
Strategies for Parallelizing Supervised and Unsupervised

Learning in Arti�cial Neural Networks Using the BSP

Cost Model

R.O. Rogers and D.B. Skillicorn

frogers,skillg@qucis.queensu.ca

June 1997

External Technical Report

ISSN-0836-0227-

97-406

Department of Computing and Information Science

Queen's University

Kingston, Ontario, Canada K7L 3N6

Document prepared June 2, 1997

Copyright c1997 R.O. Rogers and D.B. Skillicorn

Abstract

We use the cost system of BSP (Bulk Synchronous Parallelism) to predict the performance of

three di�erent parallelization techniques for both supervised and unsupervised learning in arti�cial

neural networks. We show that exemplar parallelism outperforms techniques that partition the

neural network across processors, especially when the number of exemplars is large, typical of

applications such as data mining.

Keywords: Bulk synchronous parallelism, BSP, batch learning, supervised learning, un-

supervised learning, backpropagation, competitive layer network, cost metrics, performance

evaluation, Cray T3D, Cray T3E, IBM SP2, SGI PowerChallenge.

1 Introduction.

Training neural networks is time-consuming, so the possibility of applying parallelism to it

has been extensively considered. Three approaches have been used. The �rst is to build

special-purpose hardware implementations of neural networks [10, 11, 14]. The second is

to map neural networks onto parallel computers with particular, regular communication

topologies [4, 13, 15] in ways that minimize the communication required. This approach

has become less important because, increasingly, parallel computers use less-well-structured

communication topologies. The third approach is to develop neural network implementation

strategies for general parallel computers [3]. A good analysis of general-purpose approaches

as part of the Promoter project can be found in [2].

It is di�cult, in practice, to determine the best way to exploit parallelism because of the

number of di�erent ways in which to divide the work of training into concurrently-executable

pieces, the communication-intensive nature of training algorithms, and the absence of real-

istic analytic ways of predicting the performance of parallel computers.

A new parallel computation model, Bulk Synchronous Parallelism (BSP), is designed

for communication-intensive applications, and has a cost system that is both simple and

accurate on a wide range of real machines [12]. The BSP model is a perfect �t with the

computational structure of neural network training. The predictions of its cost model are

typically within a few percent of the actual performance achieved [7], so comparisons of

implementation strategies can be made without laborious implementation and testing.

We express some obvious strategies for neural network parallelization in a BSP style, and

then use the cost model to predict their performance. We conclude that, for both supervised

and unsupervised learning, exemplar parallelism is a clear win. This agrees with intuition

and with the results of previous implementations. Our contribution is to show that these

performance relationships are not artifacts of particular implementation techniques, but are

intrinsic, arising from the dense communication requirements of neural network training. We

also quantify how poorly certain parallelization techniques must perform, and thus provide

evidence to remove them from practical consideration.

In the next section, we provide a brief introduction to BSP. In Section 3, we describe

parallelization strategies for neural network learning. In Section 4, we analyse supervised

learning (multilayer perceptrons), and in Section 5 we analyse unsupervised learning (self-

organizing feature maps).

2 Bulk Synchronous Parallelism.

A BSP abstract machine consists of a set of processor-memory pairs connected by a commu-

nication topology. It is straightforward to emulate such an abstract machine on any MIMD

architecture [12].

BSP programs are sequential compositions of supersteps. A superstep is a parallel con-

struct in which each processor executes the same code. There are three phases to each

superstep. They are:

1. Local computation in each processor, using only local variables;

1

Computer Processors Exec Rate g l
(Mops) (ops/word) (ops)

SGI PowerChallenge 4 74 0.5 1902

Cray T3D 4 12 0.8 168

16 12 1.0 181

64 12 1.7 148

256 12 2.4 387

Cray T3E 4 46.7 1.8 357

16 46.7 1.7 751

IBM SP2 4 26 8.0 3583

8 26 11.4 5412

Sun 4 10.1 4.1 118

Figure 1: BSP Parameters for Typical Parallel Computers.

2. Global communication among processors;

3. A barrier synchronisation, after which all communicated values become visible in local

memories.

The key to BSP's simple style, accurate cost prediction, and high performance are:

� Separating communication from synchronisation, which makes it impossible to write

programs that deadlock.

� Treating communication as global, rather than the aggregate of many point-to-point

communications. This makes congestion e�ects visible, so that they can be minimized

by the runtime system, and their cost reected for software developers.

The cost of a superstep can be straightforwardly computed from the program text and

two architectural parameters. The �rst of these, g, measures the ability of an architecture's

communication network to deliver continuous data. It is in units of oating point operation

times to deliver each 32-bit word, so a global communication phase in which each processor

sends and receives no more than h words completes in the same time as hg oating point

instructions. This use of a single parameter to model an apparently-complex phenomenon

works because today's parallel computers take very little advantage of locality; the cost of

communication is dominated by the time to cross the boundary between processors and

network. The second parameter, l, measures the time taken for barrier synchronisation.

Figure 1 shows typical values of these parameters for some popular parallel computers.

Consider a superstep in which processor i takes wi instructions for its local computation

and sends and receives hi words. The cost of the superstep is the sum of the costs of its

three phases, and so is:

MAX
processes

wi + MAX
processes

hi g + l (1)

2

L layers

p processors

E examples
NL neurons

N input neurons

Figure 2: Neural Network Parameters.

The units of this expression are oating point operation times, which can be converted to

time by dividing through by the instruction execution rate. This cost formula is not just a

theoretical approximation { it has been shown to be highly accurate across a wide range of

architectures and applications [7].

3 Parallelization Strategies for Learning.

For simplicity and generality, we consider neural networks with L layers, and N neurons per

layer, with each layer in the network fully-connected to the preceding and succeeding layers.

The total number of neurons is therefore NL. We assume this rectangular structure because

all other network connectivities are subsets of this topology, and it represents the worst-case

communication density. We also assume that p processors are used, and that the training

set consists of E examples. This is illustrated in Figure 2.

Three parallelization strategies are considered. They are:

1. Exemplar parallelism (EP). This approach uses the existence of large numbers of ex-

emplars as the source of parallelism. It does not attempt to exploit the parallelism

present in a neural network itself.

Each processor is given a subset of the exemplars, and trains on each, using the standard

sequential technique. The weight corrections are accumulated in each processor, as

in sequential batch learning. When each processor has processed its exemplars, the

weight corrections are summed across processors to give a single, global correction to

the weight space.

2. Block parallelism (BP). This approach uses the parallelism within the neural network,

partitioning the network into blocks of connected neurons. We assume that these are

non-overlapping rectangular blocks of dimension x deep by y wide. This exploits the

(rather limited) locality present in the connections between neurons.

Each block is assigned to a processor. Exemplars are presented to those processors

holding blocks containing the input layer of the neural network. These processors

execute the standard backpropagation algorithm on the neurons they contain, passing

3

activations on to the processors holding layers x+1, x+2, and so on. Errors propagate

backwards in the obvious, reverse way. Note that rows of processors behave as a two-

way pipeline.

3. Neuron parallelism (NP). This approach also uses the parallelism within the neural

network, but does not attempt to exploit locality. Instead, neurons are randomly

allocated to processors.

Each processor is assigned n=p neurons. Standard backpropagation is used, as in block

parallelism, except that the random allocation means that there is no geometric rela-

tionship between processors. Instead, updates are done on a data-driven basis. Inter-

processor communication occurs whenever an activation or error must move between

neurons allocated to di�erent processors.

All three of these parallel implementation techniques �t well with BSP because load balancing

can be statically optimised. In all three cases, there is an obvious way to ensure that each

processor is allocated the same amount of work. Although block parallelism exploits locality,

every processor communicates equally with every other processor holding part of the same

layer of the neural network; thus locality-based models will not outperform BSP signi�cantly.

As a pragmatic matter, BSP performs as well, or better, than models such as MPI or PVM

[8, 9].

4 Cost Analysis for Supervised Learning.

In this section, we examine the relative costs of the three parallelization techniques for

supervised learning using multilayer perceptrons. Observe that the number of weights that

must be updated to learn one exemplar is W = N2(L� 1). We will assume that it takes A

operations to update each weight.

For exemplar parallelism, learning can be divided into two phases: the learning of a

subset of exemplars by each processor independently, and then the global computation of

the weight correction. Thus EP is implemented using two supersteps.

The �rst superstep requires each processor to compute W=p weight updates for each

exemplar. Thus the computation cost is AEW=p. At the end of this superstep, each pro-

cessor passes its weight space correction (of size W) to a single processor. The cost of this

communication is (p� 1)Wg.

Naively it might seem that merging weight space corrections using a tree would be prefer-

able, since this takes (in theory) logarithmic time. Indeed, some implementations do this

[3, 14]. However, experimental results [6] show that reductive trees perform very poorly on

today's architectures because of the poor performance of synchronisations. A BSP barrier

synchronisation is likely to be faster than even a single lock or semaphore on real machines.

As a result, the logarithmic number of steps of the reductive algorithm does not produce the

best overall performance.

The computation performed by this single processor to compute the �nal weight space

correction from the weight corrections received from each of the other processors takes time

4

(p� 1)W . Thus, the overall BSP cost of this parallel implementation, using Equation 1, is:"
AEW

p
+ (p� 1)W

#
+ [(p� 1)W] g + 2l

For block parallelism, the superstep structure is somewhat complicated. Recall that each

processor is responsible for a block of neurons of depth x and width y. It is easy to see

that xyp = NL. The processors can be regarded as arranged in rows, the �rst handling

neurons in layers 1 to x, the second handling neurons in layers x+1 to 2x and so on. These

processor rows pass data in both directions, activations upwards and errors downwards.

Each such communication requires a superstep, which we will call a big superstep. There is

approximately one big superstep per exemplar, complicated slightly by the need to �ll the

pipeline at the beginning and empty it at the end. The actual number of big supersteps is

(E � 1) + 2(L=x� 1).

Consider a processor during a big superstep. The activations it has just received at

the beginning of the superstep are su�cient to compute the weight corrections of its �rst

layer of neurons. However, it cannot compute those of subsequent layers until it gets the

activations from the �rst layer of neurons in the other processors of its row. This horizontal

communication also requires supersteps, which we will call small supersteps. The number

of small supersteps required within each big superstep is x� 1, and each processor receives

N � y activation values during each one.

At the beginning of each big superstep, each of the N=p processors in a row transmits

y values to each processor in the subsequent row (and, symmetrically, transmits errors to

the previous row). The communication volume exchanged during a complete big superstep

is therefore

2(y �N=y) + (N � y)(x� 1)

and the computation required is AW=p.
Let z = (E � 1) + 2(L=x� 1). Then the total BSP cost of block parallelism is:

[(AW=p)] z + [2(N) + (N � y)(x� 1)] zg + zxl

It is clear from this formula that better performance is achieved by making the blocks

as wide as possible, that is making y large and x small. This reduces the number of small

supersteps required, reducing the horizontal communication and number of barrier synchro-

nisations required. In the limit, when x = L=p and y = N , block parallelism reduces to layer

parallelism (LP), which requires fewer supersteps, since the small supersteps are no longer

needed. If z = (E � 1) + 2(p� 1) then LP has BSP cost:

[(AW=p)E] z + [2N] zg + zl

Notice that layer parallelism has an opportunity for exploiting locality, because the compu-

tation becomes a pipeline which could be mapped to a linear array of processors. This is

primarily of theoretical interest, however, because multilayer perceptrons do not typically

have many layers, so that opportunities for exploiting parallelism in this way are limited.

For neuron parallelism, the number of supersteps is the same as for layer parallelism,

since the same data dependencies exist. The amount of computation per superstep is also

5

EP BP NP

zx

of supersteps 2 where z = (E � 1) + 2(p� 1)

z = (E � 1) + 2(L
x
� 1)

total computation AW

p
E + (p� 1)W AW

p
z AW

p
z

total communication (p� 1)W [2N + (N � y)(x� 1)]z 2W

p
z

Figure 3: Costs for Supervised Learning (W = N2(L� 1)).

the same, since each processor is still doing a proportionate share of the weight and activation

computation, but for a random selection of the neurons. The communication per superstep

requires each processor to send and receive a proportionate share of the W weights, so its

communication volume is 2W=p. These cost expressions are summarised in Figure 3.

We can now compare these methods. The computation time for all three methods is

the same, except that exemplar parallelism must perform some post-processing. It is the

communication volumes that di�er. We compare exemplar parallelism, neuron parallelism,

and layer parallelism, (since it has the least communication and synchronisation requirement

of any block technique). The communication volumes are of order:

EP : N2Lp

LP : (E + p)N

NP : (E + p)N2L=p

Thus, regardless of the values of g and l, EP outperforms LP when E > NLp. This is likely

to be true in practice, since the number of processors, p, is a �nite and expensive resource.

It is also necessarily true for reasonable error rates if Widrow's Rule [5, p 178] is used to

match network size with training set size. Both EP and LP outperform NP. EP is an even

clearer winner when the number of supersteps in taken into account, since l, the cost of a
barrier synchronisation, is large on today's systems.

Figure 4 shows the predicted cost of the three di�erent techniques as the number of

exemplars increases. These data are for a 16 processor T3E, with g = 1:7 and l = 751, on a

network with N = 32 and L = 16. For purposes of comparison, we illustrate on a network

with an unrealistic number of layers. Even here, exemplar parallelism is better than layer

parallelism for modest numbers of exemplars.

6

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

In
st
ru
ct
io
n
T
im
es
R
eq
u
ir
ed

Number of Exemplars

Cray T3E, 16 processors, predicted

EP(x)
LP(x)
NP(x)

Figure 4: Predicted Cost versus Number of Exemplars { Supervised

5 Cost Analysis for Unsupervised Learning.

In this section we analyse the performance of two of the three parallelization strategies for

unsupervised learning. Although the exact algorithms are di�erent, the strategies are much

the same. We analyse a competitive layer network with I inputs and J outputs. The size of

a weight space is W = IJ , since there are IJ weighted connections between the input layer

and the output layer.

Note that training a competitive layer network using a batch technique has been shown to

be equivalent to k-means clustering [1] for normalised data. This justi�es the use of exemplar

parallelism as a parallelization technique. Block parallelism reduces to neuron parallelism,

since there are only two layers, and there is no horizontal locality structure to exploit.

For exemplar parallelism, once again only two supersteps are needed: the �rst using a

subset of the exemplars in each processor, and the second computing the �nal weight space.

The computation for each exemplar is AW to update the accumulated weight correction,

followed by J � 1 steps to �nd the local winning neuron. At the end of the �rst superstep,

a copy of the weight updates are sent from every processor to a particular processor to do

the �nal resolution. It receives (p� 1)W data and must merge these updates, an operation

whose cost is (p� 1)W .

The BSP cost of this implementation is

"
E

p
(AW + J � 1) + (p� 1)W

#
+ [(p� 1)W] g + 2l

For neuron parallelism, 2E supersteps are needed, since each exemplar requires trans-

mission of inputs from the input layer to each neuron, computation of activations at each

neuron, and then communication of each local maximum to other neurons. The input values

7

EP NP

of supersteps 2 2E

total computation E

p
(AW + J � 1) + (p� 1)W ((AW+J

p
� 1) + (p� 1) + W

p
)E

total communication (p� 1)W (I + p� 1)E

Figure 5: Costs for Unsupervised Learning.

for each exemplar must be passed to the output neurons at the beginning of the �rst phase.

The computation requirement for each processor on the �rst phase is a proportionate part

of the activation computation, AW=p, followed by J=p� 1 comparisons to compute the local

winning neuron. The values of each of these local winners must then be communicated to all

of the other processors; thus each processor receives data of size p� 1. In the second phase,

they must then each identify the global neuron with the maximum output, requiring local

computation of p � 1 operations, followed by updates of the neighbour neurons. Since the

distribution of neurons is random, this might require updatingW=p weights in the worst case

(for example, an unfolded Kohonen feature map). These expressions are shown in Figure 5.

The BSP cost of this implementation is

(
AW + J

p
� 1) + (p� 1) +

W

p

!
E + (I + p� 1)Eg + 2El

EP computation cost is asymptotically smaller than that of NP when E > W . Once

again, this is necessarily true for plausible error rates if Widrow's Rule [5] is used to choose

the size of the network and training set. The communication cost of EP is roughly pW while

that of neuron parallelism is roughly (p+I)E, so that exemplar parallelism is a clear winner,

even more so if synchronisation cost is considered.

Figure 6 shows the predicted cost of these two techniques for the same processor con-

�guration as before, the Cray T3E with 16 processors, using I = J = 32. This shows the

advantage of EP for even small numbers of exemplars.

6 Conclusion

We have presented a BSP cost analysis of three parallelization strategies for both supervised

and unsupervised neural network training. BSP's clear and accurate cost model shows

8

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

In
st
ru
ct
io
n
T
im
es
R
eq
u
ir
ed

Number of Exemplars

Cray T3E, 16 processors, predicted

EP(x)
NP(x)

Figure 6: Predicted Cost versus Number of Exemplars { Unsupervised

de�nitively that exemplar parallelism is the preferred technique. This is not surprising in

the sense that partitioning a neural network across the processors of a parallel computer

necessarily generates heavy communication. We have quanti�ed the extent to which this is

true within a framework that captures critical architecture properties. Thus there is no need

for extensive simulations to discover which techniques are not appropriate.

References

[1] S. Becker and M. Plumbley. Unsupervised neural network learning procedures for feature

extraction and classi�cation. Journal of Applied Intelligence, 6:1{21, 1996.

[2] M. Besch and H.W. Pohl. How to simulate arti�cial neural networks on large scale

parallel computers exploiting data parallelism and object orientation. Technical Report

TR-94022, GMD FIRST Real World Computing Laboratory, November 1994.

[3] M. Besch and H.W. Pohl. Flexible data parallel training of neural networks using MIMD

computers. In Third Euromicro Workshop on Parallel and Distributed Processing, Jan-

uary 1995.

[4] P. Frasconi, M. Gori, and G. Soda. Daphne: Data parallelism neural network simulator.

International Journal of Modern Physics C, 1992.

[5] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice-Hall, 1994.

[6] J.M.D. Hill and D.B. Skillicorn. Practical barrier synchronisation. Technical Report

TR-96-16, Oxford University Computing Laboratory, October 1996.

9

[7] Jonathan M. D. Hill, Paul I Crumpton, and David A. Burgess. The theory, practice,

and a tool for BSP performance prediction. In EuroPar'96, volume 1124 of LNCS, pages

697{705. Springer-Verlag, August 1996.

[8] A. Hyaric. Converting the NAS benchmarks from MPI to BSP. High Performance Com-

puting and Networks '96 Presentation, http://merry.comlab.ox.ac.uk/oucl/users/

hyaric/doc/BSP/NASfromMPItoBSP/, 1996.

[9] M. Nibhanupudi, C. Norton, and B. Szymanski. Plasma simulation on networks of

workstations using the bulk synchronous parallel model. In Proceedings of the Interna-

tional Conference on Parallel and Distributed Processing Techniques and Applications,

Athens, GA, November 1995.

[10] T. Nordstr�om. Designing parallel computers for self organizing maps. In Proceedings of

the 4th Swedish Workshop on Computer Systems Architecture, 1992.

[11] D.A. Pomerleau, G.L. Gusciora, D.L. Touretzky, and H.T. Kung. Neural network sim-

ulation at Warp speed: How we got 17 million connections per second. In IEEE Inter-

national Conference on Neural Networks, July 1988.

[12] D.B. Skillicorn, J.M.D. Hill, and W.F. McColl. Questions and answers about BSP.

Scienti�c Programming, to appear. Also appears as Oxford University Computing Lab-

oratory, Technical Report TR-15-96, November 1996.

[13] N.B. �Serbed�zija. Simulating arti�cial neural networks on parallel architectures. Com-

puter, 29, No.3:56{63, 1996.

[14] M. Whitbrock and M. Zagha. An implementation of backpropagation learning on GF11,

a large SIMD parallel computer. Parallel Computing, 14:329{346, 1990.

[15] X. Zhang, M. McKenna, J.P. Mesirov, and D.L. Waltz. The backpropagation algorithm

on grid and hypercube architectures. Parallel Computing, 14:317{327, 1990.

10

