly occur

with deontic logics [37, 16, 11]. For example, we have the following properties:

� P(�^�0)) P�^P�0 This CSL property is known as the Free Choice

Paradox, regarded as problematic because it seems to reduce permission

for a joint action to individual permissions for the component actions

thereby losing the aspect of joint action. It also appears in the following

form.

P8X�^�0true) P8X�true ^ P8X�0true

� P(�_�0)) P�^P�0, although intuitively desirable, does not normally

hold in deontic logics because unacceptable inferences would result [37].

It also does not hold in CSL.

However, some other problematic properties seem to be avoided in CSL. For

example:

� O�) O(� _ �0) This is known as Ross's Paradox, generally

regarded as problematic because it seems to allow an agent obligated

for some future action to deduce a weaker arbitrary obligation. For

example, in CSL a formula of the following form is valid.

O8F "mailed letter") O(8F "mailed letter" _ 8F "burned letter")

However the following, which seems much less of a problem, is not valid.

O8F "mailed letter") O8F("mailed letter" _ "burned letter")

� if �) �0 then O�) O�0 This is the Good Samaritan Paradox,

considered a serious problem for many deontic logics, The usual prob-

lematic example o�ered is that � is "John assists the injured Mary"

and �0 is "Mary is injured". In CSL, however, one could naturally ex-

press this in some form 9X�true for � and

F X�0true for �0 so that we

have

if 9X�true)

F X�0true then O9X�true) O

F X�0true

18

which does not seem to be as problematic as the example suggests. If

it is obligated that there is a future path on which John assists the

injured Mary then it certainly must be the case that Mary was injured

in the past. In other words, it is obligated that Mary was injured in

the past.

Finally, Chisolm's Paradox is often o�ered as a test case for deontic logics

as a property that should be expressible:

O� ^ O(�) �0) ^ (:�) O:�0) ^ :�

The usual example provided occurs where � is "Mary goes to help her neigh-

bour" and �0 is "Mary tells her neighbour that she is coming". In CSL,

one could write the following, with

X� true representing "Mary helped" and

X�0 true representing "Mary told".

O8F

X� true ^ O:9(

X:�0 true)trueU(

X� true) ^

(:9F

X� true) O:9F

X�0 true) ^ :9F

X� true

CSL must be able to specify behavioural properties of systems. For ex-

ample, to specify that command c can be invoked by any subject i 2 X � U ,
one uses the logic of actions to specify:

cm(c))
_

i2X

sb(i)

To specify visibility, for example that subject j invoking command c can

be seen by any subject i 2 X � U , one writes:

(sb(j) ^ cm(c)))
^

i2X

rc(i)

To specify permissions and forbiddances, for example that command c

enables all (subject,command) pairs (i0; c0) 2 X � U � C and disables all

(subject,command) pairs (i00; c00) 2 Y � U � C, one writes:

cm(c)) (
^

(i0;c0)2X

en(i0; c0)
^

(i00;c00)2Y

ds(i00; c00))

The Secrecy Property, fundamental to any system enforcing some sort of

secrecy, is speci�ed:

Ki�) PKi�

19

The following Integrity Property speci�es a form of integrity based on

causality. While other notions of integrity exist, this property seems to cap-

ture a considerable scope of what is generally regarded as integrity.

Ci
) PCi

A generic Legitimate Use Property can be expressed as:

9Xsb(i)^cm(c)true) PXsb(i)^cm(c)true

Availability is not expressible in CSL because it inherently involves real-

time; for example, a query might require a response within some time bound.

The best we can do is a much weaker property that speci�es an eventual

response to a query:

Xcm(query) true) 8F

Xcm(response) true

A secondary goal of CSL is to be able to specify non-security properties

such as those of fault tolerance and failure recovery, so that their interaction

with security properties can be investigated. Expressing properties of sys-

tems in the presence of faults at the requirements level of speci�cation seems

inappropriate at �rst, at least from a purist point of view. However, specify-

ing that there exists a fault that can change the behaviour of a system does

not imply that the requirements speci�er must identify that fault; that can

remain the responsibility of the designer. Rather, the requirements speci�er

is merely saying that where the designer is unable to produce a system that

is tolerant of some expected fault then it is required that the changed be-

haviour satisfy some property. For example, one may specify the behaviour

of a system while it is in a phase of recovery from a failure as follows.

Xcm(failure) true) 8(��U�0�0)

In this example, failure describes some failure action. The speci�cation says

that, after such an action, state and action behaviour in the recovery phase

must satisfy respectively � and � until eventually a recovery action satisfying

�0 occurs to restore the system to a recovery state that satis�es �0.

Other interesting properties include the Memory Property:

Ki�) 8GKi

F �

and the Accessability Property:

PKi�) 9FKi�

20

Figure 3: Multi-Level Secrecy System Model

6 Applications

6.1 Mandatory Multilevel Secrecy

A typical simpli�ed system model for multilevel secrecy is shown in Fig-

ure 3 in which there are only two users, a high user who handles sensitive

information, and a low user who handles non-sensitive information. Each

user invokes a sequence of inputs (input actions) and observes a sequence of

outputs (output actions). Input and output sequences and the sequences of

di�erent users are interleaved. We associate subject l with the low user, and

subject h with the high user. For each input action, an associated subject

is speci�ed via the proposition sb(.) applied to that action. For each input

or output action, some associated subjects are speci�ed via the proposition

rc(.) applied to that action. The di�erence between the subjects is that h

is view-authorized for high and low actions but l is authorized only for low

actions.

Consider, �rst, subject l. It invokes low inputs, observes both low inputs

and low outputs, is enabled for low inputs, and is unmasked for low inputs

and outputs. We then have, for all low input commands c and all low output

21

commands c0,

cm(c)) sb(l)

cm(c0)) rc(l)

cm(init)) en(l; c) ^ um(l; (l; c)) ^ um(l; (l; c0))

Subject h is speci�ed analogously, for both low and high actions. For all high

input commands d and all high output commands d0, and for all low input

commands c and all low output commands c0,

cm(d)) sb(h)

cm(d0)) rc(h)

cm(init)) en(h; d) ^ um(h; (h; d)) ^ um(h; (h; d0)) ^

um(h; (h; c)) ^ um(h; (h; c0))

It is required to prove that these assumptions along with the system's be-

havioural speci�cations together imply the Secrecy Property. I.e.,

Assumptions ^ System Speci�cation) Secrecy Property

However, this simple model is too strong; there are system designs that are

intuitively secure yet would fail this veri�cation using these simple assump-

tions. We need to show how such examples can be addressed. On the other

hand we also need to examine some examples which attempt to test the abil-

ity of a security de�nition to detect intuitively insecure systems and show

how CSL performs. To do this we take three examples from [9], two of which

were motivated by other papers in the literature (cited with the example).

22

6.1.1 Example 3

Consider a system in which a certain low input command c is always echoed

as the high output command d [26]. This is clearly secure on an intuitive

level because the low subject does not learn anything about the high subject's

behaviour. However, the following holds:

Xsb(l)^cm(c) true) Kl8F

Xrc(h)^cm(d) true

which would violate the Secrecy Property because all high outputs are masked

for the low subject. The solution is to dynamically unmask the secure high

output for the low subject and mask it after it appears:

cm(c)) um(l; (h; d))

cm(d)) ms(l; (h; d))

6.1.2 Example 4

The next example attempts to distinguish between insecurities in the system

and those in the environment. Suppose that a certain high input command d

is always echoed as the low output c. This is clearly insecure on any intuitive

level. The question here is the following: If the low subject somehow always

manages to produce an input c0 immediately after the high input d, then does

the fact that the subsequent output c is dependent on c0 render the system

secure since both are at the low level. The answer is no, because when the

input c0 occurs the low subject knows that d occurred. Additionally, such

a behaviour of the low subject would have to be assumed explicitly thus

making it clear in the speci�cation that the violation of secrecy is caused by

the environment and not by the system.

6.1.3 Example 5

The next example tests the ability to detect information
ows caused by a

union of subjects [27]. There are two high subjects h and h0 and one low

subject l. The system behaviour is to read an input from each of h and h0,

say c and c0, and to write an output to l, say d, that is the exclusive-or of

these inputs, i.e. d = c� c0. h0 writes a sequence of random 0 or 1 inputs. h

observes each input c0 of h0 and transmits an associated sequence of bits to

23

l as follows: to send i, write c = i � c0. l then receives d = i � c0 � c0 = i.

Clearly, there is a
ow from high to low. However, as shown by Bieber and

Cuppens, l cannot deduce any information about h nor about h0 because the

ow is from the joint subject h and h0. Consequently, to be useful in this

situation a de�nition of secrecy must be able to detect this joint
ow and

expose the secrecy violation. With CSL applied to this example, we have in

the case that l receives a zero:

Xrc(l)^cm(0) true) Kl(

F

Xsb(h)^cm(0)

F

Xsb(h0)^cm(0) true _

F

Xsb(h)^cm(1)

F

Xsb(h0)^cm(1) true)

In other words, l on receiving a 0 knows that either the sequence c = 0; c0 = 0

or the sequence c = 1; c0 = 1 occurred. It can be shown that to satisfy secrecy

l must either have permission to know that the �rst sequence occurred or

have permission to know that the second sequence occurred. In either case,

l would need view-authorization for high actions which it would not have for

this example.

6.2 Role-Based Access Control

Controlling access to medical records is considered particularly di�cult to

express formally, so an extensive example of this problem is used to illus-

trate access control in CSL.

Example 6 Motivated partly by [21], we take the following simpli�ed set of

natural language requirements:

(a) A patient may not access his own records.

(b) A primary physician may access his patients' records.

(c) A patient may request the transfer of his record to another primary

physician.

(d) A patient must give his permission for his primary physician to share

the patient's record with a consulting physician.

24

(e) A consulting physician may not modify a patient's record.

(f) A consulting physician may not copy or transfer a patient's record.

(g) A nurse, under supervision of the primary physician, may access aspects

of the patient's record that are relevant to the nurse's responsibility.

(h) A clerk may have entry responsibility based on a physician's instructions.

(i) A clerk may read all patient's records.

The sort of formal reasoning that one would like to be able to carry out

with this application includes the following:

� Given a speci�cation of an abstract system model, along with a spec-

i�cation of the roles involved and their privileges, show that these re-

quirements are satis�ed.

Table 1 shows a re-organization of these requirements to make them more

amenable to formalization; Requirement (f) of the natural language require-

ments has been addressed by not providing an operation for copying a patient

record, since such an operation is not required. We comment further on the

appropriateness of this in the next section.

To formalize the requirements in Table 1, identify the following �xed sub-

sets of the subjects: physicians P � U , clerks K � U and for each physician

p 2 P, sta� nurses N (p) � U .

The following commands are provided:

read(r) : Read of record of r, for all subjects r

cread(r) : Constrained read of record of r, for all subjects r

write(r) : Write of record of r, for all subjects r

cwrite(r) : Constrained write of record of r, for all subjects r

transfer(r; p): Transfer patient r to primary p,

for all subjects r and all physicians p 2 P
grant(r; p; q) : Authorize consultant q to primary p of patient r,

for all subjects r and all physicians p; q 2 P
instruct(k; r): Instruct clerk k about patient r,

25

1. A person i may read a patient r's record if and only if i 6= r and

at least one of the following holds: i is the primary physician of r;

i has been granted permission as a consultant to r's current primary

physician; i is a clerk.

2. A person i may do a constrained read of a patient r's record

if and only if i 6= r and i is a nurse for r's primary physician.

3. A person i may write a patient r's record if and only if i 6= r and

at least one of the following holds: i is the primary physician of r;

i is a clerk and r's primary physician has instructed him regarding

writes to r's record.

4. A person i may do a constrained write of a patient r's record

if and only if i 6= r and i is a nurse for r's primary physician.

5. A patient r may e�ect a transfer to physician p as his primary

if and only if r 6= p.

6. A patient r may grant permission for his primary physician p

to give his record to a consultant q to read if and only if r 6= q.

7. A physician p may instruct clerk c to write into patient r's record

if and only if c 6= r and p is r's primary physician.

Table 1: Example Medical System Requirements

26

for all patients r and all clerks k 2 K

Notice that the role of "sta� nurse to physician p" has been conveniently

expressed in the metalogical subsets N (p), rather than providing a set of

explicit such roles. This is possible because there are no commands in the

system model associated with such roles, and no dynamic instantiation of

such roles.

The role speci�cations comprise two parts: the de�nition of the role op-

erators, and the speci�cation of role dynamics, i.e. how commands cause the

association of roles with subjects. The following are the role operators:

Patient(r)i: i acts as patient r

Patient(r)i
def
�

^

p2P

A
transfer(r;p)
i

Client(p)i: i acts as client of physician p

Client(p)i
def
�

^

q2P

A
grant(i;p;q)
i

Nurse(r)i: i acts as nurse to patient r

Nurse(r)i
def
� A

cread(r)
i ^ A

cwrite(r)
i

Primary(r)i: i acts as primary physician to person r

Primary(r)i
def
� A

read(r)
i ^ A

write(r)
i

^

k2K

A
instruct(k;r)
i

Consultant(r)i: i acts as consultant for patient r

Consultant(r)i
def
� A

read(r)
i

Clerki: i acts as a clerk

Clerki
def
�

^

r2U

A
read(r)
i

Scribe(r)i: i acts as a scribe for the record of patient r

Scribe(r)i
def
� Clerki ^ A

write(r)
i

27

Now we need to specify role dynamics. It must be made clear that in our

approach a role does not determine the ability to invoke a command; rather,

the set of commands that a subject is authorized to invoke determines the

role that is being exercised by the subject. It might seem that this results in

a loss of generality because in many applications a subject may be authorized

to invoke a command by virtue of having several roles active at the same time.

It may be important to express explicitly which role is being exercised. This

would be modelled by providing a command by which a subject declares the

role to be associated with a following command. This closely models what is

likely to be the case in practice. The following are the speci�cations of role

dynamics (For readability, we have omitted the propositional notation cm()

for commands.):

Xtransfer(r;p) true) Primary(r)p ^

Client(p)r ^
^

n2N (p)

Nurse(r)n

^

q2P;q 6=p

:Primary(r)q

^

q2P;q 6=p

:Client(q)r

^

n2N (q);q2P;q 6=p

:Nurse(r)n

^

q2P

:Consultant(r)q

^

k2K

:Scribe(r)k

Xinit true)
^

i2U

Patient(i)i

^

k2K

Clerkk

Xinstruct(k;r) true) Scribe(r)k

Xgrant(r;p;q) true) Consultant(r)q

28

The formal role-based requirements can now be written in detail as:

1: 9Xsb(i)^read(r)true)

:Patient(r)i ^ (Primary(r)i _ Consultant(r)i _ Clerki)

2: 9Xsb(i)^cread(r)true)

:Patient(r)i ^ Nurse(r)i

3: 9Xsb(i)^write(r)true)

:Patient(r)i ^ (Primary(r)i _ Scribe(r)i)

4: 9Xsb(i)^cwrite(r)true)

:Patient(r)i ^ Nurse(r)i

5: 9Xsb(i)^transfer(r;p)true)

Patient(r)i ^ :Patient(r)p

6: 9Xsb(i)^grant(r;p;q)true)

Patient(r)i ^ :Patient(r)q ^ Primary(r)p

7: 9Xsb(i)^instruct(k;r)true)

:Patient(r)k ^ Primary(r)i ^ Clerkk

Assuming that the system of interest has been speci�ed with a set of system

speci�cations, then the veri�cation of interest is:

system speci�cations ^ role speci�cations) role-based requirements

If one proves Causality Security

Ci�) PCi�

assuming the system and role speci�cations, then this subsumes a veri�cation

of role-based security, as shown above, along with a proof of safety-based

security. This illustrates the fact that Causality Security is a very strong

property indeed.

29

7 Discussion

Inspired by, and similar to the introduction of Hennessy-Milner logic [HM85],

the action-based version of the logical description language CTL (ACTL)

aims at combining two previously disjoint but complementary approaches

for system analysis: action-based behavioural reasoning (causality, choice)

and state-based logical reasoning. Such a combination is due to the observa-

tion that both of these two areas have their own successful results: operators

for transition systems and the issue of behavioural equivalences which are

interpreted over LTS's have been well developed to support reasoning with

automatic tools; while temporal logics and the associated complexity issue

have been thoroughly investigated in the setting of Kripke Structures. As a

consequence, adopting ACTL as the basis of CSL and LTS's as the computa-

tional model, provides us not only with a way of expressing logical properties

in terms of sequences of actions and action-based logical reasoning, but also

with the potential to introduce process terms [28, 6, 20] interpreted on LTS's

by way of structural rules of operational semantics [32]. The latter, although

out of the scope of the present paper, will provide us with a good way of

expressing concurrent activities in terms of actions, and with the possibility

of working on behavioural reasoning of systems.

Research in deontic modalities in forward-branching backward-linear time

is not new [10]. Our contribution is the extension of recent work in the tem-

poral logic of actions with the deontic modalities permission and obligation,

as well as that of knowledge. Other recent work on the application of de-

ontic logics to computer security includes [8, 13, 9]. Bieber and Cuppens'

work [9] is particularly relevant because it proposes a new de�nition of se-

crecy security within a logical framework. This de�nition, called Causality,

is ascribed to a specialized "permission to know" modal operator. In addi-

tion, their modal logic contains the knowledge operator Ki and the ability to

explicitly reference time within propositional variables. CSL has a greater

expressibility with respect to the de�nition of security but less expressibility

with respect to explicit time reference.

Informally, Bieber and Cuppens' de�nition of secrecy is that a subject

is permitted to know any information deducible from its inputs. Such a

de�nition is similar to information
ow-based de�nitions of secrecy such as

[18, 25, 34] in that what is permitted and forbidden is implicit in the def-

inition. CSL is di�erent from all such de�nitions in that it requires each

30

action to be explicitly permitted or forbidden via the speci�cation of view-

authorizations. Consequently, the policy depends on the application; it is

manifested in the speci�cation of view-authorizations along with any other

environmental assumptions speci�ed; recall that the veri�cation of secrecy

satisfaction is of the form:

Assumptions ^ System Speci�cation) Secrecy Property

where the Assumptions embody the view-authorizations and any other envi-

ronmental assumptions. As a result, CSL does not have an inherent de�nition

of secrecy that can be compared to such
ow-based de�nitions or to Bieber

and Cuppens' logic-based de�nition. Syverson and Gray generalize Causal-

ity within a probabilistic framework to produce a de�nition of Probabilistic

Non-Interference (PNI) [35]. Like Causality, PNI incorporates a "permission

to know" modal operator rather than a generalized permission operator as in

CSL. It is shown that PNI is a necessary and su�cient condition for a system

to be free of covert channels. An interesting question is whether or not there

is a characterization of such secrecy de�nitions using view-authorizations.

The backward modalities Since and Last are introduced and interpreted

in a linear sense mainly to express knowledge and causality respectively. A

result of this is that e�cient model checking is impossible. Indeed, it is

shown in [23] that CTL with a linearly interpreted past modality Since has

the same expressivity as CTL* [14], and thus we cannot expect an e�cient

model checking tool for CSL since it will cost at least a (single) exponential

upper-bound, as does CTL*.

However, we are interested in investigating symbolic model checking for

certain important cases, by way of representing in�nite tree structures as

parameterized �nite graphs. Such a parameterization should be based on

an investigation into relevant important security properties. We are also

currently investigating a syntactic proof system.

Our major reservation concerning the role-based security involves the

inability to express properties based on state. For example, not providing

a copy command in the medical system example to address the "no copy"

requirement on consultants can be viewed as moving the system security

boundary further out from the state, i.e. the data, of the system model. One

could view the boundary as being at the application interface and subjects

as modelling human users. A better system model would put the boundary

in closer and view the subjects as processes executing on behalf of human

31

users. In this case it is less acceptable to simply say that we will have no copy

command since processes can, in general, read from one record and write to

another. In this case, the potential information
ows in the system model

cannot be ignored. Whether such information
ows could be addressed by

parameterizing commands with data values, e.g. read(r; d), as in done with

languages like CCS [28], has yet to be determined.

Future work also includes an investigation of the inclusion in CSL of the

expression of delegation [1]. We also intend to investigate the relationship of

CSL to cryptographic protocol logics [36]. Finally, we intend to investigate

extensions to CSL to address real-time applications [31, 3].

Acknowledgement: The authors would like to acknowledge Rocco

De Nicola for suggesting ACTL as a basis for the logic.

References

[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for ac-

cess control in distributed systems. ACM Transactions on Programming

Languages and Systems, 15(4):706{734, September 1993.

[2] I.F. Akyildiz and J.V. Luo. Formal modelling of commercial integrity

policy in parallel and distributed systems. Technical Report GIT-ICS-

91-25, College of Computing, Georgia Institute of Technology, April

1991.

[3] R. Alur, C Courcoubatis, and D. Dill. Model-checking for real-time

systems. In Proceedings of Logic in Computer Science, pages 414{425.

IEEE Computer Society Press, 1990.

[4] L. Badger. Providing a
exible security override for trusted systems. In

Proceedings of the Computer Security Foundations Workshop II, pages

115{121, Franconia, N.H., 1990.

[5] L. Badger. A model for specifying multi-granularity integrity policies. In

Proceedings of the 1989 IEEE Computer Society Symposium on Security

and Privacy, Oakland, California, May 1989.

32

[6] J.C.M. Baeton and W.P. Weijland. Process Algebra. Cambridge Uni-

versity Press, Cambridge, UK, 1990.

[7] K. J. Biba. Integrity considerations for secure computer systems. Tech-

nical Report TR-3153, MITRE Corporation, April 1977.

[8] Pierre Bieber. A de�nition of secure dependencies using the logic of

security. In The Computer Security Foundations Workshop, pages 2{11,

Franconia NH, 1991.

[9] Pierre Bieber and Frederick Cuppens. A logical view of secure depen-

dencies. Journal of Computer Security, 1:99{129, 1992.

[10] M. Byrd. Megarian necessity in forward-branching, backward-linear

time. Midwest Studies in Philosophy, 3:463{469, February 1978.

[11] H. Castaneda. The Paradoxes of Deontic Logic, pages 37{85. D. Reidel

Publishing Company (dist. by Kluwer Boston Inc., Hingham, Mass.),

1981. In New Studies in Deontic Logic: Norms, Actions and the Foun-

dations of Ethics.

[12] Frederick Cuppens. Roles and deontic logic. unpublished, 1994.

[13] Frederick Cuppens. A logic analysis of authorized and prohibited infor-

mation
ows. In Proceedings of the 1993 IEEE Symposium on Security

and Privacy, pages 100{109, Oakland, California, May 1993.

[14] E.A. Emerson. Temporal and modal logic. In J. Van Leeuwen, editor,

Handbook of Theoretical Computer Science, Volume B: Formal Models

and Semantics, chapter 16, pages 996{1072. Elsevier, 1990.

[15] E.A. Emerson and J.Y Halpern. \sometimes" and \not never" revisited.

Journal of the ACM, 33(1):151{178, 1986.

[16] D. Follesdal and R. Hilpinen. Deontic Logic: An Introduction, pages

1{35. D. Reidel Publishing Company (dist. by Humanitites Press, New

York), 1971. In Deontic Logic: Introductory and Systematic Readings.

[17] J.I. Glasgow, G.H. MacEwen, and P. Panangaden. A logic for reasoning

about security. ACM Transactions on Computer Systems, 10(3):226{

264, August 1992.

33

[18] J.A. Goguen and J. Meseguer. Unwinding and inference control. In

IEEE Symposium on Security and Privacy, pages 75{86, Oakland, CA,

April 1984.

[19] M.A. Harrison, W.L. Ruzzo, and J.d. Ullman. Protection in operating

systems. Communications of the ACM, 19(8):461{471, August 1976.

[20] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall In-

ternational, 1985.

[21] M.Y. Hu, S.A. Demurjian, and T.C. Ting. User-role based security

pro�les for an object-oriented design model. In Database Security VI:

Status and Prospects, pages 333{348. Elsevier Science Publishers B.V.

(North Holland), 1993. IFIP.

[22] S. Kripke. Semantical considerations of modal logic. Acta Philosophica

Fennica, 16:83{94, 1963.

[23] F. Laroussinie and P. Schnoebelen. A hierarchy of temporal logics with

past. In STACS, 1994.

[24] T.F. Lunt et al. The seaview security model. IEEE Transactions on

Software Engineering, SE-16(6), June 1990.

[25] A.D. McCullough. Speci�cations for multi-level security and a hook-up

property. In Proceedings of IEEE Symposium on Security and Privacy,

pages 161{166, Oakland, CA, April 1987.

[26] J. McLean. Security models and information
ow. In Proceedings of

IEEE Symposium on Security and Privacy, pages 180{187, Oakland,

CA, May 1990.

[27] J. K. Millen. Hook-up security for synchronous machines. In Proceedings

of the Computer Security Foundations Workshop, pages 84{90, Franco-

nia, New Hampshire, June 1990.

[28] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[29] R. De Nicola, A. Fantechi, S. Gnesi, and G. Ristori. An action-based

framework for verifying logical and behavioural properties of concurrent

systems. Computer Networks, 25(7):761{778, February 1993.

34

[30] R. De Nicola and F.W. Vaandrager. Action versus state- based logics for

transition systems. In I. Guessarian, editor, Proc. Ecole de printemps on

semantics of concurrency, LNCS 469, pages 407{419. Springer-Verlag,

1990.

[31] J.S. Ostro� and W.M. Wonham. A framework for real-time discrete

event control. IEEE Transactions on Automatic Control, pages 386{

397, December 1987.

[32] G. Plotkin. A structural approach to operational semantics. Technical

report, Computer Science Dept. Aarhus Univ. Denmark, 1981. DAIMI-

FN-19.

[33] R.S. Sandhu. The schematic protection model: Its de�nition and analy-

sis for acyclic attenuating schemes. Journal of the ACM, 35(2):404{432,

1988.

[34] A.D. Sutherland. A model of information. In 9th National Computer Se-

curity Conference, pages 175{183, Gaithersburg, MD, September 1986.

[35] P.F. Syverson and J.W. Gray. The epistemic representation of informa-

tion
ow security in probabilistic systems. In Proceedings of the Com-

puter Security Foundations Workshop VIII, pages 152{166, Kenmare,

Ireland, 1995.

[36] P.F. Syverson and P.C. van Oorschot. On unifying some cryptographic

protocol logics. In Proceedings of The 1994 IEEE Symposium on Security

and Privacy, pages 14{28, Oakland, California, May 1994.

[37] G.H. von Wright. An Essay in Deontic Logic and The General Theory of

Action, volume 21 of Acta Philosophicas Fennica. North-Holland, 1968.

35

